
agronomy

Article

Nitrogen Recovery Efficiency from Urea Treated with
NSN Co-Polymer Applied to No-Till Corn

Pablo Andrés Barbieri 1,2,* ID , Hernán René Sainz Rozas 1,2 and Hernán Eduardo Echeverría 1

1 Department of Agronomy, Unidad Integrada Balcarce, C.C.276, 7620 Balcarce, Buenos Aires, Argentina;
sainzrozas.hernan@inta.gob.ar (H.R.S.R.); echeverria.hernan@inta.gob.ar (H.E.E.)

2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917,
C1033AAJ Buenos Aires, Argentina

* Correspondence: barbieri.pablo@inta.gob.ar; Tel.: +54-922-664-391-00

Received: 11 June 2018; Accepted: 14 August 2018; Published: 19 August 2018
����������
�������

Abstract: Nitrogen (N) rate increases used by many farmers produce a reduced or null effect on N
recovery efficiency (RE) by crops. Therefore, management practices to reduce N losses and increase
RE are necessary. Co-polymer maleic itaconic acid (NSN) have become available for use with urea
and has shown potential in reducing N losses. The objective of this study was to evaluate the
effectiveness of urea treated with NSN on grain yield and RE in a no-till corn. A field experiment was
carried out at Balcarce, Argentina over three years, evaluated treatments were urea and urea + NSN
at 120 N kg ha−1, and additional 0 N treatment was included. Urea + NSN was effective to reduce
total ammonia volatilization losses, and the average of two years were 1.4 (1.1% to N applied) and
8.7 kg ha−1 (7.2% to N applied) for urea + NSN and urea, respectively. However, while grain yield
and N grain removal were not affected by urea + NSN, the N rate significantly increased grain yield
and N grain removal. Nitrogen recovery efficiency was not affected by urea + NSN, RE (average of
three years) was 29.0% and 27.8% for urea and urea + NSN, respectively. In conclusion, there was no
advantage of using urea treated with NSN in no-till corn overgrain yield, N grain removal, or RE.
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1. Introduction

Nitrogen (N) is often the most yield-limiting nutrient, particularly in corn (Zea mays L.) production
systems [1]. Agriculture intensification and use of crops with higher grain yield potential have
increased N fertilizer rates, with a reduced or null effect on the improvement in N recovery efficiency
(RE) by the crops [2]. Efficient use of N in crop production is crucial for increasing crop yield and
quality, environmental safety, and economic considerations [3,4]. Therefore, it is necessary to develop
fertilization management strategies that maximize fertilizer N recovery through decreasing N losses.

Urea (46% N) is the most commonly used N fertilizer in Argentina and is generally
surface-broadcast applied. Broadcasting fertilizers that produce NH4

+ (urea and UAN) could result in
large ammonia volatilization losses (NH3-N). The magnitude of NH3-N losses in no-till scenarios is
affected by environmental factors (humidity, temperature, and wind), soil (pH, buffer capacity, cation
exchange capacity, organic matter), crop (quantity and type of crop residues), N source and rate [5–7],
and fertilization time and placement [8–11].

Globally, up to 64% of applied N is lost as NH3-N, therefore, NH3-N volatilization is a major
pathway of N loss in agricultural systems worldwide and, consequently, produce low fertilizer N
use efficiency [12]. The use of non-urea-based fertilizers reduce fertilizer application rates, and deep
placement of fertilizers, irrigation, urease inhibitors, and controlled release fertilizers are effective
in reducing NH3-N volatilization. Among the enhanced efficiency fertilizers, urease inhibitors and
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controlled release fertilizers decreased NH3-N volatilization by 54% and 68%, respectively whereas
nitrification inhibitors increased NH3-N volatilization by 38%. These results confirm that N loss can be
mitigated through the adaption of appropriate fertilizer products [12].

Co-polymer maleic and itaconic acids (Nutrisphere-N, or NSN) are a 30–60% co-polymer of maleic
and itaconic acid that, according to the product literature, inhibits nitrification through complexing
soil copper ions and inhibits urease activity by complexing nickel ions within the urease enzyme
itself [13,14]. NSN has become available for use with urea-containing fertilizers and has shown
potential in reducing N losses [15,16]. The material is reported to have the ability to slow urea
hydrolysis and the nitrification process through effects on metalloenzymes, such as urease and the
soil N oxidation enzymes of Nitrosonomas and Nitrobacter. Each of these enzyme’s action depends on
a specific multivalent metallic co-factor, respectively nickel, copper, and iron [17,18]. The polymer,
NSN, is theorized to sequester or compromise the activities of these metals with a resulting slowing of
the respective reactions [19]. NSN polymer coating reduces urea hydrolysis, thereby reducing NH3-N
volatilization and increasing the agronomic efficiency of urea-based N fertilizers [16,19]. However,
published studies demonstrating that NSN inhibits soil urease have not been found. Adding NSN
to urea had little effect on urease activity or ammonia volatilization [20]. Currently there is little
information on the relative effectiveness of these materials in a field environment. The objective of this
study was to evaluate the use of urea treated with NSN on grain yield and recovery efficiency (RE) in
a no-till corn.

2. Materials and Methods

The experiment was conducted for three years over long-term cropped soil, at Balcarce, Argentina
(130 m above sea level; 870 mm mean annual rainfall; 13.7 ◦C mean annual temperature), on a soil
complex of a fine, mixed, thermic Typic Argiudoll with less than a 2% slope. The soil has a loam
texture at the surface layer (0–0.20 m depth), with an average particle size distribution of 23% clay,
36% silt, and 41% sand. The subsurface layer (0.25–1.10 m depth) has a clay-loam texture. Surface
horizon characteristics (0–0.2 m) at the beginning of the experiment are presented in Table 1.

The experimental area was under NT (more than seven years), in all years preceding crop was
wheat (Triticum aestivum L.) and, ground cover by residues ranged from 80% to 90%. The experimental
design was a randomized complete block with three replications and two combinations of Urea
(with and without Nutrisphere-N) at a 120 kg ha−1 N rate plus a control treatment (0 N).
Urea fertilization was applied broadcast on the surface at planting time in years 1 and 3, and at the six
leaf phenological stage (V6) [21] in year 2. NSN polymer was added evenly sprayed (impregnated)
onto the urea at a rate of 0.25% (1/2 gallon of NSN per ton of urea) immediately before application.

Table 1. Soil characteristics during planting of maize for three growing seasons at Balcarce, Argentina.

Growing Season P † N-NO3
− pH OM ‡

(0–20 cm) (0–60 cm) (0–20 cm)
mg kg−1 kg ha−1 %

Year 1 19.5 42.0 5.6 4.9
Year 2 15.0 39.8 5.7 5.4
Year 3 8.2 74.4 5.9 5.1

P † = Phosphorus Bray I [22], OM ‡ = Organic Matter [23].

In all years, individual plots were five rows wide (0.52 m) and 12 m long (31.2 m2). Weeds and
insects were chemically controlled with recommended products and rates. Plots were fertilized
at planting with 20 kg P ha−1 as triple superphosphate (0-46-0), and 15 kg S ha−1 as calcium
sulfate (18.6% S). The crop was irrigated during first two years as needed so those production
factors did not limit crop growth. Crop evapotranspiration (CET) was determined as the product
between potential evapotranspiration (ETO) and crop coefficient (Kc) [24]. The ETO was determined
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according to Pennman (1948) [25]. The crop coefficients (CET/ETO) are those reported for the area by
Della Maggiora et al. (2002) [26].

Ammonia volatilization losses were evaluated in the first two years. A semi-open static system [27]
was used to monitor NH3-N volatilization losses from the plots. It consisted of one polyvinyl chloride
cylinder (30 cm diameter, 50 cm height) per experimental unit, containing two polyurethane sponges
12 cm apart saturated with 0.5 M sulfuric acid (H2SO4). The lower sponge was placed 30 cm above the
soil surface and was used to capture the NH3-N volatilized from soil. The second sponge was placed
4 cm below the top of the cylinder to prevent NH3-N from the atmosphere from entering the chamber
and contaminating the lower sponge. The sponges were changed every 24 or 48 h and washed with
1.5 L of deionized water. An aliquot of 25 mL was alkalinized with 40% sodium hydroxide (NaOH) and
NH3-N was determined by microdistillation [28]. Measurements of NH3-N volatilization were started
at the time of fertilizer application and continued either until the losses from fertilized treatments were
negligible and equaled those from 0 N treatment, or until a total of 10 mm of rain fell. The occurrence
of rainfall events (>10 mm) interrupted the volatilization process [29]. Immediately after every rainfall
event the chamber was moved in the same plot to ensure that the measured period reflected the
environmental conditions (rain, wind, temperature) of the previous period.

At physiological maturity, three 7.15-m-long interior rows (11.15 m2) of each experimental unit
were hand-harvested to determine grain yield. Grains were oven dry weighed, and milled to pass
a 1-mm mesh. Total N in grain was determined by the Dumas method using a LECO TruSpec
analyzer (LECO CORPORATION, St Joseph, MI, USA) [30]. Nitrogen grain removal was calculated
as the product of N concentration and dry weight. Grain yields were corrected to a 140 g kg−1 grain
moisture content.

Nitrogen recovery efficiency in grain (%RE) was calculated as:

RE = (GNF − GNT)/N rate × 100 (1)

where GNF and GNT are grain N content in the fertilized treatment and grain N content in the 0 N
treatment, respectively.

Analysis of variance was carried out using the SAS 9.1 software [31]. Treatment means were
compared using the LSD mean separation procedure (5%).

3. Results and Discussion

3.1. Climatic Conditions

The water balances for corn crops during the growing seasons are presented in Figure 1. In year 1,
where the rainfall registered from October to March plus irrigation totaled 450 mm, a light water
deficit event was registered at the beginning of critical kernel set period [32]. This water stress (60 mm)
would lightly affect corn grain yield (Figure 1). On the other hand, during corn growing seasons in
years 2 and 3 a pronounced stress took place during January (92 mm and 122 mm of water deficit in
years 1 and 2, respectively) (Figure 1), a period in which water availability is crucial for obtaining high
corn yields [33]. Thus, corn grain yield may have been affected by water availability.
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13.1 (11.0% of applied N) and 0.5 kg ha−1 (0.4% of applied N) from urea and Urea + NSN, respectively 
(Figure 3). In year 2, a lack of precipitation produced a low rate of urea hydrolysis until three days 
after fertilization, after that 13 mm precipitation incorporated N into the soil profile and, therefore, 
NH3-N volatilization losses were low [29] (Figure 2). In general, NH3-N volatilization losses from 

0

20

40

60

80

100

120

140

160

2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2

O N D J F M

W
a
te

r 
(m

m
)

Rain+Irrig

RET

Deficit

Year 2

0

20

40

60

80

100

120

140

160

2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2

O N D J F M

W
a
te

r 
(m

m
)

Decadical

Rain

RET

Deficit

Year 3

0

20

40

60

80

100

120

140

160

3 1 2 3 1 2 3 1 2 3 1 2 3 1 2

O N D J F M

W
a
te

r 
(m

m
)

Rain+Irr

RET

Deficit

Year 1
Rain + Irrigation

RET

Deficit

RET

Deficit

Rain + Irrigation

RET

Deficit

Rain 

Figure 1. Precipitation, real evapotranspiration (RET), and water deficit during three years on
no-till corn.

3.2. Ammonia Volatilization Losses

Ammonia volatilization losses were during a period of seven and 18 days in Years 1 and 2,
respectively (Figure 2). In Year 1, NH3-N volatilization losses from urea was significantly higher than
urea + NSN during all experimental periods (seven days), while NH3-N volatilization losses from urea
+ NSN were not different from 0 N treatment (Figure 2). Total NH3-N volatilization losses were 13.1
(11.0% of applied N) and 0.5 kg ha−1 (0.4% of applied N) from urea and Urea + NSN, respectively
(Figure 3). In year 2, a lack of precipitation produced a low rate of urea hydrolysis until three days
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after fertilization, after that 13 mm precipitation incorporated N into the soil profile and, therefore,
NH3-N volatilization losses were low [29] (Figure 2). In general, NH3-N volatilization losses from urea
were significantly higher than urea + NSN from days 1–8. Fertilization treatments were different to 0
N treatment from day 9–18 (Figure 2). Total NH3-N volatilization losses determined were 4.5 (3.8% of
applied N) and 2.5 kg ha−1 (2.1% of applied N) from urea and urea + NSN, respectively (Figure 3).
In both years, higher rates of NH3-N volatilization losses were observed during a third day after
fertilization as a consequence of higher soil pH values [34] due to the high alkalinity induced by the
urea hydrolysis. Ammonia volatilization losses form urea treatment were similar to those reported in
the area [9,10,35,36], and lower than losses reported by other authors [29,37]. This difference could be
attributed to the slightly acid pH of the soil under study (Table 1) and to higher titratable acidity due to
its high soil organic matter content [38] (Table 1). Higher levels of titratable acidity reduce volatilization
losses because of the greater soil buffer capacity [34]. These results showed that NSN was effective in
reducing NH3-N volatilization losses. Similar results were informed by Pereira et al. (2009) [15] and
Gordon (2014) [16]. However, Franzen et al. (2011) [20], Goos (2013) [39], and Chien et al. (2014) [40]
reported that NSN had the weakest or null effect on reducing ammonia losses.
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Figure 2. Rates of ammonia N volatilization losses (NH3-N, kg ha day−1) from urea or urea treated with
NSN (urea + NSN) applied broadcast on the surface to no-till corn during two years. Arrows indicate
rainfall dates and amount. Vertical bars indicate LSD test (0.05) values. NSN, maleic itaconic acids.
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3.3. Grain Yield, N Grain Removal, and Recovery Efficiency

Over three years, corn grain yield was not significantly increased by the use of NSN (Figure 4).
A similar result was informed by Pereira et al. (2009) [15]. Grain yield was significantly increased by
N fertilization (Figure 4). Averaging of the three years, the N response was 1040 kg ha−1. No yield
increases in the use of NSN was the consequence of the NH3-N volatilization losses from urea were
not very high (Figure 3). High grain yield was determined in control treatments and, therefore, a low
response to applied N could be a consequence of high N mineralization from organic matter and soil
N content at planting time (Table 1). The soils of the area contain relatively high levels of organic
matter (Table 1), therefore, the amount of N mineralized from the soil organic fraction during the crop
growing season would be important [41]. Under adequate water availability conditions, N supplied
by mineralization during the maize growing season can vary from 100 to 250 kg N ha–1, depending on
soil management practices (years from last pasture, crop rotations, etc.) [42].Agronomy 2018, 8, x FOR PEER REVIEW  7 of 11 
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Figure 4. Grain yield affected by N rate and urea or urea treated with NSN (urea + NSN) applied
broadcast on the surface to no-till corn during three growing seasons. Means followed by the same
letter are not significantly different from each other based on the LSD test (0.05). Vertical bars indicate
standard error. NSN, maleic itaconic acid.

Nitrogen grain removal was not significantly affected by the use of NSN, and similar to the
observed grain yield, only a significant N response was determined (Figure 5). No response in
grain yield and N grain removal using NSN were reported by Franzen et al. (2011) [20] on spring
(Triticum aestivum L.) or durum [Triticum turgidum L. subsp duram (Desf.) Husn.] wheat in North
Dakota, and rice (Oriza sativa L.) in Mississippi and Arkansas. However, Gordon (2014) [16] showed
significant corn (Zea mays L.) grain yield and grain N concentration by using NSN. Similar results were
found by Wiatrak and Gordon (2014) [43] in corn with fall N applications.

Over three years, RE was not significantly increased by the use of NSN (Figure 6).
No significant differences were seen in grain yield and grain N content between urea and urea +
NSN (Figures 4 and 5), and consequently produce a similar RE by use of NSN (Figure 6). Averaged
across years, RE was 29% and 28% for urea and urea + NSN, respectively. The RE values determined
in the experiments was inferior to information by Sainz Rozas et al. (2004) [9] for the area (45–55%).
Low RE determined over three years could be a consequence of a greater N mineralization from
organic matter [42], N losses by denitrification [44], or immobilization [9]. On the other hand, NO3-N
leaching would be important in the operation of NT maize cropping systems in the area [9]. NSN was
ineffective in increasing N efficiency for corn (Zea mays L.), winter wheat (Triticum aestivum L.) [45],
and sugarbeet (Beta vulgaris L.) [46].
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Figure 5. Nitrogen grain removal affected by the N rate and urea or urea treated with NSN (urea +
NSN) applied broadcast on the surface during three growing seasons to no-till corn. Means followed
by the same letter are not significantly different from each other based on the LSD test (0.05). Vertical
bars indicate standard error. NSN, maleic itaconic acid.
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applied broadcast on the surface during three growing seasons to no-till corn. Means followed by the
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indicate standard error. NSN, maleic itaconic acid.

4. Conclusions

Urea treated with NSN was effective to reduce total ammonia volatilization losses in no-till corn.
However, the results from three-year experiments show no advantage in grain yield, N grain removal,
or RE with the use of urea treated with NSN.
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and H.E.E.
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