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Summary. Lasiodiplodia (Botryosphaeriaceae) includes fungi that are considered 
among the most aggressive to grapevine, capable of causing cankers and necrotic 
lesions which eventually lead to death of host plants. A common characteristic of this 
genus is the presence of melanin in conidia and mycelium. Melanin is produced by 
the oxidation of phenolic and/or indolic compounds. For some fungi, this pigment is 
an essential factor for pathogenicity. This study characterized the types and the roles 
of melanin produced by Lasiodiplodia gilanensis. Using specific melanin inhibitors, L. 
gilanensis was shown to synthesize DOPA-melanin, DHN-melanin, and pyomelanin. 
DOPA-melanin was shown to be involved in production of aerial mycelium and pro-
tection against enzymatic lysis and oxidative stress; DHN-melanin to be involved in 
ramification of mycelium when exposed to nutrient deficiency; and pyomelanin to be 
related with hyphae development. The fungus used tyrosine as a precursor of DOPA-
melanin and as carbon and nitrogen sources, and produced melanin inside the piths 
of infected plants. Genes involved in melanin synthesis were conserved among the 
Botryosphaeriaceae, highlighting the importance of melanin in this family.

Keywords. Grapevine trunk diseases (GTDs), Botryosphaeria dieback, Botryospha-
eriaceae, fungal melanin, tyrosine catabolism.

INTRODUCTION

The Botryosphaeriaceae contains several fungal plant pathogens of a 
wide range of woody plants (Slippers and Wingfield, 2007), with cosmo-
politan distribution (Damm et al., 2007; Phillips et al., 2013). The ability of 
these fungi to infect multiple hosts increases their economic impacts and 
ecological risks in many regions (Mehl et al., 2017). More than 30 Botryo-
sphaeriaceae species from the genera Botryosphaeria, Diplodia, Dothiorella, 
Lasiodiplodia, Neoscytalidium, Neofusicoccum, Phaeobotryosphaeria, and 
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Spencermartinsia, have been associated with grapevine 
trunk diseases (GTDs) (Úrbez-Torres, 2011; Gramaje et 
al., 2018). Interactions of these fungi with their hosts 
have been studied, as well the virulence factors that trig-
ger disease development. Infections of healthy plants 
occur mainly through pruning wounds, and some of the 
symptoms caused are leaf spot, fruit rot, dieback, shoot 
necrosis, vascular discolouration, and perennial cankers 
(Úrbez-Torres, 2011). In the states of Baja California and 
Sonora, Mexico, grapevine is one of the most economi-
cally important crops, and in these areas, several spe-
cies of fungi causing GTDs have been reported, includ-
ing Lasiodiplodia theobromae (Pat.) Griffon & Maubl 
(Úrbez-Torres et al., 2008; Candolfi-Arballo et al., 2010). 

Lasidiplodia theobromae is the type species of Lasio-
diplodia. This fungus has widespread distribution, but is 
most common in tropical and subtropical regions, and 
has been found in more than 500 hosts (Punithalingam, 
1976). In grapevine, L. theobromae was reported as one 
of the most aggressive pathogens causing Botryosphaeria 
dieback (Úrbez-Torres et al., 2008). To date, more than 
eighteen species of Lasiodiplodia have been reported, 
including L. exigua, L. parva, L. crassispora, L. gilanen-
sis, L. brasiliense, L. laeliocattleyae (formerly L. egyptia-
cae), L. euphorbicola and, L. hormozganensis (Yan et al., 
2013; Linaldeddu et al., 2015; Correia et al., 2016; Rod-
ríguez-Gálvez et al., 2017). The main differences in these 
species are the morphology and dimensions of conidia 
and the morphology of paraphyses (Phillips et al., 2013). 
Conidia are initially hyaline, and later, a single median 
septum is formed in each conidium. Then, the cell walls 
become dark brown, and melanin granules are deposit-
ed longitudinally on the inner surface, giving a striated 
appearance (Phillips et al., 2013). Since not all conidia 
become melanized at the same time, it is possible to find 
hyaline and pigmented conidia in individual pycnidia. 

Melanins are macromolecules of high molecular 
weight, derived from oxidative polymerization of phe-
nolic and/or indolic compounds (Jacobson, 2000). They 
are usually dark pigments distributed in all biological 
kingdoms (Butler and Day, 1998; Eisenman and Casa-
devall, 2012). Melanin is considered a stable, insoluble, 
and resistant biopolymer due to its complex structure 
and physicochemical properties (Solano, 2014; Cord-
ero and Casadevall, 2017). Several types of fungal mela-
nin have been described, determined by their precur-
sors; among them, DHN-melanin, DOPA-melanin and 
pyomelanin are related to pathogenicity or antifungal 
drug protection (Toledo et al., 2017). DHN-melanin is 
synthesized through a series of dehydration and reduc-
tion reactions from 1,3,6,8-tetrahydronaphthalene 
(1,3,6,8-THN), in which the final product is 1,8-dihy-

droxynaphthalene (1,8-DHN) that polymerizes to form 
melanin (Langfelder et al., 2003; Eisenman and Casade-
vall, 2012). DOPA-melanin is synthesized from the oxi-
dation of tyrosine to L-DOPA or directly from L-DOPA 
to dopaquinone (Langfelder et al., 2003; Eisenman and 
Casadevall, 2012). Pyomelanin is related to tyrosine 
catabolism and is synthesized from the oxidation of 
homogentisic acid and its subsequent polymerization 
(Schmaler-Ripcke et al., 2009).

Melanization is not an essential factor for fungus 
growth, but is involved in a broad spectrum of biologi-
cal functions (Wu et al., 2008). The primary functions 
of melanin is to protect cells from UV radiation, and 
from oxidizing agents; melanin interacts with free radi-
cals and other reactive species because of the presence 
of unpaired electrons (Butler and Day, 1998; Shcherba 
et al., 2000), contributing to the survival of cells under 
environmental stress conditions (Wu et al., 2008; Eisen-
man et al., 2020). Melanin is a virulence factor in some 
phytopathogenic fungi acting as a non-specific “body-
armour” during infection, protecting the fungus against 
host defense mechanisms and promoting its survival to 
cause the disease (Hamilton and Gomez, 2002; Nosan-
chuk and Casadevall, 2003; Eisenamn et al., 2020). 
DHN-melanin has been the most studied melanin in 
fungi. In the rice pathogen Magnaporthe oryzae, pro-
duction of DHN-melanin is vital in appressorium for-
mation and for the stationary phase of mycelial growth 
(Howard and Valent, 1996; Nosanchuk and Casadevall, 
2003; Eisenman and Casadevall, 2012). In Colletotri-
chum lagenarium (Kubo et al., 1982), C. lindemuthi-
anum (Wolkow et al., 1983), C. kahawae (Chen et al., 
2004), and Setosphaeria turcica (Shuangxin et al., 2017), 
DHN-melanin is associated to the appressorium for-
mation. The grapevine trunk disease fungi Phaeomon-
iella chlamydospora and Phaeoacremonium aleophilum 
produce naphthoquinones (scytalone and isosclerone), 
intermediate metabolites of melanin biosynthesis. These 
metabolites have been associated with oxidative proper-
ties and production of esca disease symptoms in grape-
vines (Evidente et al., 2000; Andolfi et al., 2011).

Melanin inhibitors have been used to study the syn-
thesis pathways of melanin in some fungi (Woloshuk 
and Sisler, 1982; Wheeler and Klich, 1995; Butler et al., 
2009; Kumar et al., 2015). Gonçalves et al. (2012) report-
ed that tropolone (DOPA-melanin inhibitor) added to 
growth media, inhibited the synthesis of melanin in 
Aspergillus nidulans, unlike the use of DHN-melanin 
inhibitors. Pal et al. (2014) used tricyclazole, phthal-
ide, tropolone, and kojic acid in Aspergillus spp., and 
found that in Aspergillus niger, Aspergillus tamarii, and 
Aspergillus flavus, synthesis of melanin was inhibited 
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by kojic acid and tropolone, while in Aspergillus terreus 
and Aspergillus tubingensis melanin was inhibited in the 
presence of tricyclazole and phthalide. In the hypersa-
line yeast Hortaea werneckii, which produces DHN-mel-
anin, tricyclazole was used to study the effect of melanin 
in NaCl tolerance (Kejžar et al., 2013). Nitisinone has 
been primarily used in bacteria, for example, in Pseu-
domonas aeruginosa, in which this compound inhibited 
the synthesis of pyomelanin (Ketelboeter et al., 2014). 

In a transcriptomic analysis of L. gilanensis UCD-
256Ma (formerly L. theobromae), genes related to DHN-
melanin and pyomelanin pathways were differentially 
expressed under heat shock and in the presence of 
grapevine wood. In contrast, genes related to the DOPA-
melanin pathway were expressed only in the presence of 
grapevine wood without heat shock (Paolinelli-Alfon-
so et al., 2016). The present study aimed to identify the 
types and roles of melanin produced by L. gilanensis to 
increase understanding of this fungus-host interaction.

MATERIALS AND METHODS

Fungus strain and growth conditions

Lasiodiplodia gilanensis UCD256Ma (formerly L. 
theobromae) was isolated from grapevine plants showing 
Botryosphaeria dieback symptoms in Madera County, 
California, United States of America (Úrbez-Torres et 
al., 2006), and this isolate was provided by Dr. Douglas 
Gubler (University of California, Davis) to the labora-
tory of Phytopathology of CICESE. The stock culture 
was recovered on potato dextrose agar (PDA) and incu-
bated at 30°C. For the assays described in the following 
sections, mycelial disks (5 mm diam.) were individually 
inoculated at one border of Petri dishes containing rel-
evant media, and fungus growth was measured every 
24 h. In each experiment, vegetative growth, pigmenta-
tion, and formation of aerial mycelium were evaluated, 
and changes in pigmentation of the fungal colonies were 
recorded. All experiments were carried out in triplicate 
and repeated once.

Evaluation of the behaviour of Lasiodiplodia gilanensis in 
the presence of melanin inhibitors

Tropolone and kojic acid, inhibitors of DOPA-mela-
nin; phthalide and tricyclazole, inhibitors of DHN-mel-
anin; and nitisinone, an inhibitor of pyomelanin, were 
used to perform the following assays. First, the effect of 
each inhibitor on growth of L. gilanensis was evaluated 
in PDA media supplemented with either 5, 10, 15, 20, 

30, 100, or 200 μg mL-1 of each inhibitor, as described 
above. All treatments were incubated at 30°C for up to 4 
d. Growth of the fungus was measured in each plate eve-
ry 24 h. The inhibitors and concentrations in which the 
fungus showed a decrease in the pigmented dark colour 
compared to the non-inhibitor experimental controls, 
were selected for subsequent analyses.

Melanin production in response to environmental stress

Melanin production in response to enzymatic lysis, 
oxidative stress, and UV radiation was evaluated by 
combining the environmental stress conditions with the 
melanin inhibitors that showed effects on melanin pro-
duction.

Enzymatic lysis stress was assessed using a lyophi-
lized powder of lysing enzymes from Trichoderma har-
zianum (L1412; Sigma) at 10 mg mL-1, and oxidative 
stress was assessed using 5% v/v hydrogen peroxide 
(H2O2), both added to PDA media. In each plate, a L. 
gilanensis mycelium disk was inoculated at one border, 
incubated at 30°C, and evaluated as described above. 
Vegetative growth of the fungus was measured every 24 
h up to 4 d.

Effects of UV radiation were assessed using pig-
mented and hyaline conidia, exposed to UV light using 
a transilluminator (UVP). The conidia were obtained by 
inducing the production of pycnidia in Vogel’s  minimal 
medium (VMM) supplemented with ground grapevine 
wood at 5% (w/v). The wood was obtained from ‘Caber-
net Sauvignon’ canes, frozen in liquid nitrogen, ground 
with a blender (Waring), and then autoclaved. Cultures 
were incubated under a near-UV electromagnetic radia-
tion lamp for 15 to 20 d. Conidia were then collected 
under a stereoscopic microscope (Zeigen) using a dissec-
tion needle. Hyaline and pigmented conidia were taken 
individually and suspended in 0.05% Tween 20 (P9416; 
Sigma). Fifty hyaline or pigmented conidia were placed in 
PDA, exposed to high-intensity UV radiation of 365 nm 
for 30 or 60 min, and incubated in darkness at 30°C. The 
percentage of conidia germination was evaluated after 24 
or 48 h, under a stereoscopic microscope (Zeigen).

Evaluation of L-tyrosine metabolism in Lasiodiplodia 
gilanensis

The ability of L. gilanensis to metabolize tyrosine was 
evaluated as follows. The fungus was grown in Minimal 
Medium 9 (MM9) (10.0 g L-1 glucose, 5.8 g L-1 Na2HPO4, 
3.8 g L-1 K2HPO4, 0.5 g L-1 NaCl, 1.0 g L-1 NH4Cl) sup-
plemented with 10 mM tyrosine. The use of tyrosine as 
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carbon, nitrogen, or carbon and nitrogen source was 
evaluated by preparing the medium without glucose 
(MM9 -C), without NH4Cl (MM9 -N) or without both 
elements (MM9 -CN). After inoculation with the fun-
gus, plates were incubated at 30°C for 7 d. The formation 
of a halo from decrease in medium opacity indicated 
catabolic use of tyrosine. Vegetative growth of the fun-
gus was measured every 24 h for each treatment. Experi-
ments were repeated in the presence of previously select-
ed melanin inhibitors.

Evaluation of biomass production in the presence of mela-
nin inhibitors and stress conditions

For each assay, biomass was evaluated as follows. 
A sterilized cellophane membrane was placed on the 
top of the medium, inoculated with a mycelium disk of 
L. gilanensis, and plates were incubated at 30°C. In the 
experiments with melanin inhibitors and stress con-
ditions, membranes were carefully removed after 4 d 
and weighed. For tyrosine and melanin inhibitors, the 
membranes were recovered after 7 d. Biomass data were 
obtained by subtracting the weight of the membrane and 
the mycelium disk used for the inoculation.

Microscopic observations of Lasiodiplodia gilanensis colo-
nizing grapevine tissue plants

For the evaluation of melanin production during 
colonization by the fungus, one-year-old cuttings of V. 
vinifera ‘Cabernet Sauvignon’ were used. Plants were 
drilled in the woody stems and then each inoculated 
with a 3 mm diam. mycelium plug of a 3-d-old culture 
of L. gilanensis, and the drill wound was covered with 
parafilm. Control plants were each inoculated with a 3 
mm diam. plug of PDA. The plants were left in a growth 
chamber (PGR15; CONVIRON) for 28 d, with a day/
night 30°C/10°C temperature cycle at 50% humidity. 
Samples (each approx. 2 cm) were then taken from the 
infection zones (1 cm above and 1 cm below). Lesions 
were observed under a stereo microscope, and the tis-
sues were fixed in FAA solution (formaldehyde, ethanol, 
acetic acid; 10%:50%:5%). The samples were then dehy-
drated in ethanol solutions (25, 50, 80%) and preserved 
in 80% ethanol at 4°C until analysis. Samples were cut 
into cross- and longitudinal sections 70 μm thick with 
a microtome (EMS 5000 Oscillating Tissue Slicer). The 
sections were stained using the Masson-Fontana tech-
nique (modified from Lillie, 1965) to assess for the pres-
ence of melanin in the hyphae of L. gilanensis. This 
staining procedure is based on the ability of melanin 

to reduce ammoniacal silver nitrate solution to metallic 
silver without using an external reducing agent. Stained 
samples were analyzed using light microscopy (DM4000; 
Leica Microsystems).

Comparison of Lasiodiplodia gilanensis genes involved in 
melanin synthesis with other Botryosphaeriaceae species

In order to determine if previously reported mela-
nin genes of L. gilanensis UCD256Ma (Paolinelli-Alfonso 
et al., 2016) were present in other Botryosphaeriaceae, 
seven genes from three different melanin pathways were 
compared against the sequenced genomes from the fam-
ily available in the GenBank database. These were: for 
the DHN-melanin pathway, short-chain dehydroge-
nase reductase (sdr) and thioesterase (thr) genes; for the 
DOPA-melanin pathway, tyrosinase (tyr), and multicop-
per oxidase (mco), and for the pyomelanin pathway, lac-
case (lcc), hydroxyphenylpyruvate dioxygenase (hppD) 
and homogentisate dioxygenase (hmgD). Putative gene 
sequences involved in melanin synthesis were recovered 
from the transcriptome data of L. gilanensis (Paolinelli-
Alfonso et al., 2016) and a tBLASTx (percent query cov-
erage per hsp: ≥70%, and minimum percent similarity: 
≥70%) analysis was performed against Botryosphaeriaceae 
genomes available in the GenBank database to search for 
sequence similarities (Table S1). In addition, the genome 
sequenced from Phaeoacremonium minimum; another 
grapevine trunk fungus, was used for comparison.

Data analyses

Statistical analyses were carried out using one-way 
ANOVA followed by a post hoc Fisher analysis, with an 
α < 0.05 for the determination of statistical significance, 
using STATISTICA 8.0. All the experiments were car-
ried out in triplicate. Graphs of presented data were 
made with SigmaPlot 11.0 software.

RESULTS

Different melanin inhibitors produce contrasting effects in 
Lasiodiplodia gilanensis

Kojic acid at concentrations up to 500 μg mL-1 did 
not affect colony pigmentation or mycelial growth. 
For this reason, Kojic acid was discarded as a DOPA-
melanin inhibitor of L. gilanensis. Tropolone, another 
DOPA-melanin inhibitor, diminished the growth and 
pigmentation at 10 μg mL-1, and colonies had less aerial 
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mycelium in comparison to controls. At 15 μg mL-1 flat 
colonies and the formation of guttation droplets were 
observed (Figure 1B), and at 20 μg mL-1, the growth of 
the fungus was inhibited. The concentration of 15 μg 
mL-1 of tropolone was therefore used for subsequent 
experiments.

For the DHN-melanin inhibitors, the fungus grow-
ing in phthalide (100 μg mL-1) developed light-coloured 
mycelium. At 500 μg mL-1, a noticeable change in mor-
phology, growth inhibition and a slightly brown-orange 
pigmentation in the colony was observed (Figure 1C). 
With tricyclazole, at 10 μg mL-1, the colour changed, but 
the morphology of the fungus was not affected. At 15 
and 30 μg mL-, growth inhibition and an orange-brown 
pigmentation were observed, similar to that observed 
with phthalide. Since both compounds inhibit the reduc-
tase reactions of two hydroxynaphthalene compounds to 
scytalone and vermelone in the DHN-melanin pathway 
(Wheeler and Klich, 1995; Suwannarach et al., 2019), but 
phthalide is cheaper, phthalide was selected for subse-
quent tests.

Nitisinone, a pyomelanin inhibitor, affected the fun-
gus less, since only at 100 μg mL-1 was the colony colour 
lightened and growth slightly diminished (Figure 1D). 
This concentration was used in subsequent tests.

When phthalide (500 μg mL-1) and tropolone (15 μg 
mL-1) were used together, less aerial mycelium, slightly 

orange pigmentation, guttation droplets and growth 
inhibition were observed (Figure 1E). When nitisinone 
100 μg mL-1 and tropolone 15 μg mL-1 were used togeth-
er, growth, pigmentation, and formation of aerial myce-
lium were affected (Figure 1F). The greatest growth 
inhibition, least formation of aerial mycelium and less 
colony pigmentation were observed from the combina-
tion of phthalide 500 μg mL-1, tropolone 15 μg mL-1, and 
nitisinone 100 μg mL-1 (Figure 1H, 4; Table S2).

Responses of Lasiodiplodia gilanensis to environmental stress

Responses to enzymatic lysis

The use of lysing enzymes from T. harzianum reduced 
growth of the fungus, but the formation of aerial myce-
lium and biomass were similar to the experimental con-
trol (Figures 2A and B; 4, and S1; Table S2). The great-
est inhibition was observed from the lysing enzymes, 
with tropolone at 15 μg mL-1 (Figures 2D and S1). From 
phthalide at 500 μg mL-1, mycelium growth was inhib-
ited and a brown-orange colour was observed (Figure 
2F). When combining lysing enzymes with tropolone or 
with phthalide, biomass was similar (Figure 4; Table S2). 
Nitisinone at 100 μg mL-1 reduced growth of L. gilanensis 
compared with the lysing enzymes alone, but not as much 
as for tropolone (Figures 2H, 2D, and S1).

Figure 1. Growth of Lasiodiplodia gilanensis on PDA medium with different melanin inhibitors: A) Control. B) PDA + 15 μg mL-1 tropolone 
(Tp), DOPA-melanin inhibitor. C) PDA + 500 μg mL-1 phthalide (Ph), DHN-melanin inhibitor. D) PDA + 100 μg mL-1 nitisinone (NTBC), 
pyomelanin inhibitor. E) PDA + Tp + Ph. F) PDA + Tp + NTBC. G) Ph + NTBC. H) Tp + Ph + NTBC.
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Responses to oxidative stress

Exposure to hydrogen peroxide at 0.5 to 2.5% did 
not affect vegetative growth of L. gilanensis, but at 5%, 
colony growth was reduced (Figures 3A and B, and S1). 
When H2O2, tropolone and phthalide were combined, 
decreased tolerance to oxidative stress was observed, 
since the fungus grew less compared with the experi-
mental control (Figure 3A), with H2O2 alone (Fig-
ure 3B), or with each inhibitor (Figure 3C-3D). In the 
combination treatment with nitisinone and H2O2, less 
colony aerial mycelium was observed (Figure 3H), com-
pared with nitisinone alone (Figure 3G). Biomass pro-
duction was only affected in the presence of H2O2 with 
tropolone (Figure 4; Table S2). The assays of the lysing 
enzymes and H2O2 indicated that DOPA-melanin was 
the main melanin that protected the fungus from oxi-
dative stress.

Responses to UV radiation

Hyaline and pigmented conidia without exposure to 
UV radiation both had 100% germination before 24h of 
incubation. Exposure to UV radiation generally delayed 
germination and growth of conidia. Hyaline conidia 
exposed to UV radiation for 30 or 60 min did not ger-

minate after 24h, and at 48h had, respectively, 33% and 
20% germination. Melanized conidia exposed to UV 
for 30 min or 60 min germinated before 24h, reach-
ing, respectively 80% and 40% germination. After 48h, 
melanized conidia exposed to 30 min of UV radiation 
reached 83% germination, and 73% of those exposed for 
60 min germinated. The mycelia originating from hya-
line conidia exposed for 30 or 60 min remained white 
for longer time than mycelia from melanized conidia 
(Figure S3). These results indicated that melanin in 
conidia cell walls enabled the conidia to maintain viabil-
ity under UV radiation conditions.

Use of tyrosine as carbon and nitrogen sources

The presence of tyrosine 10 mM in MM9 increased 
growth and biomass of L. gilanensis (Figures 5A, 5E, 6 
and S2). The fungus without a carbon source (Figure 
5B), a nitrogen source (Figure 5C), or without both (Fig-
ure 5D) had shallow growth. When tyrosine was added 
to these treatments (Figure 5F to H), aerial mycelium 
and colony pigmentation formed, and a pink pigment 
was secreted and degradation halos developed. This 
showed that the fungus catabolized tyrosine and used it 
as carbon and nitrogen sources. When adding the mela-
nin inhibitors in the MM9-CN treatment (Figure 5I to 

Figure 2. Growth of Lasiodiplodia gilanensis under enzymatic stress conditions. A) Control on PDA. B) PDA + 10 mg mL-1 lysing enzymes 
of Trichoderma harzianum (LE). C) PDA + 15 μg mL-1 tropolone (Tp), DOPA-melanin inhibitor. D) PDA + LE + Tp. E) PDA + 500 μg mL-1 

phthalide (Ph), DHN-melanin inhibitor. F) PDA + LE + Ph. G) PDA + 100 μg mL-1 nitisinone, pyomelanin inhibitor (NTBC). H) PDA + 
LE + NTBC.



555Melanin in Lasiodiplodia gilanensis

L), only in the presence of tropolone was the fungus 
unable to use tyrosine, since growth was reduced (Figure 
5I) and biomass production was greatly reduced (Fig-
ure 6; Table S3). The fungus did not grow in the MM9-

CN treatment with the three inhibitors of melanin and 
10mM tyrosine (Figure 5L).

Melanized mycelium of Lasiodiplodia gilanensis growing 
inside grapevine plants

Lasiodiplodia gilanensis melanized mycelia grow-
ing mainly in the pith and vascular bundles of the 
plants was observed with the use of Masson-Fontana 
stain (Figure 7). Xylem vessel occlusions were observed 
in both infected and control plants, probably due to the 
response of the plant to wounding.

Comparison of Lasiodiplodia gilanensis genes involved in 
melanin synthesis with other Botryosphaeriaceae 

The similarity analysis showed that most of the genes 
were conserved among the Botryosphaeriaceae, with 
similarity percentages greater than 71%. All genes ana-
lyzed, previously identified through L. gilanensis tran-
scriptome, had over 90% similarity with the genomes 
of L. theobromae CSS-01s and LA-SOL3. Most of the 
genes involved in the three different melanin pathways 
(including sdr, thr, tyr, mco, lcc and, hmgD), showed 
similarity to sequences in D. seriata DS831 and F98.1, 
and D. corticola CBS 112549. Neofusicoccum parvum 

Figure 3. Growth of Lasiodiplodia gilanensis under oxidative stress. A) Control. B) PDA + 5% hydrogen peroxide (H2O2). C) PDA + 15 μg 
mL-1 tropolone (Tp), DOPA-melanin inhibitor. D) PDA + H2O2 + Tp. E) PDA + 500 μg mL-1 phthalide (Ph), DHN-melanin inhibitor. F) 
PDA + H2O2 + Ph. G) PDA + 100 μg mL-1 nitisinone, pyomelanin inhibitor (NTBC). H) PDA + H2O2 + NTBC.

Figure 4. Mean weights of Lasiodiplodia gilanensis biomass in the 
presence of melanin inhibitors and under stress conditions. Bars 
indicate standard deviations. Means accompanied by the same let-
ters are not significantly different (α < 0.05)
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UCRNP2 had similarity in four genes (mco, lcc, hppD 
and, hmgD), and Botryosphaeria dothidea LW030101 
only in three genes (mco, lcc and, hmg) (Table 1). The 
genes mco, lcc and, hmgD were present in all Botryospha-
eriaceae genomes. Only hmgD, which is involved in the 
tyrosine catabolism and is a precursor in the pyomela-
nin pathway, was also found in the genome of P. mini-
mum with 75% similarity.

DISCUSSION

Melanin inhibitors of three different pathways affect-
ed pigmentation, morphology, and the growth of L. 
gilanensis, indicating that this fungus produces DOPA-

melanin, DHN-melanin, and pyomelanin. Biosynthe-
sis of three types of melanin has been reported in S. 
schenckii (Romero-Martinez et al., 2000; Almeida-Paes 
et al., 2012), Aspergillus fumigatus (Schmaler-Ripcke et 
al., 2009; Pal et al., 2014), and Penicillium marneffei (Liu 
et al., 2014; Boyce et al., 2015; Sapmak et al., 2015). Abil-
ity to synthesize melanin using different pathways may 
be an adaptation of the fungus to cope with unfavour-
able conditions, increasing the protection against envi-
ronmental stress and during host infection (Almeida-
Paes et al., 2009; Sapmak et al., 2015).

Similar gene sequences involved in melanin synthe-
sis are present in the Botryosphaeriaceae, and are high-
ly conserved within Lasiodiplodia. The genomes from 
Diplodia had high percentages of similarity, for six of 

Figure 5. Assessment of effects of tyrosine on growth in Lasiodiplodia gilanensis. A) Minimal Medium 9 (MM9). B) MM9 without carbon 
source (MM9-C). C) MM9 without nitrogen source (MM9-N). D) MM9 without carbon and nitrogen sources (MM9-CN). E) MM9 + 10 
mM tyrosine (Tyr). F) MM9-C + Tyr. G) MM9-N + Tyr. H) MM9-CN + Tyr. I) MM9-CN + Tyr + 15 μg·mL-1 tropolone (Tp), DOPA-
melanin inhibitor. J) MM9-CN + Tyr + 500 μg·mL-1 phthalide (Ph), DHN-melanin inhibitor. K) MM9-CN + Tyr + 100 μg·mL-1 nitisinone 
(NTBC), pyomelanin inhibitor. L) MM9-CN + Tyr + Tp + Ph + NTBC.
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the seven genes compared, with the hppD gene being the 
only one not found. This is because Diplodia is phyloge-
netically closer to Lasiodiplodia than Neofusicoccum and 
Botryosphaeria.

A cluster of three genes coding for putative short-
chain dehydrogenase/reductases (SDRs) was reported 
in N. parvum (Massonnet et al., 2018). The similarity 
standard was set above 70% in the present study, and 
these sequences were not so similar with the sequence of 
the gene sdr of L. gilanensis (63%). However, this high-
lights the importance of melanin in the pathogenicity of 
Botryosphaeriaceae.

The homogentisate dioxygenase gene (hmgD), which 
is involved in tyrosine catabolism and is a precursor in 
the pyomelanin pathway, was detected in all Botryospha-
eriaceae genomes and in P. minimum. This indicates that 
hmgD is essential in the metabolism of fungi causing 
grapevine trunk diseases.

Aerial mycelium is essential in fungi for the forma-
tion and dispersal of reproductive structures (Braun, 
2007). For example, a mutant of the mve1 gene in 
Mycosphaerella graminicola with an albino phenotype 
produced less aerial mycelium than the wildtype, which 
indicated a relationship between the lack of melanin and 
absence of aerial mycelium (Choi and Goodwin, 2011). 
In L. gilanensis, DOPA-melanin is related to the produc-
tion of aerial mycelium, since the presence of tropolone 
produced flat colonies. This effect was not due to the 
interference of any essential pathway. When Fusarium 

oxysporum FFOCR-SQ, and Trichoderma asperellum 
TTORO, isolates with hyaline mycelium from our col-
lection, were grown in the presence of tropolone, no 
significant effects were observed (Figure S4). Therefore, 
DOPA-melanin is likely to provide structural strength to 
the mycelia of L. gilanensis, which is necessary for veg-
etative growth, and DOPA-melanin biosynthesis is likely 
to be the primary pathway for melanin synthesis in this 
fungus under in vitro conditions. Further genetic studies 
should confirm this.

The protective role of melanin in enzymatic lysis has 
been little studied, but melanin-producing mutants of 
A. nidulans (Kuo and Alexander, 1967) and Aspergillus 
phoenicis (Bloomfield and Alexander, 1967) were more 
susceptible to enzymatic lysis than their respective wild 
types. In the present study, the presence of cell wall 
degrading enzymes in the growth media partially inhib-
ited the growth of L. gilanensis, but these enzymes did 
not inhibit formation of aerial mycelium. Instead, when 
the DOPA-melanin pathway was blocked, growth of the 
fungus was strongly inhibited. This indicates that the 
presence of DOPA-melanin helps to maintain cell wall 
integrity. Since melanin is associated with chitin in fun-
gus cell walls (Nosanchuk et al., 2015), as reported for 
A. nidulans (Bull, 1970) and Cryptococcus neoformans 
(Banks et al., 2005), this pigment could help conceal 
target molecules from cell wall degrading enzymes, pre-
venting cell walls from damage and weakening.

DOPA-melanin has been associated with protection 
against oxidative stress damage in C. neoformans (Jacob-
son and Tinnell, 1993), Sporothrix spp., (Almeida-Paes et 
al., 2012), and A. fumigatus (Heinekamp et al., 2013). In 
Inonotus obliquus, production of DOPA-melanin is one 
of the primary responses to oxidative stress in the pres-
ence of H2O2, together with an increment in production 
of mycelia (Zheng et al., 2009). In contrast, in the hyper-
saline yeast H. werneckii, inhibition of DHN-melanin by 
tricyclazole did not affect survival under H2O2 oxida-
tive stress (Kejžar et al., 2013), as further evidence that 
DOPA-melanin is the main melanin involved in pro-
tection from oxidative stress. In the present study, the 
presence of H2O2 inhibited growth of L. gilanensis but 
did not affect morphology, pigmentation, or formation 
of aerial mycelium. However, when the DOPA-melanin 
pathway was blocked, the fungus did not grow, produced 
less aerial mycelium, and had different colour, indicating 
that DOPA-melanin protected the fungal cells against 
oxidative stress.

Another function of melanin in fungi is the pro-
tection against UV radiation (Bell and Wheeler, 1986; 
Jacobson, 2000; Cordero and Casadevall, 2017). Al-
Laaeiby et al. (2016) reported differences in the germi-

Figure 6. Mean weights of Lasiodiplodia gilanensis biomass in the 
presence of tyrosine and melanin inhibitors. Bars indicate standard 
deviations. Means accompanied by the same letters are not signifi-
cantly different (α < 0.05).



558 Edelweiss Airam Rangel-Montoya et alii

nation of melanized conidia of Lomentospora prolificans 
exposed to 200 mJ cm-2 of UV radiation (51% germi-
nation) in comparison to conidia deficient in the PKS1 
enzyme (28% germination). Hyaline conidia of. L. gila-
niensis had lower and delayed germination compared 
with pigmented conidia. Melanin has been reported to 
absorb UV light, thereby acting as a shield of photons of 
high energy and protecting cells from damage (Almeida-
Paes et al., 2012). In the present study, presence of mela-
nin in conidia of L. gilanensis gave protection from UV 
radiation, most probably allowing the conidia to survive 
under harsh environmental conditions once released 
from the pycnidia.

Data from the present study also showed that L. 
gilanensis used tyrosine as carbon and nitrogen sources 
for growth. Use of this amino acid was affected in the 
presence of tropolone. It was unexpected that nitisinone 

did not affect growth of the fungus in the presence of 
tyrosine, since pyomelanin results from tyrosine catab-
olism. Under in vitro conditions, the fungus may use 
tyrosine mostly for the synthesis of DOPA-melanin, so 
tyrosine could be the precursor of synthesis of DOPA-
melanin, and be essential for growth. As additional evi-
dence, Paolinelli-Alfonso et al. (2016) reported induc-
tion of L. gilanensis genes associated with production of 
DOPA-melanin, tyrosinase (TYR) and multicopper oxi-
dase (MCO), in the presence of grapevine wood. Pheny-
lalanine is another precursor of DOPA-melanin related 
to pyomelanin, derived from tyrosine catabolism (Plon-
ka and Grabacka, 2006; Boyce et al., 2015). When phe-
nylalanine was evaluated in MM9, growth, aerial myce-
lium formation and colony pigmentation of the fungus 
were similar to that observed in the presence of tyrosine. 
However, the fungus did not use phenylalanine as a car-

Figure 7. In planta melanin staining of Lasiodiplodia gilanensis using the Masson-Fontana method. A) Non-melanized fungus on PDA). B) 
Melanized fungus on PDA). C), D), E), and F) Melanized fungus colonizing the host plant piths. G) Fungus colonizing vascular bundles. H) 
plant pith in an uninfected plant. I) Vascular bundles in an uninfected plant.
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Table 1. Comparison of genes involved in the synthesis of melanin among genomes of the Botryosphaeriaceae, using tBLASTx analysis of 
similarity percentages.

Pathway Gene Organism Isolate Query cover Similarity
Percentage Accession Number

DHN-melanin sdr Diplodia seriata DS831 88% 91% LAQI01000021.1
Diplodia seriata F98.1 87% 91% MSZU01000111.1
Diplodia corticola CBS 83% 89% NW_017971532.1
Lasiodiplodia theobromae CSS-01s 100% 94% KZ107829.1
Lasiodiplodia theobromae LA-SOL3 100% 93% VCHE01000036.1
Macrophomina phaseolina MP2_2471002 89% 84% WHMB01000016.1

thr Diplodia seriata DS831 82% 89% LAQI01000195.1
Diplodia seriata F98.1 79% 87% MSZU01000075.1
Diplodia corticola CBS 112549 83% 89% NW_017971483.1
Lasiodiplodia theobromae CSS-01s 96% 98% KZ107832.1
Lasiodiplodia theobromae LA-SOL3 96% 98% VCHE01000163.1

DOPA-melanin tyr Diplodia seriata DS831 90% 71% LAQI01000197.1
Diplodia seriata F98.1 90% 71% MSZU01000087.1
Diplodia corticola CBS 89% 73% NW_017971497.1
Lasiodiplodia theobromae CSS-01s 99% 94% KZ107831.1
Lasiodiplodia theobromae LA-SOL3 99% 94% VCHE01000030.1

mco Neofusicoccum parvum UCRNP2 83% 74% KB915882.1
Diplodia seriata DS831 89% 92% LAQI01000063.1
Diplodia seriata F98.1 92% 92% MSZU01000075.1
Botryosphaeria dothidea LW030101 83% 87% MDSR01000123.1
Diplodia corticola CBS 112549 94% 88% NW_017971485.1
Lasiodiplodia theobromae CSS-01s 100% 99% KZ107832.1
Lasiodiplodia theobromae LA-SOL3 100% 99% VCHE01000017.1
Macrophomina phaseolina MP2_2471002 86% 79% WHMB01000018.1

lcc Neofusicoccum parvum UCRNP2 84% 81% KB916.432.1
Diplodia seriata DS831 88% 85% LAQI01000030.1
Diplodia seriata F98.1 88% 85% MSZU01000080.1
Botryosphaeria dothidea LW030101 78% 85% MDSR01000049.1
Diplodia corticola CBS 112549 91% 85% NW_017971480.1
Lasiodiplodia theobromae CSS-01s 98% 97% KZ107828.1
Lasiodiplodia theobromae LA-SOL3 98% 97% VCHE01000007.1
Macrophomina phaseolina MP2_2471002 84% 81% WHMB01000012.1

Pyomelanin hppD Neofusicoccum parvum UCRNP2 90% 74% KB916303.1
Lasiodiplodia theobromae CSS-01s 93% 92% KZ107826.1
Lasiodiplodia theobromae LA-SOL3 94% 92% VCHE01000035.1

hmgD Neofusicoccum parvum UCRNP2 82% 93% KB915800.1
Diplodia seriata DS831 95% 95% LAQI01000171.1
Diplodia seriata F98.1 95% 95% MSZU01000075.1
Botryosphaeria dothidea LW030101 85% 94% MDSR01000002.1
Diplodia corticola CBS 112549 93% 95% NW_017971483.1
Lasiodiplodia theobromae CSS-01s 100% 99% KZ107832.1
Lasiodiplodia theobromae LA-SOL3 100% 99% VCHE01000037.1
Macrophomina phaseolina MP2_2471002 87% 95% WHMB01000018.1
Phaeoacremonium minimum UCRPA7 72% 75% NW_006920969.1
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bon or nitrogen source (Figure S5). Thus, phenylalanine 
did not have an essential role in the melanin pathway of 
L. gilanensis.

For some pathogenic fungi, amino acids are essential 
sources of carbon and nitrogen (Boyce et al., 2015). In 
plants, tyrosine and phenylalanine give rise to the syn-
thesis of compounds involved in structure and defense, 
including lignin, suberin, phenylpropanoids, anthocya-
nins, plastoquinones, isoquinoline alkaloids and flavo-
noids (Tzin and Galili, 2010; Nelson et al., 2013). Some 
of these compounds are produced near the sites of path-
ogen infections, and they accumulate in the necrotic tis-
sues, acting in host resistance and defense (Ahuja et al., 
2012; Nelson et al., 2013). Although further in planta 
experiments are required, results of the present study 
indicate that the ability of L. gilanensis to degrade tyros-
ine confers an advantage during the processes of infec-
tion and colonization of grapevine.

It is important to establish how Lasiodiplodia infects 
plants, and the mechanisms these fungi use to counter-
act host responses to infection. The present study dem-
onstrated that the hyphae of L. gilanensis were mel-
anized, mainly among the parenchymal cells in host pith 
tissues, but not in the vascular bundles. This indicates 
that the fungus became melanized as host colonization 
progresses. Although additional study is required using 
fungus mutants for key melanin genes to fully under-
stand the role of melanin in L. gilanensis, results from 
the present study indicate that melanin protected L. 
gilanensis from adverse environmental conditions, such 
as the reactive oxygen species, for example, superox-
ide (O2

-), or its dismutation product hydrogen peroxide 
(H2O2), which is generated within plants as a primary 
defense mechanism (Torres et al., 2006).

In conclusion, this study demonstrated that L. gilan-
ensis synthesized three types of melanin: DOPA-mela-
nin, DHN-melanin, and pyomelanin. DOPA-melanin 
is the essential melanin, involved in vegetative growth 
and formation of aerial mycelium. This pathogen uti-
lized tyrosine as a nutrient source, and as a precursor of 
DOPA-melanin. Melanin protected the fungus against 
enzymatic lysis and oxidative stress, and conidia from 
UV radiation. This pathogen also produced melanin 
within its host as part of the colonization processes.
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