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Cultivable soil fungi community reponse to agricultural management and tillage 

system on temperate soil

Abstract

In agricultural soils, fungi constitute most of the total microbial biomass in the 

environment contributing with more than 50% of the soil biomass. The fungi should be 

considered as a link in the production not only by their attributes but also for their 

potential pathogenicity on crops chains. We aim to determine in what extent the 

combination of management styles and tillage systems control specific cultivable soil 

fungal community structure in temperate fertile Petrocalcic Argiudoll soil in a field 

experiment. We measured soil fungal richness, abundance and diversity along a one-year 

experiment (2009-2010). The plots were subjected to different tillage systems 

(conventional vs. zero) combined with different agricultural management histories 

(pasture/agriculture rotation vs. intensive agriculture). The measures were performed 
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every three months along a year in three replicated plots. Rotation with pastures and zero 

tillage stimulated the saprophytic soil fungi community in detriment of pathogens. The 

clearest dissimilarity was given by the seasons. The results obtained from assay suggested 

that the seasons effect was strongest that the management or tillage on the soil fungal 

community. 

Keywords: fungi, diversity, tillage systems, intense agriculture, pastures 



4

1. Introduction

One of the major causes of soil biodiversity loss and degradation is agricultural 

intensification (Foley et al. 2011; Ring et al. 2010). Consequently, one of the biggest 

challenges today is to satisfy the growing demand for goods, food and energy without 

degrading the environment (MEA, 2005). Changes in soil microbial community structure 

and its activity have direct consequences on the ecosystem functions since these 

communities are responsible for fundamental processes such as nutrient cycling and carbon 

sequestration (Lehmann and Rillig 2015; Stockmann et al. 2013). In this context, it is 

necessary to develop alternative management of resources that meet the needs of both, food 

and energy production along with environmental (soil) conservation (Steffan-Dewenter et 

al. 2007). 

Crop production has generated large impact in soil quality, the tillage management and 

crop rotation, it are one of the main responsible for soil degradation (Kladivko, 2001). 

Conventional tillage has been used as a management system which helps in weed and pest 

control and the zero tillage implies critical changes at ground level, such as stubble cover 

and no soil disturbance. These processes in the long term required of nitrogen and other 

nutrients availability, as well as carbon dioxide release. In the long term, this system led to 

critical reduction in crop yields mainly due to low values of nutrients availability in soil and 

it can affect the integrity of soil especially, that of soils of low stability (Forján and Manso, 

2012). 

The combination of pasture and crop cycles has been suggested as a suitable alternative 

to mitigate these soil degrading effects (Forján and Manso 2012). For instance, inclusion of 

pastures in field rotation increased soil organic matter, microbial and soil fauna biomass 

(Plaza-Bonilla et al. 2016; Silvestro et al. 2017; 2018). As a clear outcome, this management 
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systems generate different suit of soil conditions which impact on soil functioning and the 

ecosystem services it provides. 

In agricultural soil, fungi are a major component of microbial biomass and their 

physiological activity is critical role in crop production and soil functioning (Kalbitz et al. 

2000). Apart from being responsible for complex organic molecules degradation which 

contributes to nutrients biochemical cycling (Klein and Paschke, 2004), soil fungi can be 

pathogenic of beneficial for plant and control insect pests. In addition, extra-radical hyphae 

contribute to stable aggregates formations (Miller and Jastrow, 2000) and soil fertility. At 

the same time, fungal activity may be controlled by agricultural management as well as crop 

rotation as both critically modify soil physical and chemical conditions. In this sense, the 

design of sustainable cropping system should consider the impact of management practices 

on soil fungal community. 

Intensive crop production reduced soil fungal species richness which in turn, may trigger 

negative effects on nutrients availability for crops (Dominguez et al. 2009; Van Der Wal et 

al. 2006). Instead, including pastures in crop rotation increased soil organic carbon and 

therefore it might be developed more beneficial microhabitats and this can be detected in the 

diversity of the fungal community. In turn, this less intensive management improved 

physical and chemical properties (Studdert et al., 1997) which improve soil fertility and crop 

potential productivity (Forjan and Manso 2012). 

While several previous works have focused on tillage system or agriculture management 

effects on fungi community structure and its activity (Madejón et al. 2007; Silvestro et al., 

2018), so far little information is available about the combined effects of the above two 

factors, especially based on a long-term agricultural scheme. We hypothesized that 

agricultural management and tillage system drive soil fungal abundance and community 
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structure in short time. We predict that both, intensive management and conventional tillage 

interact reducing soil fungal abundance and change the community structure independently 

of time assay. The main was to evaluate the short-term response of the soil fungal community 

to different tillage in soils with different management history.

2. Materials and methods

 2.1 Experimental design

The experiment was conducted under natural environmental conditions of light and 

temperature at Barrow Experimental Station of the National Institute of Agricultural 

Technology (38° 19’ 25’’ S, 60° 14’ 33’’ W, Tres Arroyos, Buenos Aires, Argentina) 

(Appendix A). The soil corresponded to a Petrocalcic Argiudoll, Series Tres Arroyos, 50 cm 

depth, clay loam texture (SSS, 2014) and slightly acid pH (6.4; 1:2.5 soil:water) (USDA, 

2006). In this area, mean annual temperature is 14.9 ºC (minimum and maximum 

temperatures reach 7.4ºC and 20.4 ºC, respectively) and mean annual precipitation is 750 

mm (Fig. 1). 

We combined agricultural management and tillage system (two levels each) in a 

randomized strip-plot design to generate four different treatments in three blocks (Khuel 

2001). Treatments were applied in 450 m2 plots (15 x 30m). The land-use history or 

agricultural management (M) as the row factor (two levels) and the tillage system (TS) as 

the column factor (two levels) (Gómez and Gómez, 1984). The agricultural management 

(row factor) were IM: intensive management response to a long and intensive agricultural 

management (12 years) without pastures. RM: Rotation management: included each 4 years 

agricultural cycles with pasture Medicago sativa L. and Dactylis glomerata L.  
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(alfalfa/orchardgrass).  The column factor was the tillage systems (T) included conventional 

tillage (CT) which comprised mouldboard ploughing, disking (20 cm) and burying of crop 

residues (Agricultural Experimental Machinery Crucianelli ® were used) and, zero tillage 

(ZT, No-till farming or direct drilling) which comprised cultivation without disturbing, the 

coverage with stubble or crop residues and the chemical weed control during fallow. The 

sequence of crops includes a two years cycle with sunflower (Helianthus annuus L.) in 

summer, wheat (Triticum aestivum L.) in winter and maize (Zea mays L.) following summer 

in both managements. The soil properties and the practice recommended in this area  for 

cereal crops as application of herbicides, pesticides and simultaneous application of 

inorganic fertilizers were detailed in Table 1a, b.

Data were collected every three months during a year, related to contrasting crop 

phenology: summer (postharvest of wheat; December 2009 and 2010), autumn (postharvest 

of summer crops; April 2010) and winter (tillering of wheat according Zadoks stages; August 

2010). Topsoil samples were randomly collected through 25 perforations in each plot by 

using a hydraulic borer and sealed in plastic freezer bags (0-15 cm depth, roughly 2 kg). 

We calculated the cumulative precipitation during the previous month to each sampling 

date as a covariate to account for seasonal environmental variation. We used daily data 

provided by the Agrometeorological Station located at the same Barrow Experimental 

Station (http://siga2.inta.gov.ar/en/datoshistoricos/).

2.2. Soil fungal community

To characterized active fungal mycelium in soil community, individual soil samples (100 

g) were washed according to Parkinson and Williams (1961) modified by Cabello and 
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Arambarri (2002). Each soil sample (100g)  was washed with sterile water through of sieve 

series (located in a vertical position: one above 2000 µ (mesh N°10),  1000 µ (mesh Nº 18), 

another below 500 µ aperture (mesh Nº 35) and finally a 250 µ sieve (mesh Nº 60)) the soil 

particles retained in the last (0.25 mm) were washed (20 times for 2 minutes) and transferred 

to a sterile filter paper in a Petri dish and dried for one day.  Fifty particles were taken from 

each soil sample previously retained in a 0.25 mm mesh sieve (in total 2400 soil particles). 

Particles were placed into Petri dishes (50 particles per plate) containing potato dextrose agar 

(PDA, Lab. Britania SA) amended with 250 mg chloramphenicol L-1 to suppress bacterial 

growth. Plates were incubated during five days in a controlled chamber at 25 ± 2ºC under 

12-h light/dark conditions. The isolates obtained were subcultures in new Petri dishes 

containing the necessary media for identification according the specific manuals (Barnett 

and Hunter, 1972; Barron, 1968; Cannon and Kirk, 2007; Carmichael et al. 1980; Domsch 

et al. 1980; Ellis, 1971, 1976; Kir et al. 2001; Kubicek and Harman, 2002; Leslie and 

Summerell, 2006; Nelson et al. 1983; Samson and van Reenen-Hoekstra, 1988; Simmons, 

2007; Watanabe, 2002), and the current names were confirmed in Index Fungorum 

http://www.indexfungorum.org/Names/Names.asp .

Data obtained was then useful to characterized fungal community according to the species 

richness (S) (as the raw number of taxa of each soil sample) and to the relative abundance 

Ra (number of isolates of each genus/ total number of isolates obtained) x 100, according to 

Marasas et al. (1988). The condition of saprotroph and pathogen was based on the existing 

literature for each identified species.

2.3. Statistical analysis 

http://www.indexfungorum.org/Names/Names.asp
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A Bray–Curtis coefficient similarity matrix was obtained from the full-standardized data 

set of the fungal relative abundances [Square root transformation]. Subsequently, a non-

metric multidimensional scaling (nMDS) was applied to the similarity matrix to order the 

samples in a two-dimensional plane according to their relevant similarity. A one-way 

statistical analysis (ANOSIM routine, test R) was performed on soil samples data to test for 

significant differences in the fungal relative abundance among season, rotational 

management (M) and tillage system (T). Finally, a Similarity Percentage analysis (SIMPER) 

was carried out in order to determine the contribution of each fungal specie to the similarity 

and differences between the soil samples. 

 After we estimated the richness and abundance pathogen, the saprophyte ratio was 

calculated.  Comparisons were performed using linear mixed models. The values of soil 

fungal richness and fungal relative abundances were compared using the lme function [nlme 

package (Pinheiro and Bates 2000; Pinheiro et al 2009)] with normal distribution of error 

and, considering rotational management (M), tillage system (T), precipitation corresponding 

to the previous month (P), soil carbon content (SOC) and, M x T, M x P and T x P interactions 

as fixed factors. We used mixed effects linear models which allow nesting plots within 

blocks and time correlated measures. Thus, each blocks and plots were random factors of 

the models. When necessary, variance functions were evaluated including weights: 

varFunc=varIdent (form=~1|factor) for Agricultural management or Tillage systems well as, 

varFunc=varExp(form=~1|factor) or varFunc=varPower(form=~1|factor) for precipitation 

and soil carbon. Variance function was applied for a single or a combination of two factors 

depending on each model fit. Autocorrelation between repeated measures was evaluated by 

the ACF function for the ordered normalized residuals with error probability of 0.05. When 
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necessary the Correlation Structure: AR(1) (Formula: ~time |block/plot) was included (Zuur 

et al. 2009). Alternative models were compared with AICtab function from bbmle package 

(Bolker and Team 2014). Fitted models were checked by plotting standardized residuals 

against fitted values and the model factors (nlme package; Pinheiro and Bates 2009). Normal 

distribution was checked by the qqnorm(errors) and qqline(errors) functions. Inferential 

analyses were done through Anova function in package car (Fox, 2011) considering a 

probability error threshold of 0.01 (i.e.: p-value). We reduced error probability value to 

compensate restrictions imposed by the experimental design in strip-plot. All the analyses 

were performed with R-cran environment; version 2.10.1 (R Development Core Team 

2007). 

All statistical analyses were performed using the PRIMER software package (v. 6, 

Plymouth Routines in Multivariate Ecological Research, Clarke and Warwick 2001), the 

open-source statistical package “R” (R Core Team 2015). Figures in the results section show 

the averages of the replicates ± standard error.

3. Results 

A total of 1880 fungal isolates were obtained. The 84 % of the isolates were assigned to 

species level including to Phylum Ascomycota (75%), Mucoromycota (10%) and 

Basidiomycota (1%) (K. Fungi). The remaining 16% were assigned to the groups Oomycota 

(7%) (K. Chromista) and Mycelia sterilia (7%) (Appendix B).

The nMDS applied to the fungal composition (abundance) of soil samples revealed a clear 

separation between seasons (Fig.2a, 2D stress: 0.25). The pairwise comparisons show that 

exist significant different among all season (ANOSIM test: Global R = 0.451, p = 0.001, p 

< 0.001 for all comparison). 
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The SIMPER analyses show that the percentages of dissimilarity among the seasons were 

from 72.07% to 83.71%. The greatest dissimilarity was observed between December 2009 

and December 2010 and the less between April 2010 and August 2010 (Table 2). In general, 

to explain the 50% of dissimilarity for all seasons was necessary to have with 17/18 species. 

The species that most contributed to dissimilarity were Trichoderma hamatum, Fusarium 

oxysporum, Rhizopus stolonifer and oomycota group in all samples. In summer 2009 the 

most frequent species were Trichoderma hamatum and Fusarium oxysporum. Whereas, the 

oomycota group were less abundant than in the rest of the sampling seasons considered.  In 

April the group Oomycota was the most frequent. In august and december 2010 the most 

frequent was F. oxysporum. The most percentage of differences between the two summers 

(December 2009/10) was contributed by T. hamatum (Table 2). 

 The results of the nMDS analysis of the soil samples considering the Rotational 

Management (M), and tillage system (T) did not show a clear trend (Fig 2b; 2c).  ANOSIM 

post hoc test confirmed that were not statistically significant difference between treatments 

for both management (Rotational management:  RM-IM Global R 0.023, p 0.18; Tillage 

management: CT-ZT Global R 0.037, p 0.11).

 The soil fungal richness depended on precipitation range and management (Fig 3a; Table 

3). These effects on fungal richness did not influence on the pathogens: saprotroph ratio (Fig 

3b; Table 3) indicating that management, tillage and precipitation influence similarly on 

pathogens and saprotroph group. In average, the ratio between pathogens and saprotroph 

was 0.26 indicating that saprotroph richness was almost four folds greater than pathogens 

richness. The pathogen: saprotroph abundance ratio indicated that the relative abundance of 

the saprotroph was lower in average in the middle of the precipitation range (Fig 3c; Table 
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3). Changes in the relative abundance of both groups were driven by the relative abundance 

of pathogenic fungi which also varied with precipitation while the relative abundance of 

saprotrophs was independent on the analysed variables (Appendix C). In both richness and 

relative abundance, saprotrophic fungi were higher than pathogenic ones as indicated ratios 

below one and we did not find evidences of tillage system or management effects. 

The relative abundance of saprotrophic group depended on the interaction between 

richness, tillage and management (p<0.001; Fig 4, Appendix B). This interaction implied 

that relative abundance of saprotrophic group was almost constant along richness gradient 

in RM-ZT and IM-CT. However, the relative abundance of saprotrophic group was lower in 

RM-CT and IM-ZT (Fig 4). 

4. Discussion 

 Fungi of soil have significant role on dynamics and structure of soil. In long-term 

experiments when the tillage systems and crop rotations don’t vary, the richness and 

diversity of the soil fungi community are less than in those where the rotation of crops is 

applied. Can be detect changes in soil fungi community in short times in this type of assay?. 

The production systems of the mixed wheat region of southern Buenos Aires have modified 

their productive strategies according to the technological advances that have occurred in the 

last 25 years. In general, the mixed systems in rotation with pastures were displaced by 

sequences of permanent agriculture with a strong presence of summer crops (soybean, 

sunflower, corn, sorghum), interacting with traditional fine-grain cereals. Although direct 

sowing has spread to the region in recent years, many agricultural establishments maintain 

the use of tillage in their production schemes. However, during the last seven years the 

incorporation of pastures in the rotation scheme showed that the soil enzyme activities 
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increased and fungi community was favored (Silvestro et al., 2018). This situation is of great 

interest when analyzing the decomposition process of the different quantity and quality of 

waste that the crops contribute to the system (Forján and Manso, 2012). As well as the effect 

they will have on the soil fungal community, since it constitutes more than 50% of the 

biomass of cultivated soils (Heredia Abarca et al., 2004).  We observed that the species 

richness was similar along the precipitation gradient under different options of managements 

and the soil organic carbon did not produce a statistical significant response in the fungal 

community. Therefore, the level of SOC in the soil in both situations would be similar due 

the long term of assay and in consequence the changes in soil fungi could not be detected 

through of parameters evaluated.  

Although, the abundance of pathogen’s group increased at low and high precipitation. 

Saprotrophic fungi abundance depended of interaction of richness, management and tillage. 

The effect of sampling time on fungal community has been described by Talley et al. (2002) 

who have suggested that the abundance and richness of fungi (in a habitat) are limited by the 

duration of unfavorable weather condition. Barbaruah et al. (2012) observed a positive 

correlation between the soil moisture and fungal species richness. Schneider (2010) 

suggested that richness species was uniform in the year and that abundance was variable 

regardless of season. We observed a considerable presence of Fusarium sp. in lower levels 

of pp in soils under IM (CT and ZT). It is expected to obtain this result since those fungi that 

have survival strategies such as development of clamidospores are more successful under 

unfavorable conditions. The presence of saprotrophic fungi was diminished under IM at the 

same conditions. However, under RM the decrease was minor, this type of management 

would be providing better soil moisture conditions and prevent the loss of these species. 
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Therefore, a management with pastures outside the type of tillage would be favouring the 

presence of saprotrophs with respect to pathogens despite presenting low pp levels. It is 

relevant that the pathogen more abundant was Fusarium. Once again it is found that in long-

term trials, no matter how much rotation exists with pastures and conservationist 

management, the pressure of Fusarium propagules increases. 

Although the abundance of saprotrophs was relatively constant throughout the sampling 

year, it presented a negative slope towards the last sampling date in IMZT, however, for 

IMCT it presented its lowest abundance for low pp, which coincides with the increase in 

Fusarium recovering when the pp are higher and in this way the presence of saprotrophs is 

favoured, in this way a competitive relationship with the pathogens could be inferred.

The taxonomic composition of the soil fungi community showed difference. Saprotrophic 

fungi as Trichoderma sp. was one of the most abundant genera isolated and specially T. 

hamatum was one specie to most contributed to dissimilarity percentage differences. These 

results are in line with that reported by others authors (Hagn et al., 2003; Viaud et al., 2000; 

Silvestro et al. 2018). Kuprinsky et al. (2002) suggested that small changes in the 

environment could favor one species and inhibit another, and not necessarily these changes 

be reflected in an index of diversity. This was the case of T. hamatum on December 2009/10. 

Examples of this situation were Acremonium fuscolum, Alternaria tenuissima, Apiospora 

montagnei, Botryotrichum piluliferum, Fusarium acuminatum, F. chlamydosporum, F. 

crookwelense, Idriella lunata, Nectria ventricosa, Penicillium funiculosum, Penicillium 

javanicum, P. thomii and Stachybotrys chartarum. However, the studies on this association 

can help find out when, where or how many propagules of potential plant pathogens or 

biocontrol agents are available in the soil. In this way and with the results obtained, it is 
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shown that with pasture rotation regardless of type of tillage and despite low pp, saprotrophs 

benefit from their abundance. At all sampling times the presence of saprotrophs was always 

greater than that of pathogens. 

 The seasonal sampling was the factor that most influenced the different parameters 

evaluated. The tillage systems did not cause significant effect of ecological parameters of 

soil fungi community as S. However, the taxonomic composition was modified and therefore 

the abundance of pathogens and saprotroph changed. The saprotrophic species abundance 

was favored by the RM. Based on this result, we suggest that these parameters showed the 

strongest relationship with the seasonal sampling. Studies of the land use history are relevant 

due to the increased agriculturalization, i.e. the extension of the agricultural cycle on the 

same plot (Forján and Manso 2012). Even if crop production, tillage management and crop 

rotation have direct consequences on soil quality our results suggested that these factors have 

not significant implications in short times in the develop on soil fungal community along 

one year when the assay was installed a long term.
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RM-CT: Rotation management under CT: conventional tillage; RM-ZT: Rotation 
management under ZT: tillage; IM-CT: Intensive management under CT: conventional 
tillage; IM- ZT: Intensive management under ZT: zero tillage 
BD: bulk density (Mg cm-3) (Manso et al., 2012)
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CDMP: mean weigh diameter change (cm) (Roldán et al., 2014)
NO-

3: Marban (1989)
P: Bray and Kurtz Nº1(1945)
pH: Potentiometric method (1:2,5; soil: water) (USDA-NRCS 2004). 
SOC: soil oganic carbon (g. kg-1) 
Sampling time: Dec 2009: December 2009; Apr 2010: April 2010; Aug 2010: August 2010; 
Dec 2010: December 2010

Table 1b. Detail application of herbicides, pesticides and inorganic fertilizers during the 

sampling period.

Table 2. SIMPER analysis for abundance composition of fungi of soil samples. Comparison 

between groups showing the average total dissimilarity (Av. Diss.) and the contribution of 

taxa to the dissimilarity (%). Results are given for pairwise comparisons between seasons 

(December_2009, April_2010, August_2010 and December _2010). Grey lines: pathogens, 

white lines: saprotrophs

Table 3: Deviance analyses of the models for soil fungal total richness, richness and 

abundance pathogens: saprotrophic ratio. The columns show the term of the model, degrees 

of freedom (df), Chi squared (Chisq) and p-value (p). Column term present the factors soil 

organic carbon (SOC), precipitation (P), rotation management (M), tillage system (T), and 

the corresponding interactions. Bold number indicates statistically significant terms (p-

values < 0.01).

Figures legends 

Figure 1.  Agroclimatic description of assay. Agrometeorological Station located at the 

same Barrow Experimental Station (http://siga2.inta.gov.ar/en/datoshistoricos/), during the 

sampling period.

http://siga2.inta.gov.ar/en/datoshistoricos/
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Tm (°C): temperature average; T max (°C): temperature maximun; T min (°C): temperature 

minimum; T soil (°C): temperature in the first 5 cm of soil; R (mm): rainfall; RH (%) relative 

humidity. 

Figure 2: A non-metric multidimensional scaling (nMDS) to detect the similarity matrix to 

order the samples in a two-dimensional plane according to Bray–Curtis coefficient 

similarity. The nMDS applied to the fungal composition (abundance) of soil samples. 2a) 

Seasons of sampling December 2009, April 2010, August 2010 and December 2010. 2b) 

Agricultural management (M) Red circles and circles represent sites under rotation including 

agriculture and pastures management (RM) and intensive agriculture management (IM) 

respectively. 2c) Tillage system (T) Red circles and circles represent sites under 

conventional tillage (CT) and zero tillage (ZT), respectively.

Figure 3: Soil fungal richness and relative abundance: 3a) total fungal richness (genus .50 

soil particles-1); 3b) pathogens: saprotrophic richness ratio; and 3c) pathogens: saprotrophic 

relative abundance ratio in relation to previous two months precipitation. Open and dark 

symbols represent sites under zero (ZT) or conventional tillage (CT), respectively. Circles 

and squares represent sites under intensive agriculture management (IM) or rotation 

including agriculture and pastures management (RM), respectively. Symbols show the mean 

± standard error. Vertical axis units and scales vary according to the variable which 

represent. Significant effects for Precipitation (P), Agricultural management (M), Tillage 

system (T) and Soil organic carbon (C) and their interactions are showed in the figure (p-

value). In b) dotted line indicates the average value of all data. On each precipitation value, 

mean value points are jittered to avoid overlapping.



25

Figure 4 : Saprotroph relative genus abundance (%) in relation to total species richness 

(genus .50 soil particles-1). Open and dark symbols represent sites under zero (ZT) or 

conventional tillage (CT), respectively. Circles and squares represent sites under intensive 

agriculture management (IM) or rotation including agriculture and pasture management 

(RM), respectively. Symbols show value for all measurements. Significant effects for 

Richness, Agricultural management (M), Tillage system (T) and their interactions are 

showed in the figure (p-value). 

Appendix legends 

Appendix A. Experimental design and map of the Barrow Experimental Station (38° 19’ 

25’’ S; 60° 14’ 33’’ W), National Institute of Agricultural Technology, Tres Arroyos, 

Buenos Aires province, Argentina,

Treatments: IM-CT: intensive management- conventional tillage; IM-ZT: intensive 

management - zero tillage; RM-CT: rotation management-conventional tillage; RM-ZT: 

rotation management-zero tillage. Replicates: I, II, III. 

Appendix B. Abundance of fungi species in each treatment and sampling time 

Treatments: IM-CT: intensive management- conventional tillage; IM-ZT: intensive 

management - zero tillage; RM-CT: rotation management-conventional tillage; RM-ZT: 

rotation management-zero tillage

Sampling times: December 2009; April 2010, August 2010; December 2010

Appendix C. Deviance analyses of the models for soil fungal Saprotrophic relative 

abundance (Sapro rel. abundance). The columns show the term of the model, degrees of 
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freedom (df), Chi squared (Chisq) and p-value (p). Column term present the factors Total 

Richness (R), rotation management (M), tillage system (T), and the corresponding 

interactions. Bold number indicates statistically significant terms (p-values < 0.01).
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Table 1a. Soil characteristics at Barrow Experimental Station (38° 19’ 25’’ S; 60° 14’ 
33’’ W), National Institute of Agricultural Technology, Tres Arroyos, Buenos Aires 
province, Argentina, during the sampling period.

BD (Mg cm-3)
 

PR (Mpa) MWDC (cm) NO-3 (ppm) P (ppm) pH
 

SOC (g. kg-1)

depth depth depth depth depth depth Sampling time 

 0-8 cm 0-5 cm 5-10 cm 10-15 cm 0-10 cm 0-20 cm 0-20 cm 0-20 cm Dec 2009 Apr 2010 Aug 2010 Dec 2010

RM-CT 1,22 0,39 0,69 1,17 2,6 32.1 14.3 6.6 23,53 20,13 19,3 29,77

RM-ZT 1,28 0,54 1,21 1,63 2,44 38.3 30.8 6.7 20,17 20,4 19,8 26,03

IM-CT 1,23 0,47 0,75 1,17 2,9 27.6 16.9 6.6 24,9 18,13 19,43 29,9

IM-ZT 1,3 0,63 1,31 1,74 2,5 64.5 28.3 6.7 25,37 24,17 22,57 29,6

RM-CT: Rotation management under CT: conventional tillage; RM-ZT: Rotation 
management under ZT: tillage; IM-CT: Intensive management under CT: conventional 
tillage; IM- ZT: Intensive management under ZT: zero tillage 
BD: bulk density (Mg cm-3) (Manso et al., 2012)
PR: Penetration Resistance (Mpa) (Manso et al., 2012)
CDMP: mean weigh diameter change (cm) (Roldán et al., 2014)
NO-

3: Marban (1989)
P: Bray and Kurtz Nº1(1945)
pH: Potentiometric method (1:2,5; soil: water) (USDA-NRCS 2004). 
SOC: soil oganic carbon (g. kg-1) 
Sampling time: Dec 2009: December 2009; Apr 2010: April 2010; Aug 2010: August 2010; 
Dec 2010: December 2010
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Table 1b. Detail application of herbicides, pesticides and inorganic fertilizers during the 
sampling period.

Herbicide/pesticide

Year Crop Fertilization December 2009 April 2010 August 2010 December 2010

2009/10 Wheat Diammonium 
phosphate (DAP) 
(100 kg ha-1)

Urea (140 kg ha-1)

----------------------------- -------------------------------

ZT Glyphosate (2L ha-1)  ZT and CT

 2,4 D 58,4% (1L ha-1)

 Dicamba (0.1L ha-1)

 Metsulfurón-methyl (6.7 g ha-1)

2010/11 Sunflower Urea (65 kg ha-1) ZT Glyphosate (2L ha-1) CT Glyphosate (2L ha-1) ZT Glyphosate (2L ha-1) ZT :Glyphosate (2L ha-1)

ZT and CT Pre-emergent 
herbicides: flurochloridone (1,5L 
ha-1) acetochlor (1,5L ha-1)

CT: conventional tillage, ZT: zero tillage
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Taxa Group Group Contrib. 
% Taxa Group Group Contrib. 

%
Av. Diss. = 73.32% December_2009 April_2010 Fusarium acuminatum 0.00 0.32 1.01
Oomycota 0.61 2.27 5.63 Fusarium sporotrichiodes 0.00 0.34 0.98
Trichoderma hamatum 2.29 1.34 4.22 Eupenicillium javanicum 0.00 0.33 0.96
Fusarium oxysporum 1.01 0.93 3.81 Alternaria tenusissima 0.35 0.00 0.95
Rhizopus  stolonifer 0.91 0.97 3.66 Acremonium kiliense 0.08 0.28 0.94
Botryothichum piluliferum 0.08 1.16 3.58 Fusarium konzum 0.20 0.17 0.87
Trichoderma koningii 1.05 0.68 3.36 Penicillium expansum 0.25 0.08 0.85
Trichoderma harzianum 0.79 0.49 2.97 Trichocladium  opacum 0.28 0.00 0.84
Fusarium solani 0.47 0.80 2.80 Penicillium rubrum 0.28 0.00 0.84
Penicillium citrinum 0.84 0.74 2.76 Aspergillus  niger 0.08 0.25 0.83
Trichoderma strigosum 0.74 0.22 2.70 Epicoccum nigrum 0.00 0.28 0.77
Micelia sterilia 1.28 1.02 2.55 Acremonium fuscolum 0.25 0.00 0.76
Fusarium sambucinum 0.50 0.45 2.27 Penicillium funiculosum 0.00 0.25 0.72
Humicola griseae 0.25 0.60 1.99 Fusarium subglutinans 0.2 0.08 0.72
Aspergillus  fumigatus 0.60 0.42 1.96 Trichoderma aureoviridae 0.00 0.23 0.71
Trichoderma polysporum 0.41 0.28 1.90 Fusarium chlamydosporum 0.00 0.24 0.67
Emericella nivea 0.17 0.45 1.82 Trichoderma longibrachiatum 0.08 0.14 0.65
Humicola fuscoastra 0.44 0.20 1.81 Fusarium merismoides 0.00 0.24 0.64
Cylindrocarpon  dydimun 0.50 0.28 1.81 Stachybotrys cylindrospora 0.12 0.12 0.63
Absidia glauca 0.12 0.51 1.74 Aspergillus flavus 0.08 0.17 0.62
Nectria ventricosa 0.12 0.52 1.73 Gliocladium roseum 0.23 0.00 0.62
Cladosporium cladosporioides 0.30 0.26 1.63 Idriella lunata 0.23 0.00 0.62
Trichoderma pseudokoningii 0.19 0.33 1.48 Av. Diss. = 72.07% April_2010 August_2010
Gilmaniella humicola 0.37 0.25 1.44 Fusarium oxysporum 0.93 2.00 5.68
Penicillium restrictum 0.43 0.00 1.44 Rhizopus  stolonifer 0.97 1.77 4.51
Mortierella vinacea 0.39 0.08 1.37 Trichoderma hamatum 1.34 0.59 3.68
Apiospora  montagnei 0.08 0.39 1.28 Botryothichum piluliferum 1.16 0.08 3.60
Fusarium graminearum 0.20 0.25 1.22 Fusarium scirpi 0.14 1.00 3.45
Trichoderma viridae 0.12 0.31 1.21 Humicola griseae 0.60 1.11 3.44
Fusarium scirpi 0.26 0.14 1.12 Calicium Pers. 0.08 1.09 3.35
Trichoderma piluliferum 0.29 0.08 1.12 Oomycota 2.27 1.89 3.04
Penicillium expansum 0.25 0.17 1.08 Fusarium solani 0.80 0.27 2.61
Trichocladium  opacum 0.28 0.08 1.04 Micelia sterilia 1.02 1.39 2.59
Alternaria tenusissima 0.35 0.00 1.04 Penicillium citrinum 0.74 0.46 2.47
Acremonium kiliense 0.08 0.28 1.02 Trichoderma koningii 0.68 0.23 2.36
Penicillium lilacinium 0.25 0.08 0.96 Aspergillus  fumigatus 0.42 0.82 2.22
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Table 2.  SIMPER analysis for abundance composition of fungi of soil samples. Comparison between groups showing the average total dissimilarity (Av. 
Diss.) and the contribution of taxa to the dissimilarity (%). Results are given for pairwise comparisons between seasons (December_2009, April_2010, 
August_2010 and December _2010). Grey lines: pathogens, white lines: saprotrophs 

Aspergillus  niger 0.08 0.25 0.92 Levadura 0.08 0.60 2.00
Penicillium rubrum 0.28 0.00 0.92 Trichoderma polysporum 0.28 0.43 1.91
Acremonium fuscolum 0.25 0.00 0.84 Absidia glauca 0.51 0.37 1.89
Idriella lunata 0.23 0.08 0.83 Trichoderma harzianum 0.49 0.33 1.89
Trichoderma longibrachiatum 0.08 0.20 0.79 Humicola fuscoastra 0.20 0.38 1.61
Cylindrocarpon magnusianum 0.00 0.27 0.75 Nectria ventricosa 0.52 0.00 1.52
Levadura 0.17 0.08 0.69 Emericella nivea 0.45 0.00 1.51
Gliocladium roseum 0.23 0.00 0.68 Fusarium crookwelense 0.08 0.43 1.45
Fusarium merismoides 0.00 0.20 0.67 Acremonium kiliense 0.28 0.28 1.38
Av. Diss. = 76.47% December_2009 August_2010 Fusarium sambucinum 0.45 0.00 1.31
Trichoderma hamatum 2.29 0.59 5.24 Aspergillus  niger 0.25 0.25 1.30
Fusarium oxysporum 1.01 2.00 4.94 Mortierella vinacea 0.08 0.39 1.29
Oomycota 0.61 1.89 4.19 Apiospora  montagnei 0.39 0.08 1.28
Rhizopus  stolonifer 0.91 1.77 4.06 Fusarium merismoides 0.20 0.24 1.26
Fusarium scirpi 0.26 1.00 3.30 Cylindrocarpon  dydimun 0.28 0.14 1.22
Humicola griseae 0.25 1.11 3.19 Trichoderma viridae 0.31 0.08 1.13
Calicium Pers. 0.00 1.09 3.14 Fusarium acuminatum 0.00 0.32 1.12
Trichoderma koningii 1.05 0.23 3.03 Fusarium sporotrichiodes 0.00 0.34 1.09
Trichoderma harzianum 0.79 0.33 2.54 Eupenicillium javanicum 0.00 0.33 1.06
Penicillium citrinum 0.84 0.46 2.44 Cladosporium cladosporioides 0.26 0.08 1.03
Micelia sterilia 1.28 1.39 2.32 Trichoderma pseudokoningii 0.33 0.00 1.03
Trichoderma strigosum 0.74 0.00 2.19 Trichoderma piluliferum 0.08 0.27 1.02
Aspergillus  fumigatus 0.60 0.82 2.08 Penicillium lilacinium 0.08 0.24 0.96
Trichoderma polysporum 0.41 0.43 2.02 Trichoderma longibrachiatum 0.20 0.14 0.95
Humicola fuscoastra 0.44 0.38 1.92 Penicillium funiculosum 0.08 0.25 0.91
Levadura 0.17 0.6 1.80 Alternaria alternata 0.12 0.20 0.88
Fusarium solani 0.47 0.27 1.78 Epicoccum nigrum 0.00 0.28 0.85
Cylindrocarpon  dydimun 0.5 0.14 1.62 Gilmaniella humicola 0.25 0.00 0.85
Mortierella vinacea 0.39 0.39 1.62 Trichoderma aureoviridae 0.00 0.23 0.79
Penicillium restrictum 0.43 0.12 1.48 Cylindrocarpon magnusianum 0.27 0.00 0.76
Fusarium sambucinum 0.50 0.00 1.47 Av. Diss. = 83.71% December_2009 December_2010
Trichoderma piluliferum 0.29 0.27 1.44 Trichoderma hamatum 2.29 0.08 5.83
Fusarium crookwelense 0.12 0.43 1.39 Fusarium oxysporum 1.01 1.53 3.69
Absidia glauca 0.12 0.37 1.26 Fusarium hostae 0.00 1.22 3.14
Penicillium lilacinium 0.25 0.24 1.17 Rhizopus  stolonifer 0.91 0.78 2.98
Cladosporium cladosporioides 0.30 0.08 1.04 Micelia sterilia 1.28 1.78 2.88
Gilmaniella humicola 0.37 0.00 1.03 Trichoderma koningii 1.05 0.00 2.75

Taxa Group Group Contrib. 
% Taxa Group Group Contrib. 

%
Fusarium solani 0.47 1.03 2.66 Emericella nivea 0.45 0.00 1.30
Penicillium thomii 0.00 0.99 2.38 Trichoderma harzianum 0.49 0.00 1.28
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Calicium Pers. 0.00 0.88 2.28 Fusarium scirpi 0.14 0.37 1.23
Oomycota 0.61 0.83 2.23 Cladosporium cladosporioides 0.26 0.25 1.21
Penicillium funiculosum 0.00 0.90 2.20 Humicola fuscoastra 0.20 0.33 1.15
Penicillium citrinum 0.84 0.00 2.18 Fusarium sambucinum 0.45 0.00 1.14
Epicoccum nigrum 0.00 0.87 2.17 Apiospora  montagnei 0.39 0.08 1.10
Trichoderma harzianum 0.79 0.00 2.12 Trichoderma polysporum 0.28 0.12 1.01
Aspergillus  fumigatus 0.60 1.28 2.08 Trichoderma pseudokoningii 0.33 0.00 0.89
Levadura 0.17 0.77 1.98 Cylindrocarpon  dydimun 0.28 0.08 0.88
Trichoderma strigosum 0.74 0.00 1.95 Trichoderma viridae 0.31 0.00 0.79
Humicola griseae 0.25 0.82 1.93 Penicillium lilacinium 0.08 0.20 0.75
Eupenicillium javanicum 0.00 0.68 1.73 Fusarium proliferatum 0.00 0.25 0.75
Stachybotrys chartarum 0.17 0.63 1.63 Gilmaniella humicola 0.25 0.00 0.73
Aspergillus  niger 0.08 0.60 1.54 Fusarium chlamydosporum 0.00 0.25 0.73
Humicola fuscoastra 0.44 0.33 1.53 Aspergillus candidus 0.00 0.25 0.70
Fusarium scirpi 0.26 0.37 1.43 Fusarium acuminatum 0.00 0.25 0.68
Acremonium kiliense 0.08 0.48 1.36 Alternaria alternata 0.12 0.17 0.66
Trichoderma polysporum 0.41 0.12 1.32 Cylindrocarpon magnusianum 0.27 0.00 0.65
Fusarium sambucinum 0.50 0.00 1.31 Penicillium purpurascens 0.00 0.20 0.62
Cylindrocarpon  dydimun 0.50 0.08 1.30 Trichoderma piluliferum 0.08 0.17 0.61
Cladosporium  herbarum 0.00 0.51 1.30 Fusarium graminearum 0.25 0.00 0.61
Cladosporium cladosporioides 0.30 0.25 1.23 Aspergillus  parasiticus 0.00 0.25 0.61
Penicillium restrictum 0.43 0.00 1.16 Fusarium merismoides 0.20 0.00 0.58
Trichoderma piluliferum 0.29 0.17 1.08 Av. Diss. = 72.57% August_2010 December_2010
Mortierella vinacea 0.39 0.00 1.04 Fusarium oxysporum 2.00 1.53 5.17
Penicillium lilacinium 0.25 0.2 0.96 Rhizopus  stolonifer 1.77 0.78 4.70
Gilmaniella humicola 0.37 0.00 0.91 Oomycota 1.89 0.83 3.84
Fusarium proliferatum 0.17 0.25 0.90 Fusarium hostae 0.08 1.22 3.45
Aspergillus candidus 0.17 0.25 0.88 Fusarium scirpi 1.00 0.37 3.38
Alternaria tenusissima 0.35 0.00 0.85 Micelia sterilia 1.39 1.78 3.16
Trichocladium  opacum 0.28 0.00 0.75 Humicola griseae 1.11 0.82 3.10
Penicillium rubrum 0.28 0.00 0.74 Calicium Pers. 1.09 0.88 3.08
Idriella lunata 0.23 0.08 0.72 Fusarium solani 0.27 1.03 3.00
Fusarium chlamydosporum 0.00 0.25 0.68 Penicillium thomii 0.00 0.99 2.71
Acremonium fuscolum 0.25 0.00 0.68 Penicillium funiculosum 0.25 0.90 2.43
Penicillium expansum 0.25 0.00 0.66 Levadura 0.6 0.77 2.42
Fusarium acuminatum 0.00 0.25 0.64 Epicoccum nigrum 0.28 0.87 2.30
Penicillium purpurascens 0.00 0.20 0.58 Eupenicillium javanicum 0.33 0.68 1.96
Nectria  inventa 0.08 0.17 0.57 Aspergillus  fumigatus 0.82 1.28 1.93
Aspergillus parasiticus 0.00 0.25 0.57 Stachybotrys chartarum 0.00 0.63 1.85
Gliocladium roseum 0.23 0.00 0.55 Trichoderma hamatum 0.59 0.08 1.78
Trichoderma pseudokoningii 0.19 0.00 0.51 Aspergillus  niger 0.25 0.60 1.77
Nigrospora  sphaerica 0.12 0.08 0.51 Acremonium kiliense 0.28 0.48 1.77
Fusarium subglutinans 0.20 0.00 0.51 Fusarium acuminatum 0.32 0.25 1.61
Fusarium graminearum 0.20 0.00 0.5 Humicola fuscoastra 0.38 0.33 1.57
Av. Diss. = 81.28% April_2010 December_2010 Trichoderma polysporum 0.43 0.12 1.51
Oomycota 2.27 0.83 4.36 Cladosporium  herbarum 0.00 0.51 1.47
Fusarium oxysporum 0.93 1.53 3.98 Penicillium citrinum 0.46 0.00 1.38
Trichoderma hamatum 1.34 0.08 3.54 Fusarium crookwelense 0.43 0.08 1.32
Rhizopus  stolonifer 0.97 0.78 3.46 Fusarium chlamydosporum 0.24 0.25 1.32
Fusarium hostae 0.00 1.22 3.36 Trichoderma piluliferum 0.27 0.17 1.14
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Micelia sterilia 1.02 1.78 3.36 Mortierella vinacea 0.39 0.00 1.11
Botryothichum piluliferum 1.16 0.00 3.21 Absidia glauca 0.37 0.00 1.11
Fusarium solani 0.8 1.03 2.96 Penicillium lilacinium 0.24 0.20 1.10
Penicillium thomii 0.00 0.99 2.53 Fusarium sporotrichiodes 0.34 0.00 0.99
Calicium Pers. 0.08 0.88 2.44 Trichoderma harzianum 0.33 0.00 0.98
Aspergillus  fumigatus 0.42 1.28 2.44 Alternaria alternata 0.20 0.17 0.97
Penicillium funiculosum 0.08 0.90 2.32 Aspergillus  parasiticus 0.17 0.25 0.92
Epicoccum nigrum 0.00 0.87 2.31 Trichoderma aureoviridae 0.23 0.08 0.89
Levadura 0.08 0.77 2.11 Cladosporium cladosporioides 0.08 0.25 0.85
Humicola griseae 0.60 0.82 1.97 Fusarium proliferatum 0.00 0.25 0.79
Penicillium citrinum 0.74 0.00 1.91 Aspergillus candidus 0.00 0.25 0.74
Trichoderma koningii 0.68 0.00 1.88 Staphylotrichum coccosporum 0.08 0.20 0.72
Eupenicillium javanicum 0.00 0.68 1.85 Penicillium purpurascens 0.00 0.20 0.66
Aspergillus  niger 0.25 0.60 1.82 Trichoderma koningii 0.23 0.00 0.66
Stachybotrys chartarum 0.00 0.63 1.75 Fusarium merismoides 0.24 0.00 0.65
Acremonium kiliense 0.28 0.48 1.66 Cylindrocarpon  dydimun 0.14 0.08 0.62
Cladosporium  herbarum 0.17 0.51 1.47 Acremonium furcatum 0.20 0.00 0.59
Absidia glauca 0.51 0.00 1.40 Penicillium  brevicompactum 0.19 - 0.52
Nectria ventricosa 0.52 0.00 1.32
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Table 3: Deviance analyses of the models for soil fungal total richness, richness and abundance 
pathogens: saprotrophic ratio. The columns show the term of the model, degrees of freedom (df), 
Chi squared (Chisq) and p-value (p). Column term present the factors soil organic carbon (SOC), 
precipitation (P), rotation management (M), tillage system (T), and the corresponding 
interactions. Bold number indicates statistically significant terms (p-values < 0.01).

Pathogens:Saprotrophic
Richness Richness Abundance

df Chisq p Chisq p Chisq p
M x T 6 1.84 0.174 0.1 0.75 0.29 0.588
P x T 31 0.61 0.437 0.06 0.81 0.25 0.616
P x M 31 0.14 0.704 0.21 0.65 4.08 0.043

SOC (g.kg-1) 31 2.91 0.088 0.59 0.44 0.07 0.796
Precipitation (mm) 31 6.85 0.009 2.45 0.12 7.03 0.008
Precipitation2 31 4.21 0.040 1.13 0.29 15.67 <.0001
Management 6 7.40 0.007 2.13 0.14 0.17 0.678
Tillage 6 5.08 0.024 0.23 0.63 1.52 0.218
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