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Abstract: Rhabdoviruses infect a large number of plant species and cause significant crop diseases.
They have a negative-sense, single-stranded unsegmented or bisegmented RNA genome. The number
of plant-associated rhabdovirid sequences has grown in the last few years in concert with the
extensive use of high-throughput sequencing platforms. Here, we report the discovery of 27 novel
rhabdovirus genomes associated with 25 different host plant species and one insect, which were
hidden in public databases. These viral sequences were identified through homology searches in more
than 3000 plant and insect transcriptomes from the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) using known plant rhabdovirus sequences as the query. The
identification, assembly and curation of raw SRA reads resulted in sixteen viral genome sequences
with full-length coding regions and ten partial genomes. Highlights of the obtained sequences
include viruses with unique and novel genome organizations among known plant rhabdoviruses.
Phylogenetic analysis showed that thirteen of the novel viruses were related to cytorhabdoviruses,
one to alphanucleorhabdoviruses, five to betanucleorhabdoviruses, one to dichorhaviruses and seven
to varicosaviruses. These findings resulted in the most complete phylogeny of plant rhabdoviruses
to date and shed new light on the phylogenetic relationships and evolutionary landscape of this
group of plant viruses. Furthermore, this study provided additional evidence for the complexity and
diversity of plant rhabdovirus genomes and demonstrated that analyzing SRA public data provides
an invaluable tool to accelerate virus discovery, gain evolutionary insights and refine virus taxonomy.

Keywords: plant rhabdovirus; evolution; taxonomy; metatranscriptomics

1. Introduction

The costs for high-throughput sequencing (HTS) have been significantly reduced each
year due to advances in sequencing technologies; therefore, the number of genome and
transcriptome sequencing projects has been steadily increasing, resulting in a massive num-
ber of nucleotides deposited in the Sequence Read Archive (SRA) of the National Center for
Biotechnology Information (NCBI). Over 16,000 petabases (1015 bases) have been deposited
in the SRA, with over 6000 petabases available as open-access data [1]. Thus, this large
amount of data has provided significant challenges for data storage, bioinformatic analysis
and management. This impressive and potentially useful amount of data concomitantly
raised two issues: (I) high logistical costs of data management and (II) large amounts of
neglected and unused data awaiting secondary analysis and repurposing. In the specific
case of large plant sequencing project datasets, virome studies are scarce.

Abundant novel viruses, many of them not known to induce any apparent symptoms
in their host or without a known host, have been identified from diverse environments
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using metagenomic approaches. This has highlighted our limited knowledge about the
richness of a continuously expanding plant virosphere, which appears highly diverse in
every potential host assessed so far [2–5]. Furthermore, the great number of viruses recently
discovered by HTS, a miniscule portion of the virosphere, allowed a first glimpse of the
path to a comprehensive megataxonomy of the virus world [6].

The scientific interest of the submitters of transcriptome datasets is often limited to a
narrow objective within their specific field of study, which leaves a large amount of poten-
tially valuable data not analyzed [7]. In such transcriptome datasets, viral sequences may
be hidden in plain sight; thus, their analysis has become a valuable tool for the discovery
of novel viral sequences [8–16]. In a recent consensus statement report, Simmonds and
colleagues [17] contended that viruses that are known only from metagenomic data can,
should and have been incorporated into the official classification scheme overseen by the
International Committee on Taxonomy of Viruses (ICTV). Consequently, the analysis of
public sequence databases constitutes a valuable resource for the discovery of novel plant
viruses, which allows the reliable identification and characterization of new viruses in
hosts with no previous record of virus infections [8]. This approach to virus discovery is
inexpensive, as it does not require the acquisition of samples and subsequent sequencing
but on secondary analyses of publicly available data to address novel research questions
and objectives. At the same time, it is more wide-ranging and comprehensive than any
other current approach due to the millions of datasets from a large variety of potential host
species available from the NCBI-SRA [12].

Plant rhabdoviruses have negative-sense, single-stranded RNA genomes and are
taxonomically classified in six genera: Cytorhabdovirus, Alphanucleorhabdovirus, Betanucle-
orhabdovirus and Gammanucleorhabdovirus for viruses that have an unsegmented genome
and Dichorhavirus and Varicosavirus for viruses that have a bisegmented genome and
infect both monocot and dicot plants [18]. These six genera were recently assigned to
the subfamily Betarhabdovirinae within the family Rhabdoviridae [19]. Viruses classified in
five of these genera are transmitted persistently by arthropods in which they also repli-
cate [18,20], whereas varicosaviruses are transmitted by soil-borne chytrid fungi [18]. Cyto-
and nucleorhabdovirus genomes have six conserved canonical genes encoding in the order
3′-nucleocapsid protein (N)-phosphoprotein (P)–putative movement protein (P3)-matrix
protein (M)-glycoprotein (G)–large polymerase (L)-5′; the L gene of dichorhaviruses is
located on RNA2 [21]. Up to three accessory genes with unknown functions have been
identified among cyto- and nucleorhabdovirus genomes, leading to diverse genome orga-
nizations [21,22]. Conserved gene junction sequences separate each gene, and the overall
coding region is flanked by 3′ leader and 5′ trailer sequences that feature partially comple-
mentary ends that may form a panhandle structure during replication [20]. Varicosavirus
RNA 1 has one to two genes, with one of those encoding the RNA-dependent RNA poly-
merase L, while RNA 2 has three to five genes, with the first open reading frame (ORF)
encoding a coat protein [20,21]. The 3′- and 5′-terminal sequences of the two varicosavirus
genome segments are similar but do not exhibit inverse complementarities [21].

In this study, we queried the publicly available plant transcriptome datasets in the
transcriptome shotgun assembly (TSA) database hosted at NCBI and identified 27 novel
plant rhabdoviruses from 25 plant and one insect species, showing structural, functional
and evolutionary cues to be classified in the family Rhabdoviridae; subfamily Betarhabdoviri-
nae and genera Cytorhabdovirus, Alphanucleorhabdovirus, Betanucleorhabdovirus, Dichorhavirus
and Varicosavirus.

2. Materials and Methods
2.1. Identification of Plant Rhabdovirus Sequences from Public Plant Transcriptome Datasets

The detection of plant rhabdovirus sequences was done as described by Longdon and
colleagues [13]. Briefly, the amino acid sequences corresponding to the nucleocapsid and
polymerase proteins of several known cyto- and nucleorhabdoviruses were used as query
in tBlastn searches with the parameters word size = 6, expected threshold = 10 and scoring
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matrix = BLOSUM62 against the Viridiplantae (taxid:33090) and Hemiptera (taxid:7524)
TSA databases. The obtained hits were explored by eye and based on the percentage
identity, query coverage and E-value (>1 × 105), shortlisted as likely corresponding to
novel virus transcripts, which were then further analyzed. Given the redundant nature of
many retrieved hits, a step of contig clustering was implemented using the CD-hit suite
with the standard parameters available at http://weizhongli-lab.org/cdhit_suite/cgi-bin
/index.cgi?cmd=cd-hit (accessed on 10 March 2021). In addition, the raw sequence data
corresponding to several SRA experiments associated with different NCBI Bioprojects
(Table 1) were retrieved for further analyse

2.2. Sequence Assembly and Identification

The nucleotide (nt) raw sequence reads from each analyzed SRA experiment linked to
the TSA projects returning rhabdovirus-like hits were downloaded and preprocessed by
trimming and filtering with the Trimmomatic tool, as implemented in http://www.usad
ellab.org/cms/?page=trimmomatic (accessed on 15 March 2021), and the resulting reads
were assembled de novo with Trinity v2.6.6 using the standard parameters. The transcripts
obtained from de novo transcriptome assembly were subjected to bulk local BLASTX
searches (E-value < 1 × 105) against a Refseq virus protein database available at ftp://ftp.
ncbi.nlm.nih.gov/refseq/release/viral/viral.1.protein.faa.gz (accessed on 3 March 2021).
The resulting viral sequence hits of each bioproject were visually explored. Tentative
virus contigs were extended by iterative mapping of each SRA library’s raw reads. This
strategy employed BLAST/nhmmer to extract a subset of reads related to the query contig,
and these retrieved reads were used to extend the contig, and then, the process was
repeated iteratively using as the query the extended sequence. The extended and polished
transcripts, now presenting overlapping regions, were reassembled using the Geneious
v8.1.9 (Biomatters Ltd., Auckland, New Zealand) alignment tool.

2.3. Bioinformatics Tools and Analyses
2.3.1. Sequence Analyses

ORFs were predicted with ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/)
(accessed on 19 March 2021), functional domains, and the architecture of the translated gene
products was determined using InterPro (https://www.ebi.ac.uk/interpro/search/sequen
ce-search) (accessed on 19 March 2021) and the NCBI Conserved domain database v3.16
(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (accessed on 19 March 2021).
Further, HHPred and HHBlits as implemented in https://toolkit.tuebingen.mpg.de/#/t
ools/ (accessed on 19 March 2021) were used to complement the annotation of divergent
predicted proteins by hidden Markov models. Importin-α-dependent nuclear localization
signals were predicted using cNLS Mapper available at http://nls-mapper.iab.keio.ac
.jp/ (accessed on 23 March 2021), nuclear export signals were predicted using NetNES
1.1 available at www.cbs.dtu.dk/services/NetNES/ (accessed on 19 March 2021) and
transmembrane domains were predicted using the TMHMM version 2.0 tool (http://www.
cbs.dtu.dk/services/TMHMM/) (accessed on 23 March 2021).

2.3.2. Pairwise Sequence Identity

Percentage amino acid (aa) sequence identities of the predicted ORFs of each plant-
associated rhabdovirid identified in this study based on the available plant-associated
rhabdovirus genome sequences were calculated using https://www.ebi.ac.uk/Tools/psa/
emboss_needle/ (accessed on 23 March 2021).

2.3.3. Phylogenetic Analysis

Phylogenetic analysis based on the predicted nucleocapsid proteins of all plant rhab-
dovirids, listed in Table S1, was done using MAFFT 7 https://mafft.cbrc.jp/alignme
nt/software (accessed on 29 March 2021), with multiple aa sequence alignments us-
ing FFT-NS-i as the best-fit model. The aligned aa sequences were used as the input
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in MegaX software [23] to generate phylogenetic trees by the maximum-likelihood method
(best-fit model = WAG + G + F). Local support values were computed using bootstraps
with 1000 replicates.

Table 1. Summary of rhabdovirus contigs identified from plant transcriptome data available in the National Center for
Biotechnology Information (NCBI) database.

Genus Plant/Insect Host;
Monocot/Dicot Virus Name Abbreviation Bioproject ID Data Citation Segment

Number
Length

(nt)
Accession
Number

Protein
ID

Length
(aa)

Alphanucleorhabdovirus Blue agave
(Agave tequilana); monocot Agave tequilana virus 1 ATV1 PRJNA193469 [24] 1 13,166 BK014297

N
P
P3
M
G
L

452
335
287
257
597

1937

Betanucleorhabdovirus

Common milkweed
(Asclepias syriaca); dicot Asclepias syriaca virus 2 AscSyV2 PRJNA210776 [25] 1 12,940 BK014299

N
P
P3
M
G
L

459
337
343
250
643
2023

Giant dodder
(Cuscuta reflexa); dicot Cuscuta reflexa virus 1 CusReV1 PRJNA290291 [26] 1 8869 *

BK014340;
BK014341;
BK014342;
BK014343;
BK014344;
BK014345

N
P
P3
M
G
L

457
336
325

269 *
550 *
740 *

Small water-pepper
(Persicaria minor); dicot Persicaria minor virus 1 PerMiV1 PRJNA208436 [27] 1 4793 *

BK014346;
BK014347;
BK014348;
BK014349;
BK014350;
BK014351;
BK014352;
BK014353;
BK014354

N
P
P3
M
G
L

372 *
115 *
172 *
227 *
260 *
430 *

Cubanoregano
(Plectranthus aromaticus);

dicot
Plectranthus aromaticus virus 1 PleArV1 PRJNA491230

Ab Rahim, M.H.;
University Malaysia
Pahang, Malaysia;

unpublished

1 12,994 BK014300

N
P
P3
M
G
L

450
332
321
286
582
2085

Red rhododendron
(Rhododendron delavayi);

dicot
Rhododendron delavayi virus 1 RhoDeV1 PRJNA358123 [28] 1 13,719 BK014301

N
P
P3
M
G
L

464
338
326
279
636
2016

Cytorhabdovirus

Chinese onion
(Allium chinense); monocot Allium chinense virus 1 AChV1 PRJNA310810 [29] 1 7981 *

BK014319;
BK014320;
BK014321;
BK014322;
BK014323;
BK014324

N
P
P′
P3
M
G
P6
L

457
316
128
231
165

542 *
-

531*

Flamingo lily
(Anthurium amnicola);

monocot
Anthurium amnícola virus 1 AntAmV1 PRJNA288827 [30] 1 12,480 BK014302

N
P
P3
M
G
L

409
314
207
176
565
2047

A. syriaca Asclepias syriaca virus 1 AscSyV1 PRJNA210776 [25] 1 13,392 BK014298

N
P
P′
P3
M
G
P6
L

445
304
87

334
176
551
86

2101

Silverleaf whitefly
(Bemisia tabaci) Bemisia tabaci -associated virus 1 BeTaV1 PRJNA237273 [31] 1 13,025 BK014303

N
P
P3
P4
M
G
L

447
326
187
48

206
579
2102

Yam
(Dioscorea composita) Dioscorea composita virus 1 DiCoV1 PRJNA253902 [32] 1 9959 *

BK014355;
BK014356;
BK014357;
BK014358

N
P
P3
M
G
P6
L

441
N/A
N/A
201
586
72

1546 *

Beach silvertop
(Glehnia littoralis); dicot Glehnia littoralis virus 1 GlLV1 PRJNA248158 [33] 1 12,193 BK014304

N
P
P′
P3
M
G
P6
L

412
324
84
201
167
551
66

2072
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Table 1. Cont.

Genus Plant/Insect Host;
Monocot/Dicot Virus Name Abbreviation Bioproject ID Data Citation Segment

Number
Length

(nt)
Accession
Number

Protein
ID

Length
(aa)

Marsh fragrant orchid
(Gymnadenia densiflora);

monocot
Gymnadenia densiflora virus 1 GymDenV1 PRJNA504609 [34] 1 9887 BK014305

N
P
M
L

444
310
189
2068

Bird’s foot trefoil
(Lotus corniculatus); dicot Lotus corniculatus virus 1 LotCorV1 PRJNA77207 [35] 1 12,599 * BK014306

N
P
P′
P3
M
G
P6
L

479
311
98

362
179
558
56

1985 *

European white waterlily
(Nymphaea alba); dicot Nymphaea alba virus 1 NymAV1 PRJNA472003

Unlu E.S., and Yildiz,
G.G; Abant Izzet
Baysal University,

Turkey; unpublished

1 12,886 BK014307

N
P
P′
P3
M
G
P6
L

421
308
85
228
195
560
69

2076

Crowfoot geranium
(Pelargonium radula), dicot Pelargonium radula virus 1 PelRaV1 PRJNA491235

Ab Rahim, M.H.;
University Malaysia
Pahang, Malaysia;

unpublished

1 11,130 *

BK014325;
BK014326;
BK014327;
BK014328

N
P
P′
P3
M
G
P6
L

483
309
69

354
177

578 *
54

1391*

Cytorhabdovirus

Seepweed (Suaeda salsa);
dicot Suaeda salsa virus 1 SuSV1 PRJNA395283 [36] 1 6156 *

BK014359;
BK014360;
BK014361;
BK014362;
BK014363;
BK014364;
BK014365;
BK014366

N
P
P′
P3
M
G
P6
L

332 *
294 *
66 *
218
165
70 *

-
711*

African marigold
(Tagetes erecta); dicot Tagetes erecta virus 1 TaEV1 PRJNA431782 [37] 1 11,707 BK014308

N
P
P3
M
L

520
505
200
187
2079

Ajwain
(Trachyspermum ammi);

dicot
Trachyspermum ammi virus 1 TrAV1 PRJNA359623 [38] 1 10,920 BK014309

N
P
P3
M
L

455
343
237
200
2069

Dichorhavirus Hidden violet
(Viola verecunda); dicot Viola verecunda virus 1 VVeV1 PRJNA345302 [39]

1

2

5304 *

5212 *

BK014329;

BK014330;

BK014331
BK014332;
BK014333

N
P
P3
M
G
L

494
N/A
323

N/A
661

1668 *

Varicosavirus

Mouse garlic
(Allium angulosum);

monocot
Allium angulosum virus 1 AAnV1 PRJNA542932 [40] 1

2
6679
4560

BK059208
BK059209

L
N
2
3

2048
481
454
129

Bok choy (Brassica rapa
subsp. chinensis); dicot Brassica rapa virus 1 BrRV1 PRJNA396268 [41] 1

2
6397
4068

BK014310
BK014311

L
N
2
3

2019
435
411
180

Perennial ryegrass
(Lolium perenne); monocot Lolium perenne virus 1 LoPV1 PRJNA222646 [42] 1

2
6302
4167

BK014312
BK014313

L
N
2
3

2029
533
379
161

Asian cow-wheat
(Melampyrum roseum); dicot Melampyrum roseum virus 1 MelRoV1 PRJDB5395 [43] 1

2
6365
4635

BK014314
BK014315

L
N
2
3
4

2003
443
350
304
193

Downy phlox (Phlox pilosa);
dicot Phlox pilosa virus 1 PhPiV1 PRJNA360978 [44]

1

2

4896 *

3201 *

BK014334;
BK014335;
BK014336;
BK014337
BK014338;

BK014339

L

N
2
3
4

1589 *

378
81 *
289
110*

Limber pine (Pinus flexilis);
gymnosperm Pinus flexilis virus 1 PiFleV1 PRJNA315892 [45] 1 11,740 BK014316

N
2
3
4
L

405
447
318
219
2049

Spinach (Spinacia oleracea);
dicot spinach virus 1 SpV1 PRJDB3392 [46] 1

2
6151 *
3750 *

BK014317
BK014318

L
N
2
3

2010 *
439
450
136*

* Partial sequence; N/A: not available.
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3. Results
3.1. Summary of Discovered Rhabdovirid Sequences

The complete coding regions of 17 novel rhabdoviruses were identified; in addition,
partial genomic sequences for 10 novel viruses were assembled. These viruses were asso-
ciated with 25 plant host species and one insect species (Table 1). The bioinformatic and
source data of each of the 27 viral sequences, as well as the GenBank accession number
and proposed classification, are listed in Table 1; the summary of the assembly statistics
of each virus of the plant rhabdovirus sequences identified from the transcriptome data
available in the NCBI database are presented in Table S2. Based on phylogenetic related-
ness, genome organization and sequence identity, the novel viruses were tentative assigned
to the established plant rhabdovirus genera Alphanucleorhabdovirus, Betanucleorhabdovirus,
Cytorhabdovirus, Dichoravirus and Varicosavirus. Most of the tentative plant hosts of the
novel viruses are herbaceous dicots (16/25), seven are herbaceous monocots, one a woody
dicot and one a gymnosperm (Table 1). The characteristics of deduced proteins encoded
by each rhabdovirid sequence were determined by predictive algorithms and are shown
in Table S3. The genomic architecture and evolutionary placement of the 27 discovered
viruses are described below, grouped by affinity to members of the diverse genera within
the Betarhabdovirinae.

3.2. Alphanucleorhabdovirus

The complete coding region of a novel putative alphanucleorhabdovirus, tentatively
named Agave tequilana virus 1 (ATV1), with the genome organization 3′-N-P–P3-M-G-L-5′

(Figure 1A) was assembled from blue agave transcriptome data (Table 1). A nuclear local-
ization signal (NLS) was predicted in every ATV1-encoded protein (Table S3). According to
the NLS scores, the N protein is predicted to be located exclusively in the nucleus, whereas
the P and L proteins have a partial nuclear localization, while the P3, M and G proteins are
localized to both the nucleus and the cytoplasm. Leucine-rich nuclear export signals (NES)
were predicted in the N, P and L proteins (Table S3). A transmembrane domain motif was
detected in the C-terminus of the G protein, and a signal peptide was predicted in its N-
terminus (Table S3). The consensus gene junction sequence 3′-AUUCUUUUUGGGUUG-5′

of the ATV1 genome is similar to that of the alphanucleorhabdoviruses maize mosaic virus
(MMV), maize Iranian mosaic virus (MIMV), Morogoro maize-associated virus (MMaV)
and taro vein chlorosis virus (TaVCV) (Table 2).

Table 2. Consensus plant rhabdovirus gene junction sequences.

Genus Virus * 3′End mRNA Intergenic Spacer 5′End mRNA

Alphanucleorhabdovirus

ATV1 AUUCUUUUU GGG UUG

CYDV AUUAUUUUU GGG UUG

EMDV AUUAUUUUU GGG UUG

JYBaV AUUAUUUUU GGG UUG

MIMV AUUCUUUUU GGG UUG

MMV AUUCUUUUU GGG UUG

MMaV AUUCUUUUU GGG UUG

PeV1 AUUU(A/C)UUUU G(N)n UUG

PhCMoV AUUAUUUUU GGG UUG

PYDV AUUAUUUUU GGG UUG

RYSV AUUAUUUUU GGG UUG

TaVCV AUUCUUUUU GGG UUG

WYSV UAAAUUUUU GGGG UUG
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Table 2. Cont.

Genus Virus * 3′End mRNA Intergenic Spacer 5′End mRNA

Betanucleorhabdovirus

AscSyV2 AUUCUUUUU GG UUG

CusReV1 AUUCUUUUU GG UUG

PerMiV1 AUUCUUUUU GG UUG

PleArV1 AUUCUUUUU GG UUG

RhoDeV1 AUUCUUUUU GG UUG

AaNV AUUCUUUUU GG UUG

ApRVA AUUCUUUUU GG UUG

BFTaV AUUCUUUUU GG UUG

BCaRV AUUCUUUUU GG UUG

BmV2 AUUCUUUUU GG UUG

CdVCV1 AUUCUUUUU GG UUG

DYVV AUUCUUUUU GG UUG

GSPNuV AUUCUUUUU GG UUG

SYNV AUUCUUUUU GG UUG

SYVV AUUCUUUUU GG UUG

Gammanucleorhabdovirus MFSV AUUUAUUUU GUAG UUG

Dichorhavirus

VVeV1 - - -

CiCSV AUUUAUUUU GUAG UU

CiLV-N AUUUAUUUU GUAG UU

ClCSV AUUUAUUUU GUAG UU

CoRSV AUUUAUUUU GUAG UU

OFV AUUUAUUUU GUUG UU

Cytorhabdovirus

AChV1 AAUUAUUUU GAU CUA

AntAmV1 AUUAUUUUU GCU CUU

AscSyV1 AAUUAUUUU GNU CNN

BeTaV1 UUAUUUUUU GA CUC

DiCoV1 AUAUUUUUU GG(N)n CNN

GlLV1 AAUUAUUUU GAU CUU

GymDenV1 AAUCUUUUU A(N)n CNN

LotCorV1 AAUUAUUUU GGU(N)n CUG

NymAV1 AUUAAUUUU GAU CUN

PelRaV1 AAUUAUUUU GGU(N)n CUG

SuSV1 AAUUAUUUU GAU CUU

TaEV1 AUUCUUUUU GG(N)n CUN

TrAV1 AUUCUUUUU A(N)n CNU

AcCV1 AAUUAUUUU GAU CUG

ADV AAUUAUUUU GAU CUU

BmV1 AAUUAUUUU GAN CUG

BYSMV AUUAUUUUU GA CUC

CCyV1 AAUUCUUUU G(N)n CUU

CBDaV AUUCUUUUU GG CUC
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Table 2. Cont.

Genus Virus * 3′End mRNA Intergenic Spacer 5′End mRNA

ChYDaV AAUUAUUUU GAU CUN

CuCV1 AUUAUUUUU GA CUC

KePCyV AAUUAUUUU GAU CUU

LNYV AAUUCUUUU G(N)n CUU

LYMoV AAUUCUUUU G(N)n CUN

MaCyV AUUCUUUUU GA CUC

MYSV AUUAUUUUU GA CUC

NCMV AUUCUUUUU GA CUC

PMuMaV AUUAUUUUU G(N)n CUA

PpVE AUUCUUUUU GAC CCU

PeVA AAUUAUUUU G(N)n CUN

RVR AUUUAUUUU GACU CUA

RSMV AUUCUUUUU GCU CUG

RVCV AUUUAUUUU GAU CUU

SCV AAUUAUUUU GAU CUU

StrV1 AAUUAUUUU GAU CUU

TpVA AAUUAUUUU GAU CUU

TpVB AAUUCUUUU G(N)n CUN

TrARV1 AAUUAUUUU GAU CUU

TYMaV AAUUAUUUU GAU CUU

WhIV4 AAUUAUUUU GNU CUU

WhIV5 AAUUAUUUU GAU CNN

WhIV6 AAUUAUUUU GAU CUN

YmCaV UUAUUUUUU GA CUC

YmVA AUUCUUUUU GGU CCU

Varicosavirus

AAnV1 AU(N)5UUUUU G CUCU

BrRV1 AU(N)5UUUUU G CUCA

LoPV1 AU(N)5UUUUU G CUCU

MelRoV1 AU(N)5UUUUU G CUCU

PhPiV1 AU(N)5UUUUU G CUCU

PiFleV1 GU(N)5UUUUU G CUCU

SpV1 AU(N)5UUUUU G CUCU

AMVV1 AU(N)5UUUUU G CUCU

LBVaV AU(N)5UUUUU G CUCU

RCaVV AU(N)5UUUUU G CUCU

VVV AU(N)5UUUUU G CUCU

The consensus gene junction sequences of the viruses identified in this study are highlighted in light grey. * Names and abbreviations of
newly identified viruses are listed in Table 1, while the names and abbreviations of known viruses are listed in Table S1.
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Figure 1. Diagrams depicting the genomic organization of each (A) alpha- and betanucleorhabdovirus, (B) cytorhabdovirus,
(C) varicosavirus and (D) dichorhavirus sequence assembled in this study. Abbreviations: N, nucleoprotein coding sequence
(CDS); P, phosphoprotein CDS; P3, putative cell-to-cell movement protein CDS; M, matrix protein CDS; G, glycoprotein
CDS; L, RNA-dependent RNA polymerase CDS.

Pairwise aa sequence identities between the ATV1-encoded proteins and those from
other alphanucleorhabdoviruses showed low sequence identities of 10.9–35.0% (Table 3).
The nucleotide sequence identity for the complete genome sequence of ATV1 and other
alphanucleorhabdoviruses ranged from 47–49.3 % (Table 3).

Table 3. Pairwise identity percentages between ATV1 and the selected alphanucleorhabdoviruses.

Genome a N b P b P3 b M b G b L b

ATV1 vs.

MMaV 47.0 32.4 16.7 17.5 17.5 29.3 35.0
MMV 49.3 29.1 13.7 20.5 16.4 29.1 34.5
PeV1 49.1 26.9 18.8 20.1 14.3 28.7 32.9
PYDV 48.8 24.1 10.9 18.2 13.6 23.5 31.8

a Nucleotide percentages; b amino acid percentages; N/C: not complete; virus names are listed in Table S1
and Table 1.

The phylogenetic analysis based on the N protein aa sequences showed that ATV1
clustered with the monocot-infecting alphanucleorhabdoviruses MMV, MIMV, MMaV
and TaVCV (Figure 2), which were also the most similar in pairwise sequence identity
values, shared equivalent genome organizations and had similar conserved gene junction
sequences (Table 2).
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Figure 2. Maximum Likelihood phylogenetic tree based on a multiple amino acid alignment of the
N protein sequences of plant rhabdoviruses constructed with the WAG + G + F model. Bootstrap
values following 1000 replicates are given at the nodes, but only the values above 40% are shown.
The scale bar indicates the number of substitutions per site. The viruses identified in this study are
noted with green rectangles. The accession numbers of every virus used to construct the ML tree are
listed in Supplementary Table S1.
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3.3. Betanucleorhabdoviruses

The complete coding regions of three putative betanucleorhabdoviruses, tentatively
named Asclepias syriaca virus 2 (AscSyV2), Plectranthus aromaticus virus 1 (PleArV1) and
Rhododendron delavayi virus 1 (RhoDeV1), as well as the partial genomes of Cuscuta reflexa
virus 1 (CusReV1) and Persicaria minor virus 1 (PerMiV1), were assembled in this study
(Table 1). The genome organization of these five viruses is 3′-N-P–P3-M-G-L-5′ (Figure 1A).
A NLS was predicted in every protein encoded by AscSyV2, CusReV1, PleArV1 and
RhoDeV1 (Table S3). According to the NLS scores, the CusReV1 and PleArV1 N proteins,
RhoDeV1 P protein, CusReV1 M protein and PleArV1 and RhoDeV1 L proteins are expected
to be exclusively nuclear, whereas the RhoDeV1 M protein is predicted to have a partial
nuclear localization. The AscSyV2 and RhoDeV1 N proteins; AscSyV2, CusReV1 and
PleArV1 P proteins; AscSyV2, CusReV1, PleArV1 and RhoDeV1 P3 proteins; AscSyV2
and PleArV1 M proteins; AscSyV2, CusReV1, PleArV1 and RhoDeV1 G proteins and
AscSyV2 and CusReV1 L proteins are predicted to localize to both the nucleus and the
cytoplasm. Leucine-rich NES were predicted in the AscSyV2, CusReV1 and PleArV1 N
proteins; the CusReV1 and PleArV1 P proteins; the CusReV1 and RhoDeV1 P3 proteins; the
PleArV1 M protein and the PleArV1 and RhoDeV1 L proteins (Table S3). A transmembrane
domain was detected in the C-terminal sequence of the AscSyV2, CusReV1, PleArV1
and RhoDeV1 G proteins. A signal peptide was detected in the G protein N-terminus of
AscSyV2, CusReV1 and RhoDeV1 (Table S3).

The deduced AscSyV2 M protein, PleArV1 G protein and RhoDeV1 L protein are the
smallest such proteins reported so far among betanucleorhabdoviruses (Table S4).

Interestingly, the N proteins of AscSyV2, PleArV1 and RhoDeV1 are basic, whereas
the CusReV1 N protein is acidic. Moreover, the CusReV1 and PleArV1 M proteins are basic,
while the AscSyV2 and RhoDeV1 M proteins are acidic (Table S3).

The consensus gene junction sequence 3′-AUUCUUUUU GG UUG-5′ of all five novel
viral genomes is identical and the same as in the genome of every betanucleorhabdovirus
described thus far: alfalfa-associated nucleorhabdovirus (AaNV), apple rootstock virus A
(ApRVA), Bacopa monnieri virus 2 (BmV2), bird’s-foot trefoil associated virus 1 (BFTaV1),
black currant-associated rhabdovirus (BCaRV), cardamom vein clearing virus 1 (CdVCV1),
datura yellow vein virus (DYVV), green Sichuan pepper nucleorhabdovirus (GSPNuV),
sonchus yellow net virus (SYNV) and sowthistle yellow vein virus (SYVV) (Table 2).

Pairwise aa sequence identity values between each encoded protein of the five novel
viruses and those from other betanucleorhabdoviruses vary significantly (Table 4). The
highest nucleotide sequence identity for the genome sequence between AscSyV2, PleArV1
and RhoDeV1 and other betanucleorhabdoviruses ranged from 51.4 to 62.1% (Table 4).

Table 4. Pairwise identity percentages between AscSyV2, CusReV1, PleArV1 and RhoDeV1 and the selected betanucle-
orhabdoviruses.

Genome a N b P b P3 b M b G b L b

AscSyV2 vs.

ApRVA 51.3 47.5 24.3 26.3 23.6 33.2 44.2
BCaRV 50.4 40.5 23.4 25.0 22.8 30.3 38.5

CusReV1 N/C 40.9 23.0 18.1 N/C N/C N/C
DYVV 50.6 42.3 19.5 22.2 20.5 27.0 38.1

GSPNuV 46.3 42.7 21.7 19.9 20.1 29.0 38.7
PleArV1 49.3 41.1 19.6 19.3 19.1 26.4 37.2

RhoDeV1 51.4 40.7 18.1 25.5 19.3 27.1 39.9

CusReV1 vs.

ApRVA N/C 42.5 20.8 19.6 N/C N/C N/C
AscSyV2 N/C 40.9 23.0 18.1 N/C N/C N/C
BCaRV N/C 48.3 27.6 28.4 N/C N/C N/C
DYVV N/C 59.0 32.6 41.7 N/C N/C N/C

GSPNuV N/C 59.0 30.8 44.0 N/C N/C N/C
PleArV1 N/C 60.5 31.6 40.8 N/C N/C N/C

RhoDeV1 N/C 38.6 24.8 23.0 N/C N/C N/C
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Table 4. Cont.

Genome a N b P b P3 b M b G b L b

PleArV1 vs.

ApRVA 49.8 44.0 22.2 20.6 16.7 27.2 37.4
AscSyV2 49.3 41.1 19.6 19.3 19.1 26.4 37.2
BCaRV 52.1 49.9 30.1 26.5 31.6 36.4 47.3

CusReV1 N/C 60.5 31.6 40.8 N/C N/C N/C
DYVV 62.1 70.7 45.6 63.2 48.1 61.0 62.2

GSPNuV 45.8 64.5 34.8 43.7 41.0 48.4 55.4
RhoDeV1 50.9 42.5 22.7 29.8 25.4 31.9 42.8

RhoDeV1 vs.

ApRVA 51.7 40.4 23.2 22.4 22.2 30.2 40.8
AscSyV2 51.4 40.7 18.1 25.5 19.3 27.1 39.9
BCaRV 53.1 42.0 27.2 34.5 27.4 33.6 45.0

CusReV1 N/C 38.6 24.8 23.0 N/C N/C N/C
DYVV 51.3 42.2 23.2 27.5 26.5 34.4 43.7

GSPNuV 46.3 41.1 22.4 25.4 28.6 32.8 43.3
PleArV1 50.9 42.5 22.7 29.8 25.4 31.9 42.8

a Nucleotide percentages; b amino acid percentages; N/C: not complete; virus names are listed in Table S1 and Table 1.

The phylogenetic analysis based on the deduced N protein aa sequences showed that
CusReV1, RhoDeV1, PerMiV1 and PleArV1 clustered with the betanucleorhabdoviruses
BFTaV1, BCaRV, BmV2, CdVCV1, DYVV, GSPNuV, SYNV and SYVV (Figure 2), which
are also the most similar in pairwise sequence identity values of their cognate proteins;
furthermore, all these viruses have a similar genome organization. Interestingly, AscSyV2
clustered closely with the betanucleorhabdoviruses AaNV and ApRVA and had similar
pairwise sequence identity values for their cognate proteins. However, the genome organi-
zation of AaNV and ApRVA was different in that it included an accessory gene between
the M and G genes.

3.4. Cytorhabdoviruses

The complete coding region of eight novel cytorhabdoviruses, tentatively named
Anthurium amnicola virus 1 (AntAmV1), Asclepias syriaca virus 1 (AscSyV1), Bemisia tabaci-
associated virus 1 (BeTaV1), Glehnia littoralis virus 1 (GlLV1), Gymnadenia densiflora virus 1
(GymDenV1), Nymphaea alba virus 1 (NymAV1), Tagetes erecta virus 1 (TaEV1) and Tra-
chyspermum ammi virus 1 (TrAV1), as well as the partial genomes of five other cytorhab-
doviruses, named Allium chinense virus 1 (AChV1), Dioscorea composite virus 1 (DiCoV1),
Lotus corniculatus virus 1 (LotCorV1), Pelargonium radula virus 1 (PelRaV1) and Suaeda salsa
virus 1 (SuSV1), were assembled in this study (Table 1). The genome organization of
these thirteen novel cytorhabdoviruses is highly diverse. AntAmnV1 and likely DiCoV1
lack additional accessory genes and have the genome organization 3′-N-P–P3-M-G-L-5′

(Figure 1B). AscSyV1, GlLV1, LotCorV1, NymAV1, PelRaV1 and, likely, AChV1 and SuSV1
have an accessory ORF between the G and L genes, with the genome organization 3′-N-
P–P3-M-G-P6-L-5′ (Figure 1B), while BeTaV1 have an accessory ORF between the P3 and
M genes, with the genome organization 3′-N-P–P3-P4-M-G-L-5′ (Figure 1B). The genome
organization of GmyDenV1, TaEV1 and TrAV1 differs from that of all other known plant
rhabdoviruses: the GymDenV1 genome appears to only have four genes in the order
3′-N-P–M-L-5′ (Figure 1B), while TaEV1 and TrAV1 genomes have five genes in the order
3′-N-P–P3-M-L-5′ but do not encode a glycoprotein (Figure 1B). An overlapping ORF
within the P-encoding ORF, named P′, is present in the AChV1, AscSyV1, GilV1, LotCorV1,
NymAV1, PelRaV1 and SuSV1 genomes (Figure 1B and Table 1). The predicted TaEV1 N
protein is the largest described so far among the cytorhabdoviruses, whereas the AntAmV1
L protein is the smallest reported so far among the cytorhabdoviruses (Table S3).

Interestingly, the predicted N protein of almost every cytorhabdovirus identified in
our study is acidic, but the PelRaV1 N protein is neutral, and the BeTaV1 N protein is
basic. The P protein of almost every cytorhabdovirus identified in our study is acidic, but
the TrAV1 P protein is basic. Moreover, the M protein of almost every cytorhabdovirus
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identified in our study is basic, except GymDenV1 and TrAV1 M proteins, which are acidic.
Furthermore, the predicted G proteins of AscSyV1, DiCoV1, GlLV1, NymAV1 and PelRaV1
are acidic, except the LotCorV1 G protein is neutral, and the AntAmV1 and BeTaV1 G
proteins are basic (Table S3).

A putative transmembrane domain was identified in the G protein C-terminal se-
quence of AChV1, AntAmV1, AscSyV1, BeTaV1, DiCoV1, GlLV1, LotCorV1, NymAV1
and PelRaV1; two additional transmembrane domains were identified in the G protein
N-terminus of AntAmV1 and BeTaV1 and another one in the N-terminus of PelRaV1 G
protein. A transmembrane domain was also predicted in every P6 protein of these viruses
(Table S3). Moreover, one transmembrane domain was predicted in the SuSV1 P′ protein
and two in the AChV1, GlLV1, LotCorV1 and PelRaV1 P′ proteins, while three were pre-
dicted in the AscSyV1 and NymAV1 P′ proteins (Table S3). A signal peptide sequence was
identified in the G protein N-terminus of AChV1, AscSyV1, GlLV1, LotCorV1, NymAV1
and PelRaV1 (Table S3). Interestingly, a leucine-rich NES was predicted in the AChV1,
AntAmV1, AscSyV1, BeTaV1, DiCoV1, GlLV1, GymDenV1, LotCorV1, PelRaV1, SuSV1,
TaEV1 and TrAV1 N proteins; the BeTaV1, GymDenV1, LotCorV1, NymAV1, PelRaV1,
SuSV1 and TrAV1 P proteins; the AChV1, AntAmV1, AscSyV1, DiCoV1, GymDenV1, Lot-
CorV1, NymAV1, PelRaV1, SuSV1 and TrAV1 M proteins and the PleArV1 and RhoDeV1 L
proteins (Table S3).

The consensus gene junction sequences of the novel cytorhabdoviruses identified in
our study are diverse (Table 2) but similar to those previously reported for phylogenetically
related cytorhabdoviruses. Interestingly, the intergenic sequence of the GymDenV1 and
TrAV1 gene junctions starts with an adenine instead of a guanine residue like in every other
plant rhabdovirus (Table 2).

Pairwise aa sequence identity values between each encoded protein of the thirteen
novel viruses and those from known cytorhabdoviruses vary significantly (Table 5). The
highest nucleotide sequence identity for the genome sequence between AntAmV1, Asc-
SyV1, BeTaV1, GlLV1, GymDenV1, NymAV1, TaEV1 and TrAV1 and the other cytorhab-
doviruses ranged between 50.3 and 65.6% (Table 5).

Table 5. Pairwise identity percentages between the cytorhabdoviruses assembled in this study and the
selected cytorhabdovirus.

Genome a N b P b P3 b P4 b M b G b P6 b L b

AChV1 vs.

ADV N/C 44.3 30.8 34.5 27.9 N/C N/C N/C
ChYDaV N/C 41.5 38.3 44.9 32.4 N/C N/C N/C

RVCV N/C 42.2 29.6 35.1 22.8 N/C N/C N/C
SCV N/C 48.4 29.9 38.2 26.9 N/C N/C N/C

SuSV1 N/C N/C N/C 42.7 36.7 N/C N/C N/C

AntAmV1 vs.
CBDaV 51.2 31.7 21.7 21.0 18.8 21.5 - 39.7
MaCyV 50.8 28.3 19.3 17.9 16.4 22.1 - 40.2

PMuMaV 51.8 41.0 25.6 29.3 35.3 36.4 - 45.5

AscSyV1 vs.
BmV1 54.8 50.4 37.6 55.3 34.5 44.3 27.6 53.9

PelRaV1 N/C 39.7 31.9 35.6 22.0 28.9 20.2 N/C
WhIV4 53.2 48.7 35.3 54.2 30.8 41.8 22.8 50.1

BeTaV1 vs.
CuCVi1 61.8 68.2 64.8 53.5 45.6 61.2 60.4 - 72.5
DiCoV1 N/C 19.4 N/C N/C - 14.9 17.2 - N/C
YmCaV 51.5 30.6 20.3 31.7 19.9 21.2 30.8 - 42.4

DiCoV1 vs.
MYSV N/C 23.3 N/C N/C - 20.2 21.0 17.3 N/C
CBDaV N/C 25.2 N/C N/C - 23.8 22.5 - N/C

RVR N/C 20.7 N/C N/C - 17.6 18.7 19.0 N/C

GlLV1 vs.

NymAV1 49.7 40.0 23.8 27.3 - 24.0 37.6 24.1 50.0
StrV1 49.9 38.7 25.0 37.0 - 26.5 42.1 22.4 50.5
TpVA 65.6 67.8 60.9 78.1 - 66.7 71.6 75.8 76.1

TYMaV 45.9 36.2 21.6 34.2 - 20.7 44.1 11.9 49.1
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Table 5. Cont.

Genome a N b P b P3 b P4 b M b G b P6 b L b

GymDenV1 vs.

LYMoV 43.5 22.0 19.0 - - 19.4 - - 29.5
SCV 40.0 23.5 17.2 - - 18.7 - - 30.1

TrAV1 53.8 34.4 23.1 - - 26.8 - - 56.3
WhIV5 44.4 19.9 15.9 - - 10.7 - - 30.6

LotCorV1 vs.
AscSyV1 50.3 39.9 28.5 40.5 - 20.2 30.1 18.5 43.5
PelRaV1 N/C 61.8 44.7 58.6 - 55.9 47.9 31.6 N/C
WhIV4 52.0 40.9 29.7 39.7 - 20.8 30.7 12.5 43.8

NymAV1 vs.

GlLV1 49.7 40.0 23.8 27.3 - 24.0 37.6 24.1 50.0
KePCyV 52.9 39.3 23.6 32.9 - 23.7 40.7 19.4 47.9

StrV1 51.2 38.6 22.6 24.5 - 19.8 40.5 18.0 48.0
TpVA 53.8 39.2 24.9 30.8 - 23.6 37.7 17.0 50.1

PelRaV1 vs.
AscSyV1 N/C 39.7 31.9 35.6 - 22.0 28.9 20.2 N/C
LotCorV1 N/C 61.8 44.7 58.6 - 55.9 47.9 31.6 N/C

WhIV4 N/C 40.5 28.5 39.6 - 20.4 27.5 11.7 N/C

SuSV1 vs.

AChV1 N/C N/C N/C 42.7 - 36.7 N/C N/C N/C
ADV N/C N/C N/C 37.0 - 30.2 N/C N/C N/C

ChYDaV N/C N/C N/C 37.9 - 35.6 N/C N/C N/C
RVCV N/C N/C N/C 40.2 - 30.8 N/C N/C N/C
SCV N/C N/C N/C 36.8 - 26.5 N/C N/C N/C

TaEV1 vs.

MYSV 50.3 23.3 15.2 16.2 - 15.0 - - 41.7
PpVE 47.4 21.3 17.6 15.1 - 14.1 - - 34.9
RSMV 48.7 25.0 15.7 17.8 - 16.3 - - 38.4
RVR 48.5 23.8 16.8 26.7 - 21.0 - - 38.6

TrAV1 vs.

CCyV1 46.3 23.0 16.0 18.7 - 16.3 - - 30.2
GymDenV1 53.8 34.4 23.1 - - 26.8 - - 56.3

StrV1 44.7 24.6 16.7 16.1 - 15.9 - - 30.0
WhIV5 46.9 20.5 19.3 11.2 - 13.3 - - 29.6

a Nucleotide percentages; b amino acid percentages; N/C: not complete; virus names are listed in Table S1 and Table 1.

The phylogenetic analysis based on the N protein aa sequence showed that the thirteen
novel viruses grouped with known cytorhabdoviruses GlLV1 and NymAV1 clustered with
Kenyan potato cytorhabdovirus (KePCyV), Trifolium pratense virus A (TpVA), strawberry
virus 1 (StrV1) and tomato yellow mottle-associated virus (TYMaV), with whom they
share a similar genomic organization. AChV1 and SuSV1 formed a clade with alfalfa
dwarf virus (ADV), chrysanthemum yellow dwarf-associated virus (ChYDaV), raspberry
vein chlorosis virus (RVCV) and strawberry crinkle virus (SCV). AscSyV1, LotCorV1
and PelRaV1 clustered with Actinidia cytorhabdovirus (AcCV), Bacopa monnieri virus 1
(BmV1) and Wuhan insect virus 4 (WhIV4), and all these viruses have a similar genomic
organization. BeTaV1 clustered with cucurbit cytorhabdovirus 1 (CuCV1), and these
viruses share a similar genomic organization. AntAmV1 clustered with paper mulberry
mosaic-associated virus (PMuMaV), with which it shares a similar genomic organization.
TaEV1 clustered with the cluster formed by AntAmV1 and PMuMaV, but these viruses
have a dissimilar genomic organization. DiCoV1 clustered with Colocasia bobone disease-
associated virus (CBDaV), but these viruses have a dissimilar genomic organization, while
GymDenV1 and TrAV1 formed a monophyletic sister clade with the aphid-transmitted
cytorhabdoviruses (Figure 2).

3.5. Dichorha-Like Viruses

The near-complete RNA 1 and RNA 2 sequences of a dichorha-like virus tentatively
named Viola verecunda virus 1 (VVeV1) were identified in this study. We assembled three
nonoverlapping fragments corresponding to RNA 1 containing the complete N, P3 and
G genes and the near-complete RNA 2, which encodes the L protein (Table 1). Thus, the
likely genome organization of VVeV1 is 3′-N-P-P3-M-G-5′ for RNA 1 and 3′-L-5′ for RNA 2
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(Figure 1D). A NLS was predicted in every deduced VVe1 protein (Table S3). According
to the NLS scores, the N and L proteins should be exclusively localized to the nucleus,
whereas the P3 and G proteins are predicted to localize to both the nucleus and the
cytoplasm. Leucine-rich NESs were predicted in the N and L protein sequences (Table S3).
A transmembrane domain was identified in the C-terminus of the G protein (Table S3). We
were not able to identify a consensus gene junction sequence in the genome fragments of
VVeV1 (Table 2). Pairwise aa sequence identities between the VVeV1-encoded proteins and
those from known dichorhaviruses showed low sequence identities of 20% or less in the P3
and G proteins and 20.5–23.1% in the N protein (Table 6). The phylogenetic analysis based
on the N protein aa sequences showed that VVeV1 clusters with the dichorhaviruses but is
placed by itself in a sister clade (Figure 2).

Table 6. Pairwise identity percentages between VVeV1 and the dichorhaviruses.

Genome a N b P b P3 b M b G b L b

VVeV1 vs.

CiCSV N/C 21.3 N/C 18.5 N/C 19.0 N/C
CiLV-N N/C 20.8 N/C 18.8 N/C 19.6 N/C
ClCSV N/C 21.1 N/C 18.2 N/C 19.2 N/C
CoRSV N/C 20.5 N/C 18.4 N/C 18.7 N/C

OFV N/C 23.1 N/C 19.1 N/C 20.1 N/C
a Nucleotide percentages; b amino acid percentages; N/C: not complete; virus names are listed in Table S1
and Table 1.

3.6. Varicose-Like Viruses

The complete coding sequences of five varicosa-like viruses, tentatively named Al-
lium angulosum virus 1 (AAnV1), Brassica rapa virus 1 (BrRV1), Lolium perenne virus 1
(LoPV1), Melampyrum roseum virus 1 (MelRoV1) and Pinus flexilis virus 1 (PiFleV1), as well
as the partial genomes of two others, named Phlox pilosa virus 1 (PhPiV1) and spinach
virus 1 (SpV1), were assembled in this study (Table 1). The genomes of AAnV1, BrRV1,
LoPV1, MelRoV1, PhPiV1 and SpV1 consist of two RNA segments. RNA 1 of AAnV1,
BrRV1, LoPV1, MelRoV1 and SpV1 encode only the L protein, whereas RNA 1 of PhPiV1
likely carries an additional gene 3′ to the L gene (Figure 1C). RNA 2 of AAnV1, BrV1,
LoPV1 and SpV1 has three genes in the order 3′-N-P2-P3-5′, RNA 2 of MelRoV1 has four
genes in the order 3′-N-P2-P3-P4 -5′ and RNA 2 of PhPiV1 likely has five genes in the order
3′-N-P2-P3-P4-P5-5′ (Figure 1C). Based on our assemblies, the PiFleV1 genome does not
appear to be segmented like the genomes of other varicosaviruses and has five ORFs in the
order 3′-N-P2-P3-P4-L-5′ (Figure 1C), suggesting that varicosa-like viruses may also have
unsegmented genomes.

The predicted LoPV1 N protein is the longest varicosavirus N protein described so
far, whereas the MelRoV1 L protein is the smallest L protein described so far among the
varicosaviruses, while the PiFleV1 L protein is the largest varicosavirus L protein described
so far (Table S4). Interestingly, the PiFLeV1 N protein is basic, whereas the N proteins of
AAnV1, BrRV1, LoPV1, MelRoV1, PhPiV1 and SpV1 are acidic. Moreover, AAnV1 and BrR1
P2s are basic, while P2s of LoPV1, MelRoV1, PiFleV1 and SpV1 are acidic. Furthermore,
P3s of AAnV1, MelRoV1, PhPiV1 and PiFleV1 are basic, whereas the BrRV1 and LoPV1
P3s are acidic (Table S3).

Based on the NLS scores, AAnV1 L and P2, LoPV1 N and P2 and the MelRoV1 L
protein are expected to be exclusively located in the nucleus. The BrRV1 N; BrRv1, PiFleV1
and SpV1 P2; PiFleV1 P3 and BrRv1, LoPV1 and SpV1 L proteins are predicted to localize
to both the nucleus and the cytoplasm. Leucine-rich NESs are predicted in the BrRV1,
MelRoV1, PhPiV1, PiFleV1 and SpV1 N proteins; the AAnV1, BrRV1, LoPV1, MelRoV1,
PiFleV1 and SpV1 P2; the BrRV1, LoPV1, MelRoV1, PhPiV1, PiFleV1 and SpV1 P3 and the
MelRoV1, PhPiV1 and PiFleV1 P4 (Table S3). No transmembrane domain or signal peptide
was detected in any of the proteins encoded by AAnV1, BrRV1, LoPV1, MelRoV1, PhPiV1,
PiFleV1 and SpV1.
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The consensus gene junction sequences 3′ AU(N)5UUUUUGCUCU 5′ of AAnV1,
LoPV1, MelRoV1, PhP1V1 and SpV1 are identical and the same as in the genomes of the
known varicosaviruses Alopecurus myosuroides varicosavirus 1 (AMVV1), lettuce big-vein as-
sociated virus (LBVaV, red clover-associated varicosavirus (RCaVV) and vitis varicosavirus
(VVV). The gene junction sequences of BrRV1 and PiFleV1 differ slightly: the BrRV1 5′-end
sequence is CUCA instead of CUCU, while the PiFleV1 3′-end sequence is GU(N)5UUUUU
instead of AU(N)5UUUUU (Table 2).

The pairwise aa sequence identities between the cognate-encoded proteins of AAnV1,
BrRV1, LoPV1, MelRoV1, PhPiV1, PiFleV1 and SpV1 and those from other varicosaviruses
vary significantly (Table 7). The phylogenetic analysis based on the deduced N protein
aa sequences placed all seven novel varicosa-like viruses into a clade with the known
varicosaviruses. BrRV1 and SpV1 clustered with RCaVV, and these viruses have a similar
genomic organization with the three ORFs on RNA 2. AAnVi clustered with the clade
formed by LoPV1 and AMVV1, and these viruses infect monocots. PhPV1 clustered with
LBVaV, while the unique PiFleV1 was placed in a sister clade to the clade composed by
LBVaV and PhPV1, and MelRoV1 clustered with vitis varicosavirus (VVV) (Figure 2).

Table 7. Pairwise identity percentages between the varicosaviruses assembled in this study and the
reported varicosaviruses.

N b 2 b 3 b 4 b L a/b

AAV1 vs.

AMVV1 25.9 20,2 20.2 - 54.4/37.8
BrRV1 20.5 19.4 18.3 - 58.2/40.7
LBVaV 20.9 19.7 12.6 - 54.1/37.7
LoPV1 23.2 19.9 19.1 - 57.3/39.4

MelRoV1 20.3 17.4 8.4 - 57.6/39.5
PhPiV1 18.3 N/C 7.4 - N/C
PiFleV1 17.3 17.1 7.2 - 52.2/32.8
RCaVV 21.4 19.8 18.7 - 56.2/38.9
SpV1 19.3 18.5 17.4 - 57.1/39.3

BrRV1 vs.

AAnV1 20.5 19.4 18.3 - 58.2/40.7
AMVV1 22.5 10.9 18.3 - 52.8/36.9
LBVaV 19.9 15.4 6.7 - 53.6/37.3
LoPV1 21.5 21.0 19.0 - 55.2/37.5

MelRoV1 23.0 16.4 7.8 - 55.8/42.0
PhPiV1 18.8 N/C 6.9 - N/C
PiFleV1 22.9 17.5 6.6 - 52.3/32.2
RCaVV 26.9 17.7 21.8 - 59.6/50.5
SpV1 24.6 18.1 N/C - 59.8/51.5

LoPV1 vs.

AAnV1 23.2 19.9 19.1 - 57.3/39.4
AMVV1 52.0 32.7 50.9 - 67.6/71.5
BrRV1 21.5 21.0 19.0 - 55.2/37.5
LBVaV 19.1 15.9 11.3 - 54.8/37.0

MelRoV1 19.4 16.6 5.9 - 55.1/37.8
PhPiV1 21.2 N/C 6.3 - N/C
PiFleV1 17.1 17.1 8.8 - 52.5/32.1
RCaVV 18.8 9.6 18.5 - 54.5/37.5
SpV1 18.8 16.8 N/C - 54.1/35.9

MelRoV1 vs.

AAnV1 20.3 17.4 8.4 - 57.6/39.5
AMVV1 22.6 16.8 6.7 - 54.8/38.0
BrRV1 23.0 16.4 7.9 - 55.8/42.0
LBVaV 19.6 16.0 24.0 11.1 53.6/37.7
LoPV1 19.4 16.6 5.9 - 55.1/37.8
PhPiV1 20.8 N/C 29.1 N/C N/C
PiFleV1 19.7 17.4 27.7 14.2 50.9/31.5
RCaVV 22.5 15.3 9.9 - 55.2/41.0
SpV1 21.9 20.5 N/C - 56.3/41.0
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Table 7. Cont.

N b 2 b 3 b 4 b L a/b

PhPiV1 vs.

AAnV1 18.3 N/C 7.4 - N/C
AMVV1 22.5 N/C 7.1 - N/C
BrRV1 18.8 N/C 6.9 - N/C
LBVaV 30.4 N/C 30.4 N/C N/C
LoPV1 21.2 N/C 6.3 - N/C

MelRoV1 20.8 N/C 29.1 N/C N/C
PiFleV1 26.8 N/C 25.5 N/C N/C
RCaVV 24.3 N/C 13.7 - N/C
SpV1 21.4 N/C N/C - N/C

PiFleV1 vs.

AAnV1 17.3 17.1 7.2 - 52.2/32.8
AMVV1 19.1 15.3 9.5 - 51.3/32.7
BrRV1 22.9 17.5 6.6 - 52.3/32.2
LBVaV 23.4 16.4 25.4 14.5 51.6/32.4
LoPV1 17.1 17.1 8.8 - 52.5/32.1

MelRoV1 19.7 17.4 27.7 14.2 50.9/31.5
PhPiV1 26.8 N/C 25.5 N/C N/C
RCaVV 20.4 15.9 6.8 - 52.0/31.1
SpV1 20.5 15.0 N/C - 51.7/32.4

SpV1 vs.

AAnV1 19.3 18.5 17.4 - 57.1/39.3
AMVV1 18.3 16.6 N/C - 53.1/35.5
BrRV1 24.6 18.1 N/C - 59.8/51.5
LBVaV 18.8 16.7 N/C - 53.5/36.1
LoPV1 18.8 16.8 N/C - 54.1/35.9

MelRoV1 21.9 20.5 N/C - 56.3/41.0
PhPiV1 21.4 N/C N/C - N/C
PiFleV1 20.5 15.0 N/C - 51.7/32.4
RCaVV 27.7 18.5 N/C - 60.8/54.8

a Nucleotide percentages; b amino acid percentages; N/C: not complete; virus names are listed in Table S1
and Table 1.

4. Discussion

In the last few years, several novel plant rhabdoviruses, which may be asymptomatic,
have been reported in HTS studies [47–55]. Thus, it is tempting to speculate that some plant
rhabdovirus-like sequences may be hidden in published plant transcriptome databases,
generated with diverse objectives beyond virus research, where viral RNA was inadver-
tently copurified with endogenous plant RNA and sequenced. To prove this point, we and
others have previously identified the sequences of a small number of plant rhabdoviruses
contained in public transcriptome databases [8,9,16]; however, an extensive search has not
been conducted to date. Therefore, we queried the publicly available plant transcriptome
datasets in the transcriptome shotgun assembly (TSA) database hosted at NCBI, which
resulted in the identification of 27 novel plant rhabdoviruses.

4.1. Discovery of Novel Plant Rhabdoviruses Expands the Diversity and Evolutionary History
of Rhabdovirids

The coding-complete or complete genomic sequences of 66 plant rhabdoviruses were
reported by early 2021. Thirty-three of them are cytorhabdoviruses, thirteen alphanucle-
orhabdoviruses, ten betanucleorhabdoviruses, five dichorhaviruses, four varicosaviruses
and one gammanucleorhabdovirus. Similarly, half of the novel sequences reported in this
study are those of putative cytorhabdoviruses, indicating the extensive diversification
of this group of viruses. The novel 27 viruses discovered in this study all appear to be
members of new species and account for nearly half of the plant rhabdovirus species
reported so far. In addition, five new putative betanucleorhabdoviruses shed more light on
the diversity and evolution of this recently created genus. One newly identified putative
alphanucleorhabdovirus and one novel putative dichorhavirus expand the diversity of
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their respective genera. Finally, we detected seven novel varicosa-like viruses, which dou-
bles the number of known varicosaviruses, providing new information about the genomic
diversity and evolution of these little-studied fungi-transmitted viruses. Thus, our study
provides the most complete insight to date about the genomic diversity and evolution of
plant rhabdoviruses, complementing the status quo of these viruses with additional data
on genomic organization and highlighting their apparent genetic flexibility. Overall, the
sequence identity between the newly discovered viruses and those plant rhabdoviruses
already described was low, a common feature among these taxa characterized by a high
level of diversity in both genome sequence and organization [20]. The low sequence iden-
tity of the novel viruses with the closest previously described virus may indicate that there
is still a significant amount of virus “dark matter” within the plant rhabdovirus space
worth exploring that potentially contains a significant number of yet to be discovered plant
rhabdoviruses. Future works should focus on the analysis of additional RNA datasets of
diverse potential hosts of the partial virus genomes identified in this study.

Viruses assigned to different species within the genera Alphanucleorhabdovirus, Betanu-
cleorhabdovirus and Cytorhabdovirus have a nucleotide sequence identity lower than 75%
in the complete genome sequence and occupy different ecological niches as evidenced by
differences in the host species and/or arthropod vectors (https://talk.ictvonline.org/ic
tv-reports/ictv_online_report/negative-sense-rna-viruses/w/rhabdoviridae) (accessed
11 April 2021). Cytorhabdoviruses may also have an aa sequence identity of less than
80% in all cognate ORFs. Viruses assigned to different species in the genus Dichorhavirus
have less than 80% nucleotide sequence identity in the L gene. Based on these species
demarcation criteria, ATV1 should be classified in a new Alphanucleorhabdovirus species
and AscSyV2, PleArV1 and RhoDeV1 in a new species in the genus Betanucleorhabdovirus;
due to incomplete sequences, PerMiV1 and CusReV1 cannot be classified based on these
criteria. AntAmnV1, AscSyV1, BeTaV1, GlLV1, GymDenV1, LotCorV1, NymAV1, TaEV
and TrAV1 should be classified in a new species in the genus Cytorhabdovirus, whereas
AChV1, DiCoV1, PelRaV1 and SuSV1, due to incomplete genome sequence data, cannot be
classified. The dichorha-like VVeV1 also awaits at least coding-complete sequence data
before it can be formally classified in this genus. The species demarcation criteria recently
proposed for the genus Varicosavirus by the ICTV Rhabdoviridae Study Group included
a minimum nucleotide sequence divergence of 50% in the L protein. Based on this ge-
netic distance, the varicosa-like viruses AAnV1, BrRV1, LoPV1, MelRoV1, PiFleV1 and
SpV1 would not be considered different species, and PhPiV1 cannot be classified due to
incomplete sequencing data. Considering the diverse host plant species these viruses were
identified in and their phylogenetic relationships, these viruses should likely be classified
in different species. Thus, we propose a nucleotide sequence identity of 75% across the
genome and in the N gene as thresholds for species demarcation in the Varicosavirus genus,
in line with the species demarcation criteria for the other genera of plant rhabdoviruses.

4.2. Host Range of the Novel Plant Rhabdoviruses

Most of the plant hosts in which the novel viruses of this study were identified are
dicots; nevertheless, AChV1, which was detected in Chinese onions, is likely the first
monocot-infecting cytorhabdovirus that belongs to a clade of aphid-transmitted viruses.
Furthermore, most of the source hosts in which the novel viruses were identified are
herbaceous plants, which, overall, are the most common hosts of plant rhabdoviruses [18].
However, one novel putative varicosavirus, Pinus flexilis virus 1, was associated with a
gymnosperm host. Few viruses were identified previously from gymnosperms [12,56–59].
Interestingly, a putative RdRp sequence was identified in the gymnosperm Sciadopitys verti-
cillata and proposed to belong to a varicosavirus [14]. Therefore, to our knowledge, this
study is the first to report the complete coding sequence of a plant rhabdovirus associated
with a gymnosperm host and presenting a unique unsegmented genome, redefining the
genome architecture of varicosaviruses. Future virus discovery studies should focus on

https://talk.ictvonline.org/ictv-reports/ictv_online_report/negative-sense-rna-viruses/w/rhabdoviridae
https://talk.ictvonline.org/ictv-reports/ictv_online_report/negative-sense-rna-viruses/w/rhabdoviridae
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gymnosperm viromes, which have been understudied and likely hide a rich and diverse
number of novel viruses.

4.3. Diverse Genome Organizations of Plant Rhabdoviruses

Interestingly, the genome sequence of four novel viruses discovered in this study,
GymDenV1 (only four predicted genes), TaEV and TrAV1 (both with only five predicted
genes) and PiFleV1 (an unsegmented varicosa-like virus), have a unique genome archi-
tecture among plant rhabdoviruses that differs from the consensus genome organization
reported for previously known cytorhabdoviruses and varicosaviruses [21]. The genomes
of the cytorhabdoviruses GymDenV1, TaEV1 and TrAV1 lack a glycoprotein ORF, which,
for rhabdoviruses, is not essential for replication and systemic movement, as demonstrated
using an infectious clone of Sonchus yellow net virus [60]. Furthermore, isolates of citrus-
associated rhabdovirus (CiaRV) were recently shown to have an impaired G ORF [61].

Five canonical structural protein genes 3′-N-P-M-G-L-5′ are thought to be conserved
among all rhabdoviruses [20], while plant rhabdovirus genomes contain at least six
ORFs [21]. However, only four genes were predicted in the genome of the varicosavirus
RCaVV [51]. Four genes were also identified in some of the varicosa-like virus genomes
assembled in this study, suggesting that a minimal set of four genes may be sufficient for
varicosaviruses to replicate in a plant host. This hypothetical minimal requirement appears
to also apply to cytorhabdoviruses. For example, GymDenV1 encodes only the nucleocap-
sid core (NC) proteins N, P and L that are essential for virus replication and transcription
and the M protein that is required for condensation of the core during virion assembly [20].
Thus, how GymDenV1 moves from cell to cell remains to be unraveled. Interestingly, no
cell-to-cell movement protein has been identified so far in the varicosaviruses.

The discovery of diverse novel rhabdo-like viruses in metagenomics studies of arthro-
pods [62] supports the assumption that arthropods have been fundamental to rhabdovirus
evolution [63], and the G protein was found to be essential for virus attachment to pre-
dict cellular receptors in the midgut of arthropod vectors that facilitate virus uptake [20].
This agrees with the hypothesis that cytorhabdoviruses, nucleorhabdoviruses and di-
chorhaviruses evolved from viruses of plant-feeding arthropods that acquired movement
proteins and assorted RNAi suppressors through recombination with preexisting plant
viruses [3]. The viruses in these three genera appear to be the least plant-specialized among
the negative-sense RNA viruses. However, the evolution of the nonenveloped negative-
sense RNA plant viruses, such as the fungal-transmitted varicosaviruses, which likely do
not encode a G protein, clearly reflects the adaptation to a plant-specific lifestyle, raising
the possibility that their origin is via a trans-kingdom horizontal transfer between fungi
and plants [3]. A G protein-defective genome was recently identified in citrus isolates
of CiaRV, and the authors speculated that the eventual “simplification” of viral genomes
to adapt to plants without requiring an arthropod vector could provide an evolutionary
advantage, especially in fruit trees that are propagated artificially by asexual modes, such
as cutting and grafting [61]. Nevertheless, the tentative hosts of GymDenV1, TaEV1 and
TrAV1 are herbaceous plants; thus, an evolutionary advantage linked to the lack of a G
protein is not obvious for these viruses. Strikingly, TaEV1 is phylogenetically related to
arthropod-transmitted cytorhabdoviruses. Thus, further studies should focus on the poten-
tial vector and the mode of transmission of GymDenV1, TaEV1 and TrAV1 to complement
their peculiar minimalist genome organization and evolutionary links with biological data.

4.4. Phylogenetic Relationships among Plant Rhabdoviruses as Predictors for Vector Types

Among all plant rhabdoviruses studied so far, there is a strong correlation between
phylogenetic relationships and vector types [18,20]. We therefore predict that the novel
betanucleorhabdoviruses are likely aphid-transmitted, while the putative dichorhavirus
VVeV1 is likely transmitted by Brevipalpus mites, and the varicosa-like viruses may be
transmitted by chytrid fungi. Based on its phylogenetic clustering, the alphanucleorhab-
dovirus ATV1 is likely transmitted by a planthopper. Among the novel cytorhabdoviruses
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identified in this study, AChV1, AscSyV1, GlLV1, LotCorV1, NymAV1, PelRaV1 and
SuSV1 are likely aphid-transmitted, while the vectors for AntAmV1, DiCoV1, GymDenV1,
TaEV1 and TrAV1 cannot be predicted. The BeTaV1 genome was assembled from white-
fly transcriptome data and, therefore, is likely a whitefly-transmitted cytorhabdovirus.
The L protein-like TSA sequences included in the assembly of the BeTaV1 genome were
previously reported to be 95–98% identical to soybean blotchy mosaic virus partial L
gene sequences [18]; thus, it is tempting to speculate that the plant host of BeTaV1 may
be soybeans. Recently, it was reported that the bean-associated cytorhabdovirus is ef-
ficiently transmitted by whiteflies, which was the first report of a whitefly-transmitted
rhabdovirus [64], thus supporting our hypothesis that soybean blotchy mosaic virus may
represent the second whitefly-transmitted rhabdovirus.

At least one transmembrane domain was identified in each P′ protein predicted in the
genomes of a group of cytorhabdoviruses discovered in this study, consistent with a previ-
ous analysis of other cytorhabdoviruses, which also identified at least one transmembrane
domain in every P′ protein [65]. Interestingly, this overprinted accessory protein is encoded
by every cytorhabdovirus that appears to be aphid-transmitted. On the other hand, the
P′ protein is not encoded in the genomes of aphid-transmitted betanucleorhabdoviruses.
Therefore, the potential function of the P′ protein is unlikely to be directly associated with
the vector specificity.

4.5. Cytorhabdoviruses

Two of the cytorhabdoviruses, AChV1 and SuSV1, whose genomes were only partially
assembled, clustered phylogenetically in a monophyletic clade with ADV, ChYDaV, RVCV
and SCV, all the viruses that contain a P6 accessory ORF between the G and L genes [66–69].
Given this clustering, it is likely that AChV1 and SuSV1 will have a similar genomic organi-
zation. At least one transmembrane domain has been predicted in every cytorhabdovirus
with an accessory P6 ORF. Transmembrane domains were also predicted in the accessory
ORF between the G and L genes of other cytorhabdoviruses [49,65,70]. Thus, the protein
encoded by this small ORF may have membrane-associated functions similar to viroporins
in vertebrate rhabdoviruses [71].

The phylogenetic relationships of the now expanded number of known cytorhab-
doviruses provide some support for splitting the genus Cytorhabdovirus to establish three
genera that represent different evolutionary lineages: (I) Alphacytohabdovirus would include
species for all aphid-transmitted cytorhabdoviruses; (II) Betacytorhabdovirus would include
species for all those cytorhabdoviruses likely transmitted by leafhoppers, planthoppers
and whiteflies, as well as AntAmnV1, DiCoV1 and TaEV1, and (III) Gammacytorhabdovirus
would include species for GymDenV1 and TrAV1 (Figure 2).

4.6. Nucleorhabdoviruses

The ATV1 genome that was assembled from the transcriptome data of the monocot
agave does not encode any accessory ORFs, like most of the alphanucleorhabdoviruses,
except the group of PYDV-like viruses that encode an X ORF of unknown function [18].
ATV1, while branching into a sister clade, appears to have a close evolutionary relationship
with the cluster of planthopper-transmitted monocot-infecting alphanucleorhabdoviruses
MIMV, MMV, MMaV and TaVCV. It is tempting to speculate that this clade evolved from a
common ancestor that adapted to infect monocots and to be transmitted by planthoppers.
Furthermore, the isoelectric point (IEP) of ATV1-predicted proteins is similar to that of
MIMV, MMV, MMaV and TaVCV-predicted proteins, thus supporting a link between these
viruses and ATV1.

All the betanucleorhabdoviruses identified in this study, AscSyV2, CusReV1, Per-
MiV1, PleArV1 and RhoDeV1, appear to be associated with dicot hosts, which is consis-
tent with every betanucleorhabdovirus reported so far [18]. The dicot host range of the
betanucleorhabdoviruses is likely linked to their insect vector, given that every betanu-
cleorhabdovirus where a vector has been experimentally determined is transmitted by
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aphids [18]. Although aphids can colonize both dicots and monocots [72], it has been
suggested that these insects more successfully feed on dicots [73]. Regarding their genome
organization, the five novel betanucleorhabdoviruses identified in this study encode six
plant rhabdovirus ORFs in the conserved order 3′-N-P-P3-M-G-L-5′ without any acces-
sory ORFs, like the majority of previously known betanucleorhabdoviruses, such as the
well-studied SYNV. CusReV1, PerMiV1, PleArV1 and RhoDeV1 likely belong to the same
evolutionary lineage as BFTaV1, BCaRV, CdVCV1, DYVV, GSPNuV, SYNV and SYVV,
which may represent the ancestral clade within the betanucleorhabdoviruses. However,
AscSyV2′s closest evolutionary relationship is with the betanucleorhabdoviruses ApRVA
and AaNV, which differ in their genome organization by having an accessory ORF located
between the M and G genes [46,74]. Interestingly, the IEP of the AscSyV2, CusReV1, Per-
MiV1, PleArV1 and RhoDeV1 N proteins is different to the IEP of the cognate proteins
encoded by the phylogenetically related betanucleorhabdoviruses. It is unknown if this
difference in the IEP may have a biological effect in terms of RNA or protein binding.
Moreover, the RhoDeV1 M protein is acidic, while the BFTaV1, BCaRV, BmV2, CdVCV1,
CusReV1, DYVV, GSPNuV, PleArV1, SYNV and SYVV N proteins are basic. It has been
suggested that charge differences in the M proteins may be associated with differences in
their abilities to interact with the negatively charged lipids of the membrane [75]. NLS
and NES were predicted for most of the AscSyV2, ATV1, CusReV1, PerMiV1, PleArV1 and
RhoDeV1-encoded proteins, which can be expected, since nucleorhabdoviruses replicate in
the nuclei of infected cells [20].

The phylogenetic relationships of nucleorhabdoviruses, including the novel alpha-
and betanucleorhabdoviruses discovered in our analysis, clearly support the recent split of
the previous genus Nucleorhabdovirus into the three genera Alphanucleorhabdovirus, Betanu-
cleorhabdovirus and Gammanucleorhabdovirus [18].

4.7. Varicosaviruses

Currently, there are only three varicosaviruses recognized by the ICTV, LBVaV, AMVV1
and RCaVV, and a novel varicosavirus, VVV, was recently identified [52]. Nevertheless,
the available information regarding varicosavirus gene functions is generally scarce, and
the functional roles of the varicosavirus P2, P3, P4, P5 and P6 proteins remain to be
elucidated. No transmembrane domain was predicted in any of the proteins encoded by
the varicosavirus genomes identified in this study, as well as in those already described;
thus, it appears that no varicosavirus-encoded protein has a membrane-associated function.
The AAnV1, L and P2 proteins; LoPV1 N and P2 proteins and AMVV1 and MelRoV1 L
proteins are predicted to be exclusively located in the nucleus, whereas NES are predicted
in most N, P2 and P3 proteins and some P4 proteins (Table S3). This suggests a potential
role of these proteins in the cell nucleus.

The N protein encoded by the unsegmented PiFLeV1 is basic; on the other hand, the
N proteins encoded by the bisegmented varicosaviruses AAnV1, AMVV1, BrRV1, LBVaV,
LoPV1, MelRoV1, PhPiV1, RCaVV, SpV1 and VVV are acidic. This difference in the IEP
may be associated with a different replication mechanism of the unsegmented PiFLeV1
compared to the segmented varicosaviruses. Moreover, AAnV1 and BrRV1 P2s are basic,
while the P2s of AMVV1, LBVaV, LoPV1, MelRoV1, PiFleV1, RCaVV, SpV1 and VVV are
neutral or acidic. The biological significance of this difference is unknown, because the
functional role of P2 still needs to be unraveled.

LoPV1 and AMVV1 are phylogenetically closely related; their N and P3 aa sequences
are >50% identical, and both are associated with grasses in the family Poaceae. However,
LoPV1 RNA1 has one ORF, while AMVV1 RNA1 has two [76]. These monocot-infecting
varicosaviruses are phylogenetically related to AAnV1, which also is associated with a
monocot host and shares a similar genomic organization with LoPV1. PhPiV1 clustered
with LBVaV; thus, it is likely that its genome, which was partially assembled, has a similar
genomic organization to LBVaV, with two ORFs encoded in RNA1 and five in RNA2 [77].
Interestingly, the RNA2 of four of the novel varicosa-like viruses identified in this study
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have three ORFs, similar to RCaVV and AMVV1 RNA2 [51,76]. On the other hand, the
RNA2 of one novel varicosa-like virus identified in our study has four ORFs. Thus, the
number of ORFs identified in the RNA2 of every novel varicosa-like virus reported in this
study, except for PhPiV1, is different from the first identified varicosavirus, LBVaV, and the
recently described varicosavirus, VVV, which have five ORFs [52,77]. The RNA1 segments
of AAnV1, BrRV1, LoPV1, SpV1 and MelRoV1 are similar to the RNA1 of RCaVV and
VVV in that they only encode the L protein, whereas a small ORF before the L gene was
identified in PhPiV1 and previously in AMVV1 and LBVaV [51,52].

Among the varicosa-like viruses identified in this study, PiFleV1 is unique in terms of
genome organization, since its genome is unsegmented, a characteristic that differs from
the currently known bisegmented genome architecture of varicosaviruses [21]. This may
be an adaptation to its gymnosperm host. Unfortunately, we were not able to assemble the
complete genome of the varicosavirus associated with the gymnosperm Sciadopitys verti-
cillata previously reported by Mushegian and colleagues [14] to support this hypothesis.
Based on genome organization and phylogenetic placement, PiFleV1 appears to be the
first example where rhabdoviruses with segmented and unsegmented genomes are closely
related and may be classified in the same genus.

5. Conclusions

In summary, this study illustrates the complexity and diversity of plant rhabdoviruses
genomes and demonstrates that analyzing SRA public data is a valuable tool not only to
accelerate the discovery of novel viruses but, also, to gain insight into their evolution and
to refine virus taxonomy. However, the inability to go back to the biological material to
confirm viral genome sequences and to link the presence of the viruses to a specific host is
the main drawback of the data mining approach for virus discovery. This limitation could
lead to the potential misidentification of host species linked to viruses. Thus, researchers
need to be cautious when analyzing SRA public data for virus discoveries.
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