Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  • English 
    • español
    • English
  • Login
AboutAuthorsTitlesSubjectsCollectionsCommunities☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
    xmlui.general.dspace_homeCentros e Institutos de InvestigaciónCIRN. Centro de Investigaciones de Recursos NaturalesInstituto de Recursos BiológicosArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • DSpace Home
  • Centros e Institutos de Investigación
  • CIRN. Centro de Investigaciones de Recursos Naturales
  • Instituto de Recursos Biológicos
  • Artículos científicos
  • View Item

Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP

Abstract
Genomic Best Linear Unbiased Prediction (GBLUP) in tree breeding typically only uses information from genotyped trees. However, information from phenotyped but non-genotyped trees can also be highly valuable. The single-step GBLUP approach(ssGBLUP) allows genomic prediction to takeinto account both genotyped and nongenotyped trees simultaneously in a single evaluation. In this study, we investigated the advantage, in terms of breeding value accuracy and [ver mas...]
Genomic Best Linear Unbiased Prediction (GBLUP) in tree breeding typically only uses information from genotyped trees. However, information from phenotyped but non-genotyped trees can also be highly valuable. The single-step GBLUP approach(ssGBLUP) allows genomic prediction to takeinto account both genotyped and nongenotyped trees simultaneously in a single evaluation. In this study, we investigated the advantage, in terms of breeding value accuracy and bias, of including phenotypic observation from non-genotyped trees in a standard tree GBLUP evaluation. We compared the efficiency of the conventional pedigree-based (ABLUP), GBLUP and ssGBLUP approaches to evaluate eight growth and wood quality traits in a Eucalyptus hybrid population, genotyped with 33,398 single nucleotide polymorphisms (SNPs) using the EucHIP60k. Theoretical accuracies, predictive ability and bias were calculated by ten-fold cross validation on all traits. The use of additional phenotypic information from non-genotyped trees by means of ssGBLUP provided higher predictive ability (from 37% to 75%) and lower prediction bias (from 21% to 73%) for the genetic component of non-phenotyped but genotyped trees when compared to GBLUP. The increase (decrease) in the prediction accuracy (bias) became stronger as trait heritability decreased. We concluded that ssGBLUP is a promising breeding tool to improve accuracies and bias over classical GBLUP for genomic evaluation in Eucalyptus breeding practice. [Cerrar]
Thumbnail
Author
Cappa, Eduardo Pablo;   de Lima, Bruno Marco;   Silva-Junior, Orzenil B. da;   García, Carla C.;   Mansfield, Shawn D.;   Grattapaglia, Dario;  
Fuente
Plant Science 284 : 9-15 (July 2019)
Date
2019-03-28
Editorial
Elsevier
ISSN
0168-9452
URI
https://www.sciencedirect.com/science/article/pii/S0168945218314134
http://hdl.handle.net/20.500.12123/6227
DOI
https://doi.org/10.1016/j.plantsci.2019.03.017
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Eucalyptus; Genomic Features; Evaluation; Evaluación; Phenotypic Information; Información Fenotípico; Genética; Genetics; Accuracy Bias; Sesgo de Precisión; Características Genómicas;
Derechos de acceso
Restringido
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadata
Show full item record