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Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between
productivity and species richness at regional and global scales, which they contrast with
the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets,
when analyzed correctly, show clearly and consistently that productivity is a poor predictor
of local species richness.

F
raser et al. (1) collected a worldwide data
set to examine the relationship between
productivity and species richness at global
and local scales. They present their results
as a direct contrast with the results of

Adler et al. (2). However, their presentation
obscures substantial areas of agreement, and
where results between the two studies do differ,
problems in Fraser et al.’s statistical analysis
amplify the apparent differences.
The most important area of agreement is the

low explanatory power of the “humped-back
model” (HBM), in which species richness peaks
at intermediate productivity and declines at low
and high productivity. Fraser et al. fit a bivariate
relationship between productivity and diversity
that accounts for less than 1% of the observed
variation in species richness in their data (Table 1,
marginal R2s for the Fraser et al. data set). The
same is true for an analysis of the Adler et al.
data set using a generalized linear mixed model
(GLMM) with a block nested within-site random-
effects structure (Table 1, marginal R2s for the
Adler et al. data set). Thus, the analyses in both
Adler et al. and Fraser et al. demonstrate that
productivity is an uninformative predictor of
richness for most grasslands. A combined anal-
ysis using both data sets yields similar results
(Table 1).
A second point of agreement is the difficulty

of inferring process from bivariate patterns. The
HBM can arise through a wide array of mech-
anisms (3, 4), meaning that the detection of a
unimodal pattern does not provide evidence for
any particular mechanism.

Adler et al. argued, “[e]cologists should focus
on fresh, mechanistic approaches to understand-
ing the multivariate links between productivity
and richness” (2). Fraser et al. also concluded
“more work is needed to determine the under-
lying causal mechanisms that drive the uni-
modal pattern” and called for “additional efforts
to understand the multivariate drivers of species
richness.”
The key disagreement between Fraser et al.

and Adler et al. concerns the statistical signifi-
cance of the quadratic term that determines the
downward concavity of the richness productivity
relationship. Adler et al. found little evidence for
a concave-down relationship at the site scale (2%
of 48 sites) [figure 2 in (2)] and at the global
scale reported a significant effect but noted that
it was sensitive to choices about which sites to
include in the analysis [figure 3 in (2)]. In con-
trast, Fraser et al. found that 68% of 28 site-level
relationships were significantly concave-down
[figure 2A in (1)], and in a global extent regres-
sion, across all sites, the negative quadratic term
had a significant, and robust, P value. However,
their analysis at the site level is flawed, and the
presentation of the global regression in their
main figure is misleading.
The site-level regressions reported by Fraser

et al. and displayed in their figure 2A do not in-
clude the proper random-effects structure. An im-
portant feature of the Fraser et al. design was
explicitly selecting areas (i.e., grids) to sample
across productivity gradients within sites, whereas
Adler et al. located blocks of plots randomly with
respect to local productivity gradients. To properly

reflect their sampling design, in which each “grid”
of quadrats was located at one point along the
within-site productivity gradient, each site-level
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regression requires a random effect of “grid” to
account for the inherent correlation among plots
nested within a sampling grid. We reran the anal-
ysis of Fraser et al. with the grid random effect
included (5), except for one site (6). When the
proper statistical model is used, we find that only
29% of 28 site-level regressions are significantly
concave-down (Fig. 1).
Fraser et al. correctly account for their sampling

design at the global extent by using a GLMMwith
grid nested within site, as reported in their table 1.
However, in their figure 2A, they plot the much
more compelling fit from the statistical model
without the random effects. Although still sig-

nificant (P < 0.0001), the valid relationship is
much weaker than the relationship presented by
Fraser et al. (Fig. 1, heavy black line, and Table 1).
Despite Fraser et al.’s assertion that their

results are diametrically opposed to those pres-
ented in Adler et al., the degree of concordance
is impressive. In both data sets, the variance ex-
plained by the addition of a quadratic term is
virtually indistinguishable from that of a linear
model (Table 1). In fact, in both data sets the ran-
dom effects of site and grid (block for Adler et al.)
explain much more of the variation in species
richness than productivity, the supposed mech-
anistic driver of species richness (Table 1). Further-

more, with the appropriate statistical treatment,
the main difference in our results—the strength of
evidence for a significant quadratic term—appears
smaller.
A continued focus on this bivariate relation-

ship hinders progress toward understanding the
underlying multivariate causal relationship (4)
and the development of truly predictive models.
It is time to focus on effect sizes and variance
explained rather than just P values. The title of
Adler et al.’s paper, “Productivity is a poor pre-
dictor of plant species richness,” would be a
perfectly appropriate title for the Fraser et al.
paper, too.
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Fig. 1. Species richness as a function of bio-
mass production at the site level (colored lines)
and at the global extent (heavy black line).These
regressions are the same as presented by Fraser
et al. except that we included a grid random effect
for the site-level regressions, and we show the
proper global extent regression line from a GLMM
with grid nested within site. Nonsignificant regres-
sion fits are not plotted.

Table 1. Results from global-extent GLMMs for both data sets.Results from regressions with and without a quadratic effect of productivity on species richness

across all sites. Both models include a random-effects structure of grid nested within site (Fraser et al.) or block nested within site (Adler et al.). Marginal and

conditional R2 values estimated using (7, 8). For the combined analysis, we use the same grid (or block) nested within-site random-effects structure and also
include a “study” random effect.

Data set Model type

Marginal R2

(variance explained by

fixed effects)

Conditional R2

(variance explained by

fixed + random effects)

Root mean square

error (in units of

species number)

Fraser et al. Linear 0.00007 0.84 8.5
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Fraser et al. Quadratic 0.009 0.84 8.3
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Adler et al. Linear 0.0007 0.79 7.7
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Adler et al. Quadratic 0.001 0.78 7.7
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Combined Linear 0.00005 0.82 8.4
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Combined Quadratic 0.003 0.82 8.3
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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