Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  • español 
    • español
    • English
  • Mi Cuenta
Acerca deAutoresTítulosTemasColeccionesComunidades☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ver ítem 
    xmlui.general.dspace_homeCentros e Institutos de InvestigaciónCIRN. Centro de Investigaciones de Recursos NaturalesInstituto de Clima y AguaArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • Inicio
  • Centros e Institutos de Investigación
  • CIRN. Centro de Investigaciones de Recursos Naturales
  • Instituto de Clima y Agua
  • Artículos científicos
  • Ver ítem

Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method

Resumen
Estimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large uncertainty among existing ET products from Landsat that limit their application. This study presents a simple Taylor skill fusion (STS) method that merges five [ver mas...]
Estimation of high-resolution terrestrial evapotranspiration (ET) from Landsat data is important in many climatic, hydrologic, and agricultural applications, as it can help bridging the gap between existing coarse-resolution ET products and point-based field measurements. However, there is large uncertainty among existing ET products from Landsat that limit their application. This study presents a simple Taylor skill fusion (STS) method that merges five Landsat-based ET products and directly measured ET from eddy covariance (EC) to improve the global estimation of terrestrial ET. The STS method uses a weighted average of the individual ET products and weights are determined by their Taylor skill scores (S). The validation with site-scale measurements at 206 EC flux towers showed large differences and uncertainties among the five ET products. The merged ET product exhibited the best performance with a decrease in the averaged root-mean-square error (RMSE) by 2–5 W/m2 when compared to the individual products. To evaluate the reliability of the STS method at the regional scale, the weights of the STS method for these five ET products were determined using EC ground-measurements. An example of regional ET mapping demonstrates that the STS-merged ET can effectively integrate the individual Landsat ET products. Our proposed method provides an improved high-resolution ET product for identifying agricultural crop water consumption and providing a diagnostic assessment for global land surface models. [Cerrar]
Thumbnail
Autor
Yunjun, Yao;   Shunlin, Liang;   Yuhu, Zhang;   Jiquan, Chen;   Xianglan, Li;   Kun, Jia;   Xiaotong, Zhang;   Fisher, Joshua B.;   Xuanyu, Wang;   Lilin, Zhang;   Jia, Xu;   Changliang, Shao;   Posse Beaulieu, Gabriela;   Yingnian, Li;   Magliulo, Vincenzo;   Varlagin, Andrej;   Moors, Eddy J.;   Boike, Julia;   Macfarlane, Craig;   Kato, Tomomichi;   Buchmann, Nina;   Billesbach, D.P.;   Beringer, Jason;   Wolf, Sebastian;   Papuga, Shirley A.;   Wohlfahrt, Georg;   Montagnani, Leonardo;   Ardö, Jonas;   Paul-Limoges, Eugénie;   Emmel, Carmen;   Hörtnagl, Lukas;   Sachs, Torsten;   Gruening, Carsten;   Gioli, Beniamino;   López-Ballesteros, Ana;   Steinbrecher, Rainer;   Gielen, Bert;  
Fuente
Journal of hydrology 553 : 508-526. (October 2017)
Fecha
2017-10
ISSN
0022-1694
URI
http://hdl.handle.net/20.500.12123/1551
https://www.sciencedirect.com/science/article/pii/S0022169417305395
DOI
https://doi.org/10.1016/j.jhydrol.2017.08.013
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Evapotranspiración; Evapotranspiration; Landsat; Imágenes por Satélites; Satellite Imagery; Datos Atmosféricos; Atmospheric Data;
Derechos de acceso
Restringido
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadatos
Mostrar el registro completo del ítem