Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  • English 
    • español
    • English
  • Login
AboutAuthorsTitlesSubjectsCollectionsCommunities☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
    xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Buenos Aires NorteEEA PergaminoArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • DSpace Home
  • Centros Regionales y EEAs
  • Centro Regional Buenos Aires Norte
  • EEA Pergamino
  • Artículos científicos
  • View Item

Responses to N Deficiency in Stay Green and Non-Stay Green Argentinean Hybrids of Maize

Abstract
Breeding has developed better yielding maize hybrids for low N environments, which also have delayed leaf senescence (‘stay green’ trait, SG). Here, we studied whether the SG trait can further improve yield of modern hybrids under N-limiting conditions. In two field experiments, four maize hybrids with different senescence behaviour were grown under three N fertilization levels, from 0 to 200 kg N ha 1 (N0, N100 and N200). After silking, hybrids differed [ver mas...]
Breeding has developed better yielding maize hybrids for low N environments, which also have delayed leaf senescence (‘stay green’ trait, SG). Here, we studied whether the SG trait can further improve yield of modern hybrids under N-limiting conditions. In two field experiments, four maize hybrids with different senescence behaviour were grown under three N fertilization levels, from 0 to 200 kg N ha 1 (N0, N100 and N200). After silking, hybrids differed for senescence depending on the canopy layer (P < 0.05): the SG AX878 only delayed senescence at the mid and upper canopy layers while the SG NK880 delayed senescence of all layers. Across N doses, higher yields were achieved by both SG hybrids, AX878 and NK880 (P < 0.05) but yield was not only determined by senescence behaviour. Kernel weight (KW) response to N availability was larger for SGs than for their non-‘stay green’ counterparts. Delayed senescence in SG hybrids was not related to higher post-silking N uptake but to higher (P < 0.05) %N in leaves and lower (P < 0.05) %N in kernels at harvest (below the critical 1.1 % under N deficiency). Across N levels, KW positively related to N content per kernel, with a steeper slope (P < 0.05) for the SG hybrids. Taken together, our results suggest that a condition where N limits kernel growth, in a scenario of saturating C availability, may be common to stay green genotypes of maize. [Cerrar]
Thumbnail
Author
Antonietta, Mariana;   Acciaresi, Horacio Abel;   Guiamet, Juan José;  
Fuente
Journal of agronomy and crop science 202 (3) : 231-242. (2016)
Date
2016-06
ISSN
0931-2250
URI
http://hdl.handle.net/20.500.12123/905
http://onlinelibrary.wiley.com/doi/10.1111/jac.12136/abstract
DOI
DOI: 10.1111/jac.12136
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Maíz; Maize; Nitrógeno; Nitrogen; Híbridos; Hybrids; Deficiencia de Nutrientes; Nutrient Deficiencies;
Derechos de acceso
Restringido
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadata
Show full item record