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Abstract
Northern corn leaf blight (NCLB) is one of the most important diseases in maize worldwide. It is caused by the fungus
Exserohilum turcicum, which exhibits a high genetic variability for virulence, and hence physiological races have been reported.
Disease control is based mainly on fungicide application and host resistance. Qualitative resistance has been widely used to
control NCLB through the deployment of Ht genes. Known pathogen races are designated according to their virulence to the
corresponding Ht gene. Knowledge about of E. turcicum race distribution in maize-producing areas is essential to develop and
exploit resistant genotypes. Maize leaves showing distinct elliptical grey-green lesions were collected from maize-producing
areas of Argentina and Brazil, and 184 monosporic E. turcicum isolates were obtained. A total of 66 isolates were collected from
Argentina during 2015, 2018 and 2019, while 118 isolates from Brazil were collected during 2017, 2018 and 2019. All isolates
were screened on maize differential lines containing Ht1, Ht2, Ht3 and Htn1 resistance genes. In greenhouse experiments,
inoculated maize plants were evaluated at 14 days after inoculation. Resistance reaction was characterized by chlorosis, and
susceptibility was defined by necrosis in the absence of chlorosis. The most frequent race was 0 in both Argentina (83%) and
Brazil (65%). Frequencies of race 1 (6% and 24%) and race 23N (5% and 10%) were very low in Argentina and Brazil,
respectively. The high frequency of race 0 isolates provides evidence that qualitative resistance based on the tested Ht genes is
not being used extensively in Argentina and Brazil to control NCLB. This information may be relevant for growers and breeding
programs as the incidence of NCLB is increasing in both countries.
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Introduction

Northern corn leaf blight (NCLB) on maize (Zea mays) is
caused by the heterothallic ascomycete Exserohilum turcicum
(Pass.) K.J. Leonard & Suggs (teleomorph Setosphaeria
turcica). NCLB has spread from tropical to temperate regions
in maize producing areas worldwide and is one of the most
important foliar diseases of this crop (CABI 2019; Savary
et al. 2019). Long dew periods and moderate temperatures
favour disease establishment and development (Welz and
Geiger 2000; Galiano-Carneiro and Miedaner 2017).
Therefore, regions with favourable environmental conditions
usually present high levels of NCLB inoculum (Galiano-
Carneiro and Miedaner 2017). Likewise, the cultivation of
susceptible host genotypes, as well as the adoption of new
crop management strategies such as shifted sowing dates, ir-
rigation and no-tillage systems, can affect the pathogen life
cycle and, consequently, disease severity (Carvalho et al.
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2016; Juroszek and von Tiedemann 2013). In some countries,
yield losses up to 40% have been reported, when the host is
infected by the fungus within 2 to 3 weeks after pollination
(Levy and Pataky 1992). The main methods of controlling
NCLB are host resistance and fungicide application
(Galiano-Carneiro and Miedaner 2017).

Sources of host resistance against E. turcicum are quanti-
tative or qualitative. Quantitative resistance is controlled by
several race non-specific genes with small to moderate effects,
conferring usually an incomplete durable resistance (Parlevliet
2002; Pilet-Nayel et al. 2017). However, quantitative resis-
tance is more difficult to introgress into breeding lines
(Galiano-Carneiro and Miedaner 2017). Conversely, qualita-
tive resistance is typically race-specific and controlled by Ht
genes, also termed major or R genes (Galiano-Carneiro and
Miedaner 2017). Usually, qualitative resistance provokes lo-
calized cell death, known as a hypersensitive response (HR),
which can lead to suppression of pathogen colonization and
reproduction (Parlevliet 2002).

SeveralHt genes have been identified from different genet-
ic backgrounds and used in breeding programs to improve
NCLB resistance (Ferguson and Carson 2007). The first Ht
gene reported in the literature wasHt1. This gene was found in
the maize lines ‘Ladyfinger’ popcorn and ‘GE440’ from Peru
and the USA, respectively. The resistance reaction expressed
by Ht1 is described as chlorosis, delay in necrosis and inhibi-
tion of sporulation (Hooker 1963). Ht2 was the second major
resistance gene described for E. turcicum. It was found in the
Australian maize line ‘NN14B’ and expresses chlorosis as the
resistant phenotype. However, Ht2 was described as having a
lower resistance level compared to Ht1 (Hooker 1977;
Navarro et al. 2020). Apart from Ht1 and Ht2, there is Ht3,
which was introgressed from a tropical grass, Tripsacum
floridanum, and expresses chlorosis as the resistant phenotype
(Hooker 1981).Htn1 is another resistance gene used in breed-
ing programs and was discovered in the Mexican maize vari-
ety ‘Pepitilla’. The resistance phenotype described for this
gene differs from those previously mentioned, as the resis-
tance mechanism is based on a longer latent period (Gevers
1975). In addition to Ht1, Ht2, Ht3 and Htn1, other dominant
genes have been identified and incorporated into maize hy-
brids. The gene Htm1 was discovered in the variety
‘Mayorbela’ from Puerto Rico and confers resistance by ex-
pression of chlorotic lesions (Robbins and Warren 1993). In
Brazil, the resistance gene HtP was found in the inbred line
‘L30R’, which may also confer a chlorotic phenotype or the
absence of symptoms, known as full resistance (Ogliari et al.
2005). Another gene conferring full resistance was found in
the Indonesian variety ‘Bramadi’ and is called HtNB (Wang
et al. 2012). Furthermore, two recessive resistance genes, ht4
and rt, have been reported. The ht4 gene confers a chlorotic
halo and was discovered in the US maize inbred line 357
(BS19) (Carson 1995). The rt gene was found in the

Brazilian maize line L40 and confers chlorosis or full resis-
tance (Ogliari et al. 2005).

Physiological races of E. turcicum are determined accord-
ing to virulence to the hostHt genes. Studies on the frequency
of races are conducted by evaluating the disease phenotype of
differential lines carrying a single Ht gene inoculated with
different isolates. Race 0 isolates are avirulent in plants carry-
ing Ht resistance genes. Isolates designated as race 1 are vir-
ulent to the Ht1 gene and race 23N is virulent to the Ht2, Ht3
andHtn1 genes (Leonard et al. 1989). Following the gene-for-
gene concept, each major gene has one corresponding
avirulence gene that confers resistance (Flor 1971).
E. turcicum excretes protein effectors (virulence factors) that
interact with the host resistance proteins, which activate the
plant immune system, leading to resistance or susceptibility
(Jones and Dangl 2006). A recent study identified in
E. turcicum an avirulence gene AVRHt1 corresponding to
the resistance gene Ht1 (Mideros et al. 2018). AVRHt1 was
expressed in planta by a race 23N isolate (Human et al. 2020).
Gene effector candidates encoded a hybrid polyketide
synthase:nonribosomal peptide synthetase (PKS:NRPS) en-
zyme (Wu et al. 2015), virulence-associated peptidases
leupeptin-inhibiting protein 1 and fungalysin, which represent
proteins involved in the biosynthesis of secondary metabolites
and cell wall degradation (Human et al. 2020). Moreover, the
Ecp6 and SIX13-like protein effectors discovered for
E. turcicum are similar to the effectors secreted in the xylem
by Fusarium oxysporum (Human et al. 2020).

Besides the high complexity involved in E. turcicum viru-
lence, which instigates the development of molecular studies,
monitoring of the distribution of E. turcicum physiological
races has been conducted worldwide. A high frequency of
race 0 isolates has been observed in most maize producing
regions around the world (Abadi et al. 1989; Hanekamp
et al. 2014). However, with the introduction of Ht genes in
commercial hybrids, the frequency of isolates virulent to Ht1
has increased over the last few decades in the USA and China
(Ferguson and Carson 2007; Dong et al. 2008; Weems and
Bradley 2018; Li et al. 2019). Moreover, some regions in
Europe (namely the Netherlands and northern Germany) have
presented a high frequency of isolates overcoming Ht3
(Hanekamp et al. 2014). In Brazil, studies conducted with a
few isolates have demonstrated that race 0 was the most fre-
quent. In addition, races 1N, 12N and 123N were also identi-
fied (Gianasi et al. 1996; Ogliari et al. 2005). For Argentina,
there are no reports on E. turcicum race diversity.

Despite the reports about the frequency of E. turcicum
races around the world, there is a lack of information about
the presence ofHt resistance genes in maize hybrids cultivated
in Argentina and Brazil. Information about the race distribu-
tion in E. turcicum populations may indirectly reveal which
are the most cultivated Ht genes in these regions. Therefore,
race assessment of E. turcicum isolates from Argentina and
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Brazil was conducted to guide breeding programs in these
countries.

Material and methods

Sampling, isolation and preservation

Maize leaves showing lesions similar to NCLB were col-
lected in maize-producing areas of Argentina and Brazil.
Dry leaf pieces were cut from the area between the lesion
and the green leaf tissue and disinfected in 2% sodium
hypochlorite solution for 30 s. The samples were washed
with sterilized distilled water and incubated in the dark at
room temperature (24 °C) in petri dishes containing moist-
ened filter paper for 2 to 3 days until grey mycelia were
visible. The samples were analysed under a stereomicro-
scope and single spores were transferred to plates contain-
ing synthetic nutrient-poor agar (SNA) medium using a
needle. The SNA plates were incubated for 5 days at room
temperature until the first mycelia were visible. Then, a
young monosporic colony was transferred to a plate con-
taining V8 medium (eight vegetable juice agar) and incu-
bated in the dark at 24 °C. After 14 days, spores were
harvested by washing the plate with 25% glycerol solution.
The spore suspension was stored at − 20 °C for further
experiments.

E. turcicum isolates were grouped according to the country
and location of origin. Since temperature and light intensity
may influence pathogen development and the phenotype
expressed by some Ht genes (Thakur et al. 1989a, 1989b;
Leath et al. 1990), the climate in the sampled area was con-
sidered in order to separate isolates according to their region.
Information about the climate was based on the classification
proposed by Köppen and Geiger (Peel et al. 2007) and
adapted according to climatic information available in nation-
al institutions from those countries (IBGE 2002; ANIDA
2020). Symptomatic maize leaves were sampled in three cli-
matic regions:

1. Temperate or pampeano climate (Cfa): no dry season and
with hot summers—Average minimum temperature be-
tween 0 and 18 °C and average maximum temperature
higher than 22 °C, annual precipitation around 1200 mm.

2. Sub-tropical from altitute climate (Cfb): no dry season
and with warm summers—Average minimum tempera-
ture between 0 and 18 °C, with less than 4 months with
minimum temperature lower than 10 °C and average max-
imum temperature lower than 22 °C, annual precipitation
around 1500 mm.

3. Tropical climate (Cwa): with dry winter and hot
summer—average maximum temperature is higher than
22 °C, annual precipitation around 1200 mm.

In Argentina, leaf samples were collected from regions
with a Cfa (temperate or pampeano) or Cwa (Sub-tropical)
climate (Fig. 1). In Brazil, samples were collected from re-
gions with a Cfa (temperate), Cfb (sub-tropical from
altitude) or Cwa (tropical) climate (Fig. 1). In both countries,
maize breeding programs have developed hybrids adapted to
different agroecological regions where maize is produced
(Kulka 2019 – personal communication). The map was drawn
using the package ggplot2 and sf in R software 3.6.0 (R Core
Team 2020).

Plant material, inoculation and race determination

Maize near isogenic lines derived from the recurrent parent
B37 carrying Ht1, Ht2, Ht3 and Htn1 genes and without Ht
resistance genes (positive control) were used as differential
set. Plants were cultivated in a greenhouse (22 ± 6 °C, 70%
air humidity, day/night light regime 14/10 h, light intensity of
100 ± 20μmol m−2 s−1). Two seeds per pot (11 × 11 × 10 cm3)
were sown in a soil mixture of compost, clay and sand (3:3:1).
Seeds from the differential set were provided byKWSSaat SE
(Einbeck, Germany). When the fifth leaf of the maize seed-
lings unfolded, 1 month after sowing, four plants per isoline
were inoculated using a sprayer. Approximately 7 ml of spore
suspension adjusted to 3*103 spores ml−1 and containing
125 ppm of the surfactant Silwet Gold (Certis Europe B.V.,
Hamburg) was inoculated per plant. After inoculation, all
plants were maintained in a humidity chamber for 24 h and
then moved back to the greenhouse. Disease phenotyping was
done at 14 and 21 days post-inoculation (dpi), and was based
on a diagrammatic ordinal scale used to classify virulence
according to the presence or absence of chlorotic and/or ne-
crotic symptoms (Fig. 2) (Bigirwa et al. 1993; Hanekamp et al.
2014). The incompatible interaction is predominantly charac-
terized by the presence of chlorosis, whereas compatible in-
teractions consist of necrosis. However, both symptoms are
observed in high intensity in the incompatible interaction of
Ht1. Graphs were plotted using Microsoft Excel 2016.

Race diversity indices

The virulence index (Iv) was calculated based on the frequen-
cy of isolates and the race complexity using the formula:

Iv ¼ ∑
pi*rc
n

� �

where pi is the frequency of the ith phenotypic race, rc is the
race complexity of the ith phenotypic race and n is the number
of isolates in the region (Andrivon and Vallavieille-Pope
1995). Race complexity denotes the number of differential
lines for which a specific isolate is virulent.
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The simple index (Is) is the simplest diversity index,
expressed by the equation:

Is ¼ r
n

where r is the phenotypic race, and n is the total number of
isolates sampled in the region (Weems and Bradley 2018).
The Gleason index (Ig), another diversity index less sensitive
to sample size, was calculated by:

Ig ¼ r−1ð Þ
ln nð Þ

where r is the phenotypic race, and n is the total number of
isolates sampled in the region. The Shannon index (Iw) repre-
sents the evenness of race distribution and is calculated by:

Iw ¼ −∑pi ln pið Þ
where pi is the frequency of the ith phenotypic race (Groth and
Roelfs 1987). Analysis of correlation between indices was
performed using Statistica 13.0 software (Statsoft, Tulsa,
USA).

Results

Geographic distribution and frequency of E. turcicum
races

A total of 184 isolates were obtained from maize fields in
Argentina and Brazil between 2015 and 2019 (Table 1). In
Argentina, maize leaves were sampled in 2015, 2018 and
2019; a total of 66 isolates were obtained. In Brazil, 118 iso-
lates were obtained from the summer seasons of 2017, 2018
and 2019. Based on the phenotype expressed in the differen-
tial set, isolates were categorized into seven physiological
races (0, 1, 2, 3, 23N, 3N and 13N). Chlorotic lesions charac-
terized the resistance response. In a susceptible reaction, only
necrosis was observed (Fig. 2). In total, 132 isolates (71.7%)
were avirulent in plants carrying Ht resistance genes, and
therefore designated race 0. Race 1 isolates represented
17.4% of the total screened isolates. Fifteen isolates (8.2%)
were classified as race 23N. The races 2, 3, 3N and 13N were
identified in low frequencies of 1.1%, 0.5%, 0.5% 0.5% and
0.5%, respectively. In Argentina, the highest number of
screened isolates was from 2015, and consequently this was
the year with the highest number of races. In general, regions
with a pampeano/temperate climate (Cfa) exhibited a higher
number of races and isolates. In Brazil, most screened isolates
were from regions with a subtropical altitude climate (Cfb). It
is noteworthy that isolates collected in subtropical and tropical
regions (Cwa climate) were mostly race 23N. In Argentina,
the vast majority of isolates were race 0, with an isolate

frequency of 83.3%, followed by race 1 (6.2%), race 23N
(3.5%), race 2 (1.5%), race 3 (1.5%), race 3N (1.5%) and race
13N (1.5%) (Fig. 3a). Results were similar in Brazil where
65.3% of the isolates belonged to race 0. However, the fre-
quency of race 1 (23.7%) and race 23N (10.2%) was higher
than in Argentina (Fig. 3b). Additionally, a race 2 isolate was
identified in Brazil, with a frequency of 0.8%.

Frequency of isolates virulent to a specific Ht gene
and race complexity

The frequency of virulence to a specific Ht gene was com-
pared for all 184 isolates. In general, most screened isolates
were avirulent in plants carrying Ht resistance genes (race 0),
varying from 55 to 75% depending on the year (Fig. 4,
Supplementary Table 1). An increase in the number of isolates
virulent on plants carryingHt2, Ht3 andHtn1 resistance genes
was observed in 2018. In 2019, the decrease in the frequency
of avirulent isolates was due to an increase in the frequency of
isolates virulent in plants with the Ht1 gene. Race complexity
(rc) for the tested isolates was low, since more than 50% of the
isolates were avirulent. The only exception was the region
with a Cwa climate in Brazil (tropical), where 60% of the
isolates were rc 3 (Fig. 5). In the other regions of Brazil,
between 22 and 33% of the isolates were rc 1. In Argentina,
less than 10% of the isolates were rc 1, 1.5%were rc 2 and 6%
were rc 3 (Fig. 5).

Virulence and diversity indices

The virulence and diversity indices are shown in Table 2. The
highest number of races was identified in the region of
Argentina with a pampeano climate (Cfa). The virulence in-
dex was higher for the region with a tropical climate in Brazil
(Cwa). The region with a subtropical climate in Argentina
(Cwa) presented the highest simple diversity index (Is) (ratio
between races and number of isolates), and between countries,
Argentina had the highest Is. Higher values of Is are observed
in regions with lower number of samples, as observed in both
mentioned cases. In addition, the correlation between Is and
the number of samples was negatively significant (Table 3).
Conversely, the Gleason index (Ig) was strongly correlated
with the number of races and therefore less influenced by
the sample size. Argentina had a higher Ig than Brazil at the
country level, and the Argentinean region with a pampeano
climate (Cfa) had the highest value at the regional level. This
indicates a greater diversity of races in these areas (Table 2). Ig
is less sensitive to sample size in comparison with Is, reflected
by a strong significant correlation between Ig and the number
of races (Table 3). Furthermore, the highest Shannon index
(Iw) was observed in Brazil for the region with a temperate
climate (Cfa), which indicates the degree to which race distri-
bution within a particular region is equal to that in its
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respective country. Although the Shannon index represented
the uniformity of races, it was not correlated with the other
variables and indices (Table 3).

Discussion

The race monitoring in Argentina and Brazil revealed a quite
homogeneous composition of races across the monitored geo-
graphic regions. This indicates that most maize hybrids com-
mercialized in these countries do not carry Ht genes and,
therefore, virulent isolates are not being selected. It is impor-
tant to highlight that samples for monitoring of physiological

races should be collected from maize hybrids or lines without
Ht genes (susceptible cultivars). However, breeders are reluc-
tant to share this information for most cultivated hybrids.

Our study indicates that a different race occurrence and
distribution can be observed in Argentina and Brazil for the
tested isolates, compared to race monitoring data worldwide.
For example, in the USA, the frequency of race 0 isolates has
decreased from 83% in 1974 to around 50% by the 1990s
(Ferguson and Carson 2007) and to 20% by the 2010s
(Weems and Bradley 2018). The latter study showed that only
26% of isolates were race 1. However, in recent years, the
frequency of isolates able to overcome the Ht1 gene in the
country was reported to be 64% (Weems and Bradley 2018).

Fig. 1 Map of South America
with locations were symptomatic
leaf samples of northern corn leaf
blight were collected for
Exserohilum turcicum isolation.
Symptomatic maize leaves were
collected in 2015, 2017, 2018 and
2019 from maize producing areas
in Brazil (dashed lines) and
Argentina (dotted lines),
according to the Köppen-Gerger
climate classification (Peel et al.
2007), adapted using information
from Argentinian and Brazilian
Institutions (ANIDA 2020;
INMET 2020): Argentina—Cfa
(temperate or pampeano),
Argentina—Cwa (sub-tropical),
Brazil—Cfa (temperate),
Brazil—Cfb (sub-tropical from
altitude) or Cwa (tropical)
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In Ontario, Canada, the frequency of isolates overcomingHt1
was even higher than in the USA, at around 80% from the
samples collected between 2012 and 2016. Remarkably, 64%
of the isolates were virulent to Htn1 (Jindal et al. 2019). The
increase in frequency of isolates virulent to Ht1 is a conse-
quence of selection pressure exerted by the widespread culti-
vation of commercial maize hybrids bearing Ht1 resistance in
the USA (Jordan et al. 1983; Ferguson and Carson 2007). It is
well known that extensive cultivation of hybrids carrying the
same resistance gene enhances the rise of virulent pathogen
populations (Mizubuti and Ceresini 2018).

More recently, the Htm1 resistance gene was added to the
race screening of E. turcicum in North America (Weems and
Bradley 2018; Jindal et al. 2019). Surprisingly, 64% of
Canadian isolates (Jindal et al. 2019) and 32% of US-tested
isolates (Weems and Bradley 2018) were virulent to Htm1.
Screening of race M isolates was not easy, due to a limited

availability of seeds (Weems and Bradley 2018). Therefore,
these studies used multiple lines, which showed differences in
phenotypes for the same resistance gene. For example, al-
though host responses provided by Ht1, Ht2 and Ht3 usually
appeared as chlorosis, as mentioned in the literature (Hooker
1963, 1977, 1981), strong necrosis was also observed in the
line B37Ht1 (Weems and Bradley 2018). In line A619, the
same authors observed a strong necrosis in plants bearing Ht2
and Ht3 genes. Therefore, symptoms of resistance reaction
may differ according to the maize line background.

The situation in Europe is different, with 32% of isolates
virulent toHt3 and 24% toHt1 (Hanekamp et al. 2014). Thus,
some European hybrids must carry the Ht3 resistance gene.
However, it is important to note that in Europe, the selection
pressure exerted by the cultivation of hybrids bearingHt genes
is higher than in South America. In Turkey, 68% of isolates
were avirulent to Ht genes and 16% to the Ht1 gene (Turgay

Fig. 2 Diagrammatic scale for race phenotyping of northern corn leaf
blight caused by Exserohilum turcicum, based on Bigirwa et al. (1993)
and modified by Hanekamp et al. (2014). Score 1 defines symptoms of
chlorotic spots, score 2 describes chlorosis with delimitated necrosis,
score 3 represents symptoms of necrotic lesions surrounded by

chlorosis, score 4 represents grey elongated lesions, score 5 describes
elongated green-grey lesions with necrosis and score 6 is a dead leaf.
The absence of chlorosis (> score 4) characterizes a compatible
interaction where the pathogen is considered virulent and the host
susceptible

Table 1 Distribution of Exserohilum turcicum isolates according to race assignment by screening on the differential set based on line B37 bearing
resistance genes Ht1, Ht2, Ht3 and Htn1

Races

Country Climate 0 1 2 3 23N 3N 13N Total

Argentina Cfa 44 (86.1%) 1 (2%) 1 (2%) 1 (2%) 3 (5.9%) - 1 (2%) 51

Cwa 11 (73.3%) 3 (20.0%) - - - 1 (6.7%) - 15

total 55 (83.3%) 4 (6.2%) 1 (1.5%) 1 (1.5%) 3 (3.5%) 1 (1.5%) 1 (1.5%) 66

Brazil Cfa 29 (61.7%) 14 (29.8%) 1 (2.1%) - 3 (6.4%) - - 47

Cfb 44 (72.1%) 14 (23.0%) - - 3 (4.9%) - - 61

Cwa 4 (40.0%) - - - 6 (60%) - - 10

Total 77 (65.3%) 28 (23.7%) 1 (0.8%) - 12 (10.2%) - - 118

Total 132 (71.7%) 32 (17.4%) 2 (1.1%) 1 (0.5%) 15 (8.2%) 1 (0.5%) 1 (0.5%) 184

For climate regions (Cfa, Cwa, Cfb), see text
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et al. 2020). Nonetheless, a study from the 1980s reported
only race 0 in Israel (Abadi et al. 1989). In China, the first
study reported a frequency of 40% for race 0, while 41% of
isolates were virulent to Ht1 (Dong et al. 2008). Ten years
later, a study with Chinese samples showed that the percent-
age of isolates from the most frequent races has remained the
same (Li et al. 2019). In Brazil, a slight increase in the fre-
quency of isolates virulent to Ht1 in South America was ob-
served in 2019. In the early 1990s, the most frequent race was
0; however, other races able to overcome Ht1 were also re-
ported, such as races 1N, 12N and 123N (Gianasi et al. 1996;
Ogliari et al. 2005). Conversely, in most tropical countries, the
frequency of isolates virulent to Ht1 seems to be low, or even
absent in some cases. In Kenya, 45% of isolates were virulent
to Ht2 and 29% were identified as race 0 (Muiru et al. 2010).
Although race assessments were conducted in Ecuador,
Mexico and Zambia, information regarding E. turcicum races
in these regions is not published in peer-reviewed journals.

Interestingly, in tropical regions, the frequency of isolates
virulent to Ht2, Ht3 and Htn1 was much higher compared to
temperate regions. However, qualitative resistance is less used
in tropical regions, due to the higher risk of major gene resis-
tance breakdown (Galiano-Carneiro and Miedaner 2017). As
genetic diversity of tropical E. turcicum populations is higher
than that of temperate populations (Borchardt et al. 1998), the

pathogen can easily adapt to the Ht genes (Galiano-Carneiro
and Miedaner 2017).

The formation of pseudothecia on grasses, such as Johnson
grass, has also been observed, indicating that the fungus has
the ability to recombine sexually in other hosts (Fallah
Moghaddam and Pataky 1994). However, secondary hosts
may also exert selection pressure (Fallah Moghaddam and
Pataky 1994). For instance, Ht3 is known to be introgressed
in maize from the grass Tripsacum floridanum (Hooker 1981)
and may be a homologue to Ht2 in maize (Simcox and
Bennetzen 1993; Fallah Moghaddam and Pataky 1994). In
Uganda, a study with E. turcicum strains isolated from sor-
ghum found that 95% of isolates were avirulent on maize (line
A619 without Ht gene). However, 22% were virulent on
plants carrying Ht1, 11% were virulent on plants carrying
Ht2 and 5% were virulent on plants carrying Ht3
(Ramathani et al. 2011).

The unexpected susceptibility of maize plants carrying Ht
genes, especially to sorghum isolates that are avirulent in
maize plants without Ht genes, indicates that selective pres-
sure byHt2,Ht3 andHtn1might not be exerted only by maize
but also by other grasses or alternative hosts in tropical regions
(Fallah Moghaddam and Pataky 1994). In general, the main

Fig. 3 Race frequency of
Exserohilum turcicum isolates
originating from Argentinian
samples from 2015, 2018 and
2019 (a) and Brazilian samples
from 2017, 2018 and 2019 (b)

Fig. 4 Percentage of Exserohilum turcicum isolates virulent to the Ht
resistance genes Ht1, Ht2, Ht3 and Htn1 collected in Argentina in
2015, 2018 and 2019 and Brazil in 2017, 2018 and 2019

Fig. 5 Race complexity of Exserohilum turcicum isolates (as a
percentage) by country and climatic region, based on isolates collected
between 2015 and 2019. Race complexity (rc) denotes the number of
differential lines for which a specific isolate is virulent (Iv =∑((pi × rc)/
n)); rc1, race complexity 1; rc2, race complexity 2; rc3, race complexity 3
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sources of fungal genetic diversity are mutations and recom-
binations (Taylor et al. 1999, 2017). Mutations from
avirulence to virulence are usually rare; thus, mutation rates
are low (McDonald and Linde 2002). Sexual recombinations
may be the source of E. turcicum population diversity in the
tropics (Borchardt et al. 1998). However, somatic recombina-
tions may also be a source of genetic variability in E. turcicum
populations, especially in temperate regions (Taylor et al.
1999). In the literature, parasexuality has been described for
another ascomycete, Magnaporthe grisea, which parasitizes
grasses and causes blast disease in rice (Zeigler et al. 1997).
However, more studies are necessary to prove whether
E. turcicum has parasexuality, and to identify the contribution
of mixed reproduction to E. turcicum race diversity.

Qualitative resistance usually leads to a high level of resis-
tance, particularly when the most frequent isolates are aviru-
lent, as observed for Argentina and Brazil. The risk of resis-
tance breakdown due to high genetic flow in populations with
mixed reproduction, and the instability of resistance expres-
sion due to changes in environmental conditions discourage
the use of Ht genes in maize breeding programs for tropical
regions (Galiano-Carneiro and Miedaner 2017). Therefore,
the use of qualitative and quantitative resistance in tropical

and subtropical breeding programs should be accompanied
by regular race monitoring to verify if the major genes are still
effective in these regions (Perkins and Pedersen 1987). The
introduction of qualitative resistance by recurrent
backcrossings is easier and faster for breeders (Pilet-Nayel
et al. 2017). Even if qualitative resistance has the disadvantage
of shorter durability when compared to quantitative resistance,
the introduction of quantitative resistance is more laborious
(Galiano-Carneiro and Miedaner 2017). It is expected that the
durability of major genes is prolonged by pyramiding several
major genes in the same cultivars (Pilet-Nayel et al. 2017).
The information about the race spectrum of E. turcicum can
support breeders in deciding on the best source of resistance
for each region. Moreover, studies on the gene flow between
populations from Argentina and Brazil might be conducted to
increase knowledge of avirulence to virulence shifts in
E. tucicum populations, and consequently, the durability of
resistance (McDonald and Linde 2002).

The high frequency of race 0 isolates in Argentina and
Brazil leads to the conclusion that most commercialized maize
hybrids in these countries do not bear the tested Ht resistance
genes. This may be due to the fact that most breeding pro-
grams have shifted to the use of quantitative resistance after
virulence to Ht genes had been observed in the 1970s and
1980s (Welz and Geiger 2000). Therefore, qualitative resis-
tance can be a source of resistance in these countries and, if
combinedwith quantitative resistance, highly effective against
NCLB epidemics.
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