Ver ítem
- xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Buenos Aires NorteEEA PergaminoArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- Inicio
- Centros Regionales y EEAs
- Centro Regional Buenos Aires Norte
- EEA Pergamino
- Artículos científicos
- Ver ítem
Analysis of molecular mobility in corn and quinoa flours through ¹H NMR and its relationship with water distribution, glass transition and enthalpy relaxation
Resumen
Solids-water interactions of corn and quinoa flours were evaluated through 1H NMR, DSC, and water sorption isotherms. Glass transition temperature (Tg), observed by DSC, was better distinguished through FID signals, and correlated to water content through the Gordon and Taylor model. Enthalpy relaxations, identified by thermal analysis at 50–70 °C were studied through transverse relaxation times (T2) measured after Hahn spin-echo sequence, which revealed
[ver mas...]
Solids-water interactions of corn and quinoa flours were evaluated through 1H NMR, DSC, and water sorption isotherms. Glass transition temperature (Tg), observed by DSC, was better distinguished through FID signals, and correlated to water content through the Gordon and Taylor model. Enthalpy relaxations, identified by thermal analysis at 50–70 °C were studied through transverse relaxation times (T2) measured after Hahn spin-echo sequence, which revealed a rearrangement of the biopolymers structures that cause immobilization of polymer chains and reduced mobility of water molecules with weak interactions with solids (lower T22). The higher lipid content of quinoa flour was manifested after the CPMG sequence (T2 ≈ 100 ms) and caused reduced hygroscopicity and Tg values compared with corn flour systems. 1H NMR resulted efficient for assigning proton populations and understanding the changes in their distribution with temperature, analyzing glass transition and interpreting the implications of enthalpy relaxations processes in corn and quinoa flours.
[Cerrar]

Autor
Rolandelli, Guido;
Farroni, Abel Eduardo;
Buera, María del Pilar;
Fuente
Food Chemistry 373 (Part A) : 131422. (March 2022)
Fecha
2021-03
Editorial
Elsevier
ISSN
0308-8146
Documentos Relacionados
Formato
pdf
Tipo de documento
artículo
Proyectos
(ver más)
INTA/2019-PD-E7-I152-001/2019-PD-E7-I152-001/AR./Alimentos nutracéuticos, funcionales o para regímenes especiales.
Palabras Claves
Derechos de acceso
Restringido
