View Item
- xmlui.general.dspace_homeCentros e Institutos de InvestigaciónCICVyA. Centro de Investigación en Ciencias Veterinarias y AgronómicasInstituto de GenéticaArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- DSpace Home
- Centros e Institutos de Investigación
- CICVyA. Centro de Investigación en Ciencias Veterinarias y Agronómicas
- Instituto de Genética
- Artículos científicos
- View Item
HBeeID : a molecular tool that identifes honey bee subspecies from diferent geographic populations
Abstract
Background: Honey bees are the principal commercial pollinators. Along with other arthropods, they are increasingly under threat from anthropogenic factors such as the incursion of invasive honey bee subspecies, pathogens and parasites. Better tools are needed to identify bee subspecies. Genomic data for economic and ecologically important organisms is increasing, but in its basic form its practical application to address ecological problems is
[ver mas...]
Background: Honey bees are the principal commercial pollinators. Along with other arthropods, they are increasingly under threat from anthropogenic factors such as the incursion of invasive honey bee subspecies, pathogens and parasites. Better tools are needed to identify bee subspecies. Genomic data for economic and ecologically important organisms is increasing, but in its basic form its practical application to address ecological problems is limited.
Results: We introduce HBeeID a means to identify honey bees. The tool utilizes a knowledge-based network and diagnostic SNPs identified by discriminant analysis of principle components and hierarchical agglomerative clustering. Tests of HBeeID showed that it identifies African, Americas-Africanized, Asian, and European honey bees with a high degree of certainty even when samples lack the full 272 SNPs of HBeeID. Its prediction capacity decreases with highly admixed samples.
Conclusion: HBeeID is a high-resolution genomic, SNP based tool, that can be used to identify honey bees and screen species that are invasive. Its flexible design allows for future improvements via sample data additions from other localities.
[Cerrar]

Author
Donthu, Ravikiran;
Marcelino, Jose A. P.;
Giordano, Rosanna;
Tao, Yudong;
Weber, Everett;
Avalos, Arian;
Band, Mark;
Akraiko, Tatsiana;
Chen, Shu‑Ching;
Reyes, Maria P;
Hao, Haiping;
Ortiz‑Alvarado, Yarira;
Cuf, Charles A.;
Pérez Claudio, Eddie;
Soto‑Adames, Felipe;
Smith‑Pardo, Allan H.;
Meikle, William G.;
Evans, Jay D.;
Giray, Tugrul;
Abdelkader, Faten B.;
Allsopp, Mike;
Ball, Daniel;
Morgado, Susana B.;
Barjadze, Shalva;
Correa‑Benitez, Adriana;
Chakir, Amina;
Báez, David R.;
Chavez, Nabor H. M.;
Dalmon, Anne;
Douglas, Adrian B.;
Fraccica, Carmen;
Fernández‑Marín, Hermógenes;
Galindo Cardona, Alberto;
Guzman‑Novoa, Ernesto;
Horsburgh, Robert;
Kence, Meral;
Kilonzo, Joseph;
Kükrer, Mert;
Le Conte, Yves;
Mazzeo, Gaetana;
Mota, Fernando;
Muli, Elliud;
Oskay, Devrim;
Ruiz‑Martínez, José A.;
Oliveri, Eugenia;
Pichkhaia, Igor;
Romane, Abderrahmane;
Guillen Sanchez, Cesar;
Sikombwa, Evans;
Satta, Alberto;
Scannapieco, Alejandra Carla;
Stanford, Brandi;
Soroker, Victoria;
Velarde, Rodrigo A.;
Vercelli, Monica;
Huang, Zachary;
Fuente
BMC Bioinformatics 25 : 278 (August 2024)
Date
2024-08
Editorial
BioMed Central
ISSN
1471-2105
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Derechos de acceso
Abierto
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)


