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Abstract 

 

The conversion of land from natural environments to human-managed areas has been 

particularly pronounced in the semiarid Chaco Region. In this context, it is critical to 

understand the impacts that these major changes have on species diversity. The 

specific aims of this thesis were to understand: i) how the different human-modified 

environments influenced the distribution of the bird assemblages in the current 

agricultural matrix; ii) which local and landscape scale characteristics best explained 

species richness and relative abundance of mammals; and iii) what is the relationship 

between biodiversity and profit for both taxa, and given this relationship, to what 

extent can conservation and production objectives be simultaneously achieved. Bird 

and mammal community data was gathered in seven different habitats of an 

agricultural matrix and inside a National Park. Bird species richness and abundance 

were extremely low in highly modified environments (agriculture plots), but increased 

significantly in intermediate, or low modified habitats (silvopasture plots, forest 

outside and inside the National Park, respectively). Richness and capture frequency of 

mammals increased gradually across the gradient of habitat modification, from low 

numbers in agricultural habitats to a maximum in National Park forests. Changes in 

species composition with production intensification differed between birds and 

mammals. The bird communities were similar for low- and intermediate-intensity 

farming, with constant number of species, abundance and community integrity. 

However, further intensification led to an abrupt decline, defining a clear threshold. 

Mammal species richness was maintained in low-yield farming, relative abundance 

declined with increasing production, favoured by a wildlife-friendly farming approach. 

In contrast to birds, mammal community integrity decreased exponentially with 

increased levels of intensification, showing that only protected or well-preserved 

forests can support some habitat-restricted species. The results suggest that a 

combined strategy is the best option to achieve conservation and production targets 

that include both taxa. 
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The sun sets behind the forest
2
 

 

 

 

 

 

 

1 GENERAL INTRODUCTION 

 

Environmental changes and modifications in natural ecosystem structure have 

attracted worldwide public concern due to the rapid loss of biodiversity. The latest 

publication of the global Living Planet Index (LPI) (WWF 2014), reported an alarming 

52% decline in the population size of vertebrate species between 1970 and 2010. 

Land-use change and the resulting loss and degradation of natural vegetation cover 

associated with human production are considered the most important drivers of these 

changes (Sala 2000; Chapin III et al. 2002; Zak et al. 2004; Norris 2012). Natural 

ecosystems have been extensively transformed into simplified managed ecosystems 

with an intensification of the use of resources in order to increase the production of 

goods and services (Saunders et al. 1991; Tilman 1999; Boletta et al. 2006), and it is 

clear that the global demand for these products is going to place more pressure on 

land use in the future (Tilman 1999; Balmford et al. 2005; Ewers et al. 2009). 

                                                           
 

2
Typical sunset in Chaco. Clear skies and dusty atmosphere create amazing colours. 
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Changes in landscapes caused by human-induced disturbances often result in habitat 

loss and sub-division (i.e. fragmentation), significantly influencing the patterns of 

terrestrial species distribution and abundance (Saunders et al. 1991; Fahrig 2003). 

Based on the theory of island biogeography (MacArthur & Wilson 1967), a growing 

body of research has focused on the main effects of habitat loss and fragmentation on 

species assemblages (Ewers & Didham 2006; Fischer & Lindenmayer 2007; Tscharntke, 

Tylianakis, et al. 2012). Species persistence is affected mainly by the reduction of 

available resources, the isolation of remnant patches, and edge effects (Fahrig 2003; 

Fischer & Lindenmayer 2007). In general, small habitat patches can lead to population 

declines because resources in smaller patches may be more limited (Fischer & 

Lindenmayer 2007). In addition, habitat sub-division increases isolation, affecting daily 

movements of species, dispersion of juveniles, and even large-scale movements of 

species such as seasonal migration (Soulé et al. 2004). Lastly, the surrounding modified 

habitat influences temperature, wind action and humidity, which in turn affect 

vegetation structure and composition (Lopez de Casenave et al. 1995). As a 

consequence, the structure of animal communities is also affected (Lopez de Casenave 

et al. 1998; Banks-Leite et al. 2010), by what is known as “edge effects”. 

The importance of maintaining heterogeneous human-modified habitats is not 

only limited to favour species movements across landscapes, but also to provide 

suitable areas available for native species (Ewers & Didham 2006; Fischer & 

Lindenmayer 2007). Several studies have shown that modified habitats presenting a 

vegetation structure similar to that of primary habitats are important for the 

persistence of species (Schulze et al. 2004; Barlow et al. 2007; Cozzi et al. 2007; R. 

Cassano et al. 2012). For example, landscape heterogeneity is recognised as beneficial 

for native species in European farming landscapes (Macdonald et al. 2007; Diekötter et 

al. 2008; Tscharntke et al. 2011), Central and South American farming landscapes 

(Daily et al. 2001; Gordon et al. 2007; Perfecto et al. 2003) and forestry landscapes 

around the world (Koh et al. 2009; Clough et al. 2011). However, the potential of 

modified habitats to harbour forest species varies among biological groups (Schulze et 

al. 2004; Harvey & González Villalobos 2007; Pardini et al. 2009). Species of a given 

taxonomic group differed in their response from another group in relation to its 

specific requirements and its ability to move throughout the landscape (Fahrig 2003; 
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Burel et al. 2004; Fahrig 2007). Two different groups are unlikely to react in the same 

way; therefore, comparisons among taxa or functional groups can highlight essential 

differences in their spatial dynamics and responses to spatial heterogeneity (Jeanneret 

et al. 2003). Additionally, the effects of land-use change are highly scale-dependent. 

This is partly attributable to local spill over effects across boundaries, which are higher 

when the proportion of undisturbed primary habitat at landscape scale also increases 

(Tscharntke et al. 2005; Pardini et al. 2009). 

On the one hand, the identification of patterns and processes underlying 

species distribution and abundance at different spatial and temporal scales is a key 

factor for biodiversity conservation in this type of modified landscape (Saunders et al. 

1991; Jeanneret et al. 2003; de Oliveira et al. 2009). Ecologists have recently started to 

pose fundamental questions, such as to what degree can biodiversity persist in human-

modified landscapes, and which management strategies are most effective at 

enhancing its persistence for a given spatial and temporal scale.  

On the other hand, there is mounting evidence to show that careful design and 

management of the matrix can help maintain not only species fluxes, but also key 

ecological processes. Countries in developmental transition tend to rely on agriculture 

for economic growth. In South America, the main driver of deforestation is agricultural 

expansion (Paruelo et al. 2004; Grau, Gasparri, et al. 2005; Mattison & Norris 2005) 

which has been particularly intense in the tropical and dry forests of the continent 

(Gardner et al. 2009; Portillo-Quintero & Sánchez-Azofeifa 2010). In this scenario, one 

of the greatest challenges is the alignment of an adequate use of the land with 

agricultural production (Green et al. 2005; Mattison & Norris 2005; Phalan, Onial, et al. 

2011; Tscharntke, Clough, et al. 2012). 

The demand for food and bioenergy crops is increasing at the expense of 

natural habitat, and recently, analyses have focused on whether farming and 

conservation land should be “spared” or set aside, thus segregating land for nature 

from land for production, or “shared” using integrated production and conservation 

practices in the same area. The land sparing vs. sharing (or wildlife-friendly farming) 

dichotomy is based on the argument that yields are negatively correlated to wild land 

biodiversity. A model by Green et al. (2005) compares the level of biodiversity 

obtained from intensive high-yield farming and extensive low-yield farming when 



20 

 

biodiversity is a decreasing function of yield. For a given production target, both 

agricultural methods would lead to the same level of biodiversity if this were a linear 

function of yield. Accordingly, if the relation between yield and biodiversity is convex 

(function Type I Figure 1.1), species exhibit a sharp decline even with low-intensity 

farming practices, these species have their highest overall population when land is 

intensively farmed in one sector and other land is spared and left unaltered. The 

opposite result is obtained if the relation between biodiversity and yield is concave 

(function Type II, Figure 1.1). In this case, less intensive, wildlife-friendly farming may 

be a better strategy because the the levels of species diversity in intact natural habitat 

and habitat in low-intensity (low-yield) agriculture are relatively similar. The land-

sparing vs. wildlife-friendly farming dichotomy is a good starting point to think about 

compromises, but in reality, there is a wide range of options in between, and these 

may differ substantially by taxon, geographic location, and spatial scale. 

Figure 1.1. Theoretical relationships between land-use intensification and biodiversity. Systems 

that show an exponential decay (Type I) would be best suited for a land sparing strategy 

because biodiversity suffers a rapid decline as soon as intact natural habitat is converted into 

low-intensity agricultural production. Wildlife-friendly farming would be most appropriate in 

systems with a Type II curve, where biodiversity presents similar values in low-yielding farms, 

and in unfarmed or natural habitats. For diversity-yield functions which are neither convex nor 

concave (Type III), small incremental or qualitative changes in land use could lead to dramatic 

changes in biodiversity values, therefore a combination of strategies would be needed to 

achieve a sustainable production system (Green et al. 2005). Diagram adapted from Koh et al. 

2009. 
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Empirical studies comparing the merits of these strategies differ in their outcome. For native 

vegetation in Europe and Australia (Dorrough et al. 2007; Makowski et al. 2007; Kleijn et al. 

2009) extensive management proved to be the best option to maintain biodiversity and 

prevent further long-term degradation of the resource base. Similarly, insects, birds and 

mammals showed favourable responses to low-intensity farming practices (Clough et al. 

2011; Gordon et al. 2007), with disproportionate ecological losses of biodiversity and 

ecosystem functions when greater extensions of forest were cleared for agroforestry 

plantations of cocoa and coffee (Steffan-Dewenter et al. 2007). Contrary to these findings, in 

birds and tropical forest plants, more intensively-farmed areas coupled with natural refuges 

appear to be better (Aratrakorn et al. 2006; Phalan, Onial, et al. 2011).  

Phalan, Balmford, et al. 2011 concluded that incrementing yield through agricultural 

intensification would decrease human requirement for land. This idea has been heavily 

criticized (Vandermeer & Perfecto 2005; Fischer et al. 2011; Tscharntke, Clough, et al. 2012; 

Perfecto & Vandermeer 2012) as it does not incorporate the complexity and variety of 

productions systems around the world (Kleijn et al. 2009; Koh et al. 2009; Tscharntke, 

Clough, et al. 2012), and overlooks the beneficial effects of ecosystem services that could be 

provided by the biodiversity associated to this kind of environments (Tscharntke et al. 2005; 

Norris 2012). There are several objections against this approach: first, as Clough et al. 2011 

showed in their study, wildlife friendly farming can reach yield levels as good as those of 

conventional agriculture. There is evidence to support that wildlife friendly productions 

generate positive effects both in their biodiversity content as in the quality of the matrix 

they create, besides producing reliable yields (Perfecto et al. 2005). The high variability in 

yield-biodiversity relationships is due to differences in land-use intensity (mainly between 

temperate and tropical regions, i.e. developed and developing countries). This generates a 

wide range of management options that allow to balance human and ecological needs 

(Mattison & Norris 2005; Steffan-Dewenter et al. 2007; Kleijn et al. 2009). Secondly, 

increasing yield can either increase or decrease deforestation rates depending on local 

conditions. As such, allowing intensification would not necessarily spare land for nature 

(Ewers et al. 2009). Thirdly, agricultural production is highly dependent on ecosystem 

services such as pest control, pollination and soil fertility, among others (Tscharntke et al. 

2005; Flynn et al. 2009; Norris 2012). Conventional intensification, frequently relying on the 
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use of pesticides and agrochemicals, tends to disrupt beneficial functions of the biodiversity 

at different spatial and temporal scales (i.e. inside and outside farmed areas, and in the 

short and long term) (Tscharntke et al. 2005). Lastly, the environmental quality of the matrix 

is often overlooked in the land sparing vs sharing debate. Almost all landscapes are currently 

fragmented, with patches of more or less native vegetation interspersed among a matrix of 

different land-use systems, including agriculture. In this scenario, metapopulation and 

metacommunity dynamics exist among patches and organisms through the use of corridors 

and remnants of natural vegetation (Gehring & Swihart 2003; León & Harvey 2006; R. 

Cassano et al. 2009; Barlow, Gardner, et al. 2010). If the land-sparing strategy includes the 

implementation of monocultures and the elimination of small remnants of natural habitats, 

that may severely affect organisms with broad home ranges (e.g. large carnivores) or those 

attempting to migrate between patches. 

Regardless of the attempts to frame research within land-sparing vs. land-sharing, 

biodiversity-yield functions for most taxa remains unknown in the majority of systems. 

Therefore it is possible that some groups exhibit “unstable” and less predictable responses 

to intensification resulting on dramatic changes in composition with only small changes in 

the production system (function Type III, Figure 1.1) (Koh et al. 2009; Hodgson et al. 2010).  

 

In this thesis, we address some of these topics as they represent interesting theoretical 

issues as well as critical practical conservation challenges linking the development of human 

activities in increasingly threatened natural environments. We carried out the field research 

in the semiarid Chaco Region in Argentina, an important yet understudied ecosystem that is 

being rapidly degraded by agricultural expansion and intensification (Zak et al. 2004; Piquer-

Rodriguez et al. 2015). Recent ecological studies have started to address the complex 

relationships between wildlife and human activities given the growing importance of the 

region for both conservation and productive uses (Macchi & Grau 2012; Mastrangelo & 

Gavin 2012; Quiroga et al. 2013; Macchi et al. 2013; Mastrangelo & Gavin 2014; Torres et al. 

2014; Piquer-Rodriguez et al. 2015). It is well known that the effects of land use on 

community diversity and composition varies among animal groups (Schulze et al. 2004; 

Tscharntke, Clough, et al. 2012). This work adds to the knowledge of previous research: 

firstly, by considering changes in bird and mammal community assemblages inhabiting a 
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gradient of agricultural and natural habitats. This will be the first study addressing the issue 

of land use change and intensification on more than one taxa at the same time for the study 

area, facilitating the comparison of their requirements and the evaluation of differential 

responses to habitat loss and modification. Second, the study area encompassed 

approximately 720,000 hectares of the semiarid Chaco Region, including a National Park 

that holds one of the best preserved remaining stands of forest and an extensive 

agricultural mosaic representing the most important land-use types and livelihoods 

developed in the area. Lastly, the range of land-use types incorporated not only include 

productive systems, but also small natural elements in the landscape (i.e. forest strips or 

windbreaks consisting of narrow strips of native forest in the edges of agricultural fields) 

that may play an important role in the dispersion and subsistence of animal populations. 

 

1.1. Objectives 

 

In this thesis we aim to provide sound scientific evidence to inform policy and decision-

making processes, and to influence management and planning towards the sustainable 

development of productive systems together with wildlife conservation. Following further 

discussion of the main topics, the thesis is composed of three data-based chapters focusing 

on variation in bird species assemblages (Chapter 2); mammal species assemblages (Chapter 

3); and responses in both taxa to changes in agricultural yield (Chapter 4). An overview and 

summary of the main findings is presented in Chapter 5 including discussions on future lines 

of research to improve our understanding of agriculture-biodiversity relationships in the 

region. The following paragraphs outline the main objectives for Chapter 2 to 4. 

 

1.1.1. Chapter 2: Bird assemblages and habitat relationships in agricultural landscapes of the 

semiarid Chaco 

The specific objective was to analyse species diversity and composition of bird community in 

response to land use. We used bird species richness, abundance and composition of bird 

assemblages to characterize a gradient from natural protected forest to intermediate-

intensity agroforestry system (i.e. shaded cattle ranching), and annual crops. A community 

with a large number of species might be restricted to a few functional roles depending on 
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the species arrangement. In order to analyse this aspect, we examined the differences in 

bird assemblages between habitats at trophic guild level. 

 

1.1.2. Chapter 3: Mammal community response to a gradient of land use intensification 

In this chapter, we studied how mammalian communities change in response to 

anthropogenic management, and also investigated the influence of the surrounding 

landscape on the assemblage diversity. We assessed the effect of five land-use types 

present in the agricultural landscape and we compared them with non-production 

ecosystems. Additionally, we evaluated mammal community structure and composition 

using variables from local and landscape scales. This research represents the first landscape 

scale study for the mammal community inhabiting the agricultural mosaic in the semiarid 

Chaco.  

 

1.1.3. Chapter 4: Balancing biodiversity and agricultural production: conservation of bird and 

mammal communities in the agricultural frontier 

Here, we attempted to combine information on economic output and biodiversity for each 

site and each animal group studied in the previous chapters. We assessed the responses of 

community measures (species richness, abundance and community similarity) for birds and 

mammals along the gradient of production profit. We also aimed at analysing the economic 

differences in profit among the farming systems in the region, and most importantly, at 

evaluating a potential unified strategy that incorporates the ecological requirements of 

birds and mammals. 

 

1.2. Study area 

 

The Gran Chaco Americano is a vast region shared by Paraguay, Bolivia, Argentina, and a 

small portion of Brazil (Figure 1.2). It constitutes one of the few areas in the world where 

the transition between the tropics and the temperate belt does not occur in the form of a 

desert, but as semiarid forests and woodlands. The Chaco Region is one of the largest 

forests in South America, only after Amazonia (Cabrera 1971; Bucher & Huszar 1999; Grau, 

Aide, et al. 2005) extending from the foothills of the Andes range in the West to the Paraná 
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and Paraguay rivers in the East. It holds an exceptional biological and cultural diversity that 

includes 25 indigenous groups and hundreds of communities of European immigrants who 

live across the region. It is a highly threatened and poorly studied ecosystem of great 

importance as a conservation "hotspot" (The Nature Conservancy (TNC) et al. 2005), 

although much of its species have suffered a strong reduction in population numbers (Short 

1975; Aizen & Feisinger 1994; Bucher & Huszar 1999). In the last 30 years, the area has 

suffered a widespread and strongly-accelerated deforestation process that resulted in a 

substantial increase in forest fragmentation and loss of potential connectivity (Piquer-

Rodriguez et al. 2015). 
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Figure 1.2. Location of the study area in the Argentine Chaco in the context of Chaco Region in South America. The top left rectangle shows the location of 

Argentina in South America. The map in the middle shows the distribution of the Gran Chaco Region in South America (green lines area), and the study area 

(agricultural landscape shown as a small rectangle in green and light green, and Copo National Park shown as a small polygon in dark green in the North-

West corner of the agricultural landscape). The figure to the right is a detailed land cover map of the study area. The different shades of green indicate the 

presence of forest, secondary forest, and agriculture land covers (from dark green to light green, respectively). Natural grassland is shown in yellow. The 

lower rectangle represents the agricultural landscape encompassing an area of c. 600,000.00 ha, and the upper polygon (dark green with a yellow patch) 

represents Copo National Park (c. 118,120.00 ha). Only a big patch of natural grassland is evident in the study area given the coarse-grain scale of the map. 

Figure 1. 1 . Location of the study area in the Argentine Chaco 
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Use of the natural resources in the Chaco Region 

The Gran Chaco, extending more than one million square kilometres, is a remarkable 

biodiversity repository not only of animal and plant species, ecosystems and landscapes, but 

also of cultural knowledge and traditions of its native ethnic groups (The Nature 

Conservancy (TNC) et al. 2005). Along with the historic development, this biome has 

suffered profound changes and extinctions of wildlife, inhabitants, traditions, and 

production practices extending across multiple spatial scales (Morello & Saravia-Toledo 

1959). 

The original vegetation in our study area was parkland or savannah with patches of 

hardwood intermingled with grasslands (Morello & Saravia-Toledo 1959). This mosaic of 

vegetation was kept stable by periodic fires until the arrival of the colonists and their 

introduction of domestic cattle, which led to a period of overgrazing and extinction of the 

fauna in the natural grasslands. Consequently, the woody vegetation rapidly encroached 

upon the open areas replacing the grasses by opportunistic shrub species (Morello et al. 

2006; Bucher & Huszar 1999). A second stage in the process of landscape alteration started 

in the 1880’s when the demand of forest products such as wood for railway sleepers, fence 

posts, charcoal and firewood, increased the harvest of timber. In addition, the incursion of 

the cattle into the forest, severely affected the regeneration of some of the most 

charismatic and important plant species of the region (Torrella & Adamoli 2006; Morello et 

al. 2006). In this period, the expansion of the railway network also favoured the arrival of 

peasants to previously unoccupied areas establishing new settlements and small agricultural 

plots by clearing forest patches (Bucher & Huszar 1999; Morello et al. 2006). Since the 

beginning of 1900, and for more than sixty years, the British “Forest Land, Timber and 

Railways Company” exploited millions of hectares of forest to extract tannin and oils mainly 

from two species of trees, the “quebracho colorado santiagueño” (Schinopsis quebracho-

colorado), and the “palo santo” (Bulnesia sarmientoi), almost exhausting the resource 

(Morello et al. 2006; Torrella & Adamoli 2006). By the 1970’s another large-scale extracting 

activity arrived to the Chaco Region. The lengthening of trails and roads for oil and water 

explorations, and to establish federal limits facilitated the access of people to pristine areas. 

Hunters, peasants, wildlife collectors, pet traders, lumbermen and smugglers took 

advantage of a new set of resources that would otherwise be inaccessible (Bucher & Huszar 
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1999; Morello et al. 2006). The agricultural expansion process started around 1975 and 

brought technologic changes that shaped the landscape. The “Green Revolution” came with 

the possibility of significantly increasing crop yields through the use of new cultivars, 

machinery and potent agrochemicals (Morello et al. 2006; Grau, Gasparri, et al. 2005; Grau, 

Aide, et al. 2005). The expansion of conventional agriculture involved the complete 

replacement of the native ecosystem for extensive cropping areas. By 1996, the 

introduction of transgenic soybean cultivars with resistance to a powerful herbicide 

(glyphosate) allowed a more intensive use of the land by cropping it all year round (Grau, 

Aide, et al. 2005; Aizen et al. 2009). Soybean cultivation pushed cattle pastures further into 

the agricultural frontier and imposed an industrialized-agriculture model leading to one of 

the most radical and intensive processes of land conversion and landscape transformation 

(Morello et al. 2006; Grau, Gasparri, et al. 2005; Grau, Aide, et al. 2005; Gasparri & Grau 

2006).  

The history of natural resources use in the semiarid Chaco region has led to a 

landscape consisting of a mosaic of primary forest remnants, agroecosystems, and 

secondary growth forest. Nowadays, the area is mostly rural with people living in several 

towns along a National road or in small settlements spread throughout the forest, and in 

agricultural fields. 

 

Characteristics of the region 

The Chaco Region in Argentina occupies approximately 675,000 km2 that can be divided in 

sub-regions based on an East-West rainfall gradient (Cabrera 1971; Bucher & Huszar 1999). 

Rainfall occurs mainly in the summer months (December to March), and range from 800 

mm in the East to 400 mm in the West. The mean temperatures are 26.9° C for the hottest 

month (January) and 12.4° C for the coolest month (July). Extreme temperatures range 

between 42° C and 45° C in summer and -7° C to -8° C in winter (Cabrera 1971; Boletta et al. 

2006). The humid sub-region is the most productive one, and it has been intensively 

transformed for agricultural production over the last four decades (Bucher & Huszar 1999). 

This region possesses the highest human density and the landscape is a heterogeneous 

mosaic of semi deciduous tall forest, wetlands, gallery forests and agriculture. The semiarid 

sub-region is the driest and most markedly seasonal, but increasing deforestation over the 
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last decade suggests a change in conditions for cropping. Soybean expansion into forest 

areas has been attributed to an increase in rainfall, economic changes in the international 

market, and technological improvements (i.e. new crop varieties that override 

environmental constraints, Grau, Gasparri, et al. 2005; Grau, Aide, et al. 2005). This current 

trend of deforestation and habitat loss represents a serious threat for biodiversity 

conservation (Torrella & Adamoli 2006). 

There are five protected areas within this territory, but only two of them hold a 

National Park category: Copo National Park (c. 118,120.00 ha) in the semiarid sub-region, 

and Chaco National Park (c. 15,000 ha), in the humid sub-region (Altrichter & Boaglio 2004; 

Torrella & Adamoli 2006). Habitat loss and fragmentation, together with hunting pressure, 

have altered the population of several species of vertebrates (IUCN 2014). Chaco is a 

wooded region of exceptional biodiversity with unique ecological processes. It presents one 

of the highest faunal diversity in Argentina, with approximately 500 bird species, 150 species 

of mammals, 120 species of reptiles, and  100 species of amphibians (The Nature 

Conservancy (TNC) et al. 2005). Redford et al. 1990 attributed a high conservation value to 

this region because of the presence of large mammal species, including characteristic 

species, such as, the jaguar (Panthera onca); the rare giant armadillo (Priodontes maximus); 

three species of peccaries (Tayassu tajacu; Tayassu pecari, and Catagonus wagneri) 

coexisting only in this region, with the the last species being endemic and previously know 

only from fossil records and rediscovered in 1974; the giant anteater (Myrmecophaga 

tridactyla) and the South American tapir (Tapirus terrestris) (Parera 2002; Barquez et al. 

2007; Canevari & Vaccaro 2007). A particularly diverse community of birds is present as 

well, including the Crowned Eagle (Harpyhaliaetus coronatus); and the Black-bodied 

Woodpecker (Dryocopus schulzi); the Black-legged Seriema (Chunga burmeisteri); the 

Quebracho Crested Tinamou (Eudromia formosa), and the Cinereous Tyrant (Knipolegus 

striaticeps) (Olrog 1963; Short 1975; Narosky & Yzurieta 2003). Despite harbouring a high 

diversity, the Chaco hosts only one endemic bird species (i.e. the Quebracho Crested 

Tinamou, Eudromia formosa) (Short et al. 1974). Its central location and accessibility within 

South America may explain its low avian endemicity. The Chaco region neighbours other 

xeric regions along the “dry diagonal” comprising Chaco, Cerrado and Caatinga regions, and 
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also highly diverse mesic regions such as the Yungas, Atlantic and Amazon rainforests, with 

which it shares many bird species (Short 1975). 

The most frequent production systems are agriculture and cattle ranching. Agricultural fields 

usually produce two types of crops per year: soybean, cotton, sunflower and corn during 

summer, and wheat, oats and pastures during winter. Farmed plots vary in size and 

proportion of natural vegetation in the borders or inside the plot. Areas of highest 

intensification, cleared up more than 10 years ago, consist of big extensions of mechanized 

cropland with no remnant of forest cover, and practically no hedgerows or live fences 

separating the plots. More recent agricultural systems are enclosed by forest strips and are 

of smaller size (Ginzburg et al. 2012) . Silvopasture is common practice for livestock 

production. It is a type of agroforestry that integrates cattle husbandry under the shade of 

native trees. Some species of trees within a pre-determined plot are selectively harvested 

and the woody understory is then removed, leaving an approximate density of 100 trees per 

hectare in the paddock. Afterwards, non-native grasses (e.g. Panicum maximun) are 

implanted in the lower stratum to feed the cattle (Figure 1.3).  

Throughout this thesis the term “management intensification”, “agricultural 

intensification” or “land use intensification” are used to indicate the transition from 

ecosystems with high diversity associated to agricultural or production practices (i.e. the 

collection of plants and animals that are part of the managed system) and low external 

inputs, to ecosystems with low diversity and increased use of external inputs that facilitates 

the maintenance of high productivity (i.e. use of agrochemicals and heavy machinery). In 

the case of the semiarid Chaco, the gradient in land use intensification refers to (i) low levels 

of habitat alteration in forest patches outside protected areas, caused by selective timber 

harvesting, and extensive cattle raising. Forest patches included in this study were bigger 

than 500 ha and had a canopy cover >70%; (ii) downsized and re-shaped forest patches 

inserted in a highly modified environment (i.e. forest strips surrounding arable fields and 

linking bigger patches of forest); (iii) reduction or intensive elimination of forest cover 

accompanied by clearance of the bushy understorey, and introduction of exotic pastures 

and cattle (i.e. silvopasture plots with an average size between 50 and 80 ha.); (iv) complete 

elimination of forest cover and its replacement by cash crops in relatively small 

management units with the preservation of well maintained forest strips separating and/or 
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surrounding each arable plot (i.e. agricultural plots of c.75-150 ha. with forest strips); (v) 

complete elimination of forest cover in extensive areas (bigger than 200 ha.) and its 

replacement by cash crops. These final stages in the intensification gradient include the use 

of products (i.e. agrochemicals) to increase yield (Figure 1.3). 
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Figure 1.3. Examples of the seven land cover / land-use types surveyed in the semiarid Chaco Region, with diagrams representing the change in management intensification and its consequent 

impact on the biodiversity value. Pictures (from left to right): grassland areas of native species are scarce in the study region; these environments have been used since the beginning of 

colonization for human settlements and production. Nowadays, only small remnant patches are scattered across the agricultural matrix, and only relatively undisturbed natural grasslands 

persist inside Copo National Park. In this study, surveyed sites for this land cover presented the lowest level of land-use intensification (intensification= zero), and therefore, it has one of the 

highest biodiversity values. Contrarily, the intensification level is highest in arable fields (second picture from the left), where vast areas of forest are cleared to produce cash-crops, while 

significantly reducing habitat available for biodiversity. In agriculture plots with forest strips (third picture from the left) the intensification inside the plot equals the one in the last-mentioned 

land use. However, the presence of native forest windbreaks surrounding each plot introduces heterogeneity and provides habitat for wildlife, thus increasing biodiversity per unit area. 

Silvopasture (middle picture) is a type of agroforestry system where native trees are used to provide shade for cattle. This environment provides good opportunities for wildlife, while an 

intermediate to high human disturbance regime and modification level is maintained. Forest strips (fifth picture from the left) represent narrow patches of native forest alongside agricultural 

fields. Intensification is high in the surrounding areas (agriculture), thus affecting the environment inside the strip (i.e. occasional wood extraction, cattle invasion, burning). Yet, the 

conservation value of these environments has been proved in several studies (Lopez de Casenave et al. 1998; Barlow, Louzada, et al. 2010). Forest remnants in private lands (sixth picture from 

the left) differ in size, shape and preservation status. In general, land-use intensification is low but different from zero, as extensive livestock production and wood harvesting are still common 

practices in the region. However, most patches present good vegetation structure (secondary forest) and those big enough to keep a relatively undisturbed interior could offer habitat for forest-

dependant species. The last picture in the row (from left to right) shows the South limit of Copo National Park. Forest vegetation inside the park is relatively well preserved with only its central 

area being used for livestock production (cows and goats) by previous settlers of the region. However, the samples for this study were taken only from areas were livestock is excluded. Diagram 

adapted from Phalan, Balmford, et al. 2011. 

Figure 1. 2 Examples of the seven land cover / land-use types surveyed 
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2 BIRD ASSEMBLAGES AND HABITAT RELATIONSHIPS IN 

AGRICULTURAL LANDSCAPES OF THE SEMIARID CHACO  

                                                           
 

3
Some characteristic bird species found in the study area. Pictures by the author, otherwise stated in brackets. 

From left to right: Milvago chimachima; Myrmorchilus strigilatus; Campephilus leucopogon (Jeremías Mancini); 
a pair of Phacellodomus sibilatrix building their nest (José M. Segovia); Spiziapteryx circumcincta. 
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Summary 

 

The semiarid Chaco Region in Argentina is undergoing an important process of change and 

habitat degradation since extensive areas of natural vegetation are being converted to 

human productive systems. We evaluated the distribution and diversity of bird species, and 

the associated response of the trophic guilds, across a gradient of land use intensification. 

Abundance data for birds was collected during 2011 and 2012, in six different habitats 

ranging from highly human-modified agricultural plots, to slightly altered habitats, including 

forest inside a National Park. Response variables included bird species richness, abundance, 

and Berger-Parker dominance index. A Bray-Curtis dissimilarity matrix was also calculated to 

compare bird assemblages among land-use types. Results indicate a decline in bird species 

richness and abundance of individuals in relation to the degree of intensification, with an 

abrupt change between two main land uses (agricultural and forested habitats). This pattern 

is also reflected in the composition of the assemblages with more similar communities 

present in less intensively-managed environments. Insectivores and granivores are present 

at higher densities than omnivores and predators in all habitats. Insectivores was the most 

diverse and abundant guild overall, and was also best represented in forested land uses. 

Proportional richness of granivore species did not vary along the intensification gradient and 

its proportional abundance was higher in medium-intensified systems, whereas predators 

preferred sites where high and medium habitat alterations resulted in more open 

environments. Our study concurs with studies showing that medium and low modified land 

uses maintain a diverse and abundant community of birds, contrarily to highly altered 

habitats. However, this response is likely to be correlated with the composition and 

configuration in the surrounding landscape that still preserves a high proportion of native 

forest. 
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2.1. Introduction 

 

The current widespread and rapid conversion of land to provide human goods and services 

is regarded as one of the major threats to the conservation of biological diversity (Tilman 

1999; Sala 2000; Hausner et al. 2003). The way in which land is managed has profound 

effects on the distribution and abundance of many animal and plant species, and in turn, on 

ecosystem functions (Saunders et al. 1991; McLaughlin & Mineau 1995; Freemark & Kirk 

2001; Henle et al. 2004; Norris 2012). In this context, the alignment of the demands for crop 

production and the need for biodiversity conservation is a key factor to identify the 

processes driving patterns of species distribution and abundance in this type of agricultural 

landscapes (Saunders et al. 1991; Jeanneret et al. 2003; de Oliveira et al. 2009). 

Decreasing patterns of biodiversity with increasing habitat modification have been 

documented in previous studies in several geographical regions, and at different spatial 

scales (Perfecto et al. 2003; Schulze et al. 2004; Mattison & Norris 2005; Barlow et al. 2007; 

Harvey & González Villalobos 2007; Schrag et al. 2009). Farina (1997) found that for birds, 

the main factor explaining species richness in sub-Mediterranean landscapes is the 

heterogeneity of uses where species diversity increases with the number of land cover 

types, while other factors, such as the specific composition of habitats, play a secondary role 

(Atauri & de Lucio 2001; Benton et al. 2003). Studies addressing this spatial scale refer to a 

certain threshold for coverage of suitable habitats that would allow the coexistence of 

different communities of birds, resulting in greater richness values (Pardini et al. 2009; 

Andrén 1994). However, in regions where habitat loss and modification have been operating 

since long ago, the decline of many agricultural bird species is explained by attributes at 

local scale. For example, in North America (McLaughlin & Mineau 1995; Freemark & Kirk 

2001), as in Europe (Siriwardena et al. 2000; Tscharntke et al. 2005; Geiger et al. 2010), the 

presence of non-crop habitats, the implementation of organic practices, in opposition to 

conventional farming regimes, or the permanence of soil cover were highly correlated with 

species-rich and more abundant bird assemblages. In turn, countries in developmental 

transition tend to rely increasingly on agriculture, and although they possess large areas of 

natural vegetation, deforestation in these regions cause significant declines in suitable 

habitat and shifts in environmental niche space for globally threatened taxa (Mattison & 
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Norris 2005; Ewers et al. 2009). Several studies have reported a significant decrease of 

forest bird species as a result of the rapid expansion and intensification of staple crops, like 

palm oil within Southeast Asia (Foley et al. 2005; Aratrakorn et al. 2006; Maas et al. 2009) or 

soybean in South America (Perfecto & Vandermeer 2008; Gardner et al. 2009; Schrag et al. 

2009; Piquer-Rodriguez et al. 2015). 

Land use intensification usually triggers deforestation to create grazing plots or 

arable fields, and this process has been particularly strong in the Chaco Region (Short 1975; 

Grau et al. 2005; Aizen et al. 2009; Torres et al. 2014). The southern distribution of this 

biome in Argentina is facing an accelerated degradation process, where farming has been 

increasing, not only in areas previously used for other forms of agricultural and livestock 

production, but also in extensive newly-cleared areas of forest (Adamoli et al. 1990; Tálamo 

& Caziani 2003; Tálamo et al. 2009).  

The increasing human activity in the semiarid Chaco results in a variety of habitats 

with different amount and arrangement of vegetation cover. Land-use types can be 

categorized along a gradient of environmental change, from protected forests, to highly 

intensive and completely cropped land. Copo National Park is the nearest and one of the 

most important protected areas within this territory; it holds not only primary dry forest, 

but also vegetation that has been subjected to a variety of disturbances (logging and 

clearing in the past, and livestock grazing in the present). In spite of alterations occurring in 

a small section of the park, overall, it can be considered as a low intensity exploitation area 

(Tálamo et al. 2012; Tálamo & Caziani 2003). Outside the park, the landscape consists of a 

complex mosaic of agricultural plots and agroforestry systems (livestock production under 

shade) interspersed with forest patches of varying ages and degrees of intervention. These 

land uses differ markedly in their structural and floristic composition, as well as in their 

management practices. The size and use of the forest remnants vary from small and 

fragmented patches to considerably big fragments (more than 500 ha), and from well-

preserved primary forest to heavily-degraded or open forest with predominance of 

scrubland. Silvopasture is a type of agroforestry that combines beef production with forest 

management and presents a medium to high degree of transformation, where some of the 

trees and the woody understory in the forest is removed to grow pastures to feed the cattle 

(Mastrangelo & Gavin 2012). Lastly, on the extreme of habitat alteration, cultivated land can 
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differ in extent and heterogeneity. The oldest plots are extensive crop fields established in 

completely cleared areas. On the other hand, recently established plots are of smaller size 

and they are surrounded by forest strips that constitute linear elements of native vegetation 

connecting patches of forest. 

The semiarid Chaco Region has been defined as a conservation “hotspot” (The 

Nature Conservancy (TNC) et al. 2005). More than 200 species of birds were cited in this 

region in the past (Olrog 1963; Short 1975) including several Neotropical migrants (18 

species reported by Codesido & Bilenca 2004). The best-represented families are 

Furnariidae, Tyrannidae, Icteridae and Emberizidae. Distinctive elements of the Chaco 

avifauna include, for instance, the Turquoise-fronted Amazon (Amazona aestiva), a heavily 

exploited species whose populations have progressively decreased due to pet trading 

(Berkunsky et al. 2012); the Quebracho Crested Tinamou (Eudromia formosa) that is the 

only endemic bird species in the Chaco Region; the Black-bodied Woodpecker (Dryocopus 

schulzi), and the Crowned Eagle (Harpyhaliaetus coronatus), which are classified as near 

threatened and endangered respectively (IUCN 2014); together with several other highly-

valued species that play an important role as food items (e.g. the Chaco chachalaca, Ortallis 

canicollis; the Black-legged Seriema, Chunga burmeisteri) or are closely associated with local 

folklore (Short 1975). Despite the fact that most of these species extend well beyond the 

Chaco Region, a significant part of its populations have suffered strong reductions mainly 

due to habitat loss and fragmentation (Tálamo & Caziani 2003; Altrichter & Boaglio 2004; 

Boletta et al. 2006; Torrella & Adamoli 2006). For bird assemblages, food availability, 

courtship and nesting sites, protection from predators and environmental conditions are 

closely related with habitat structure (Rotenberry & Weins 1980; Wiens 1992). In this 

chapter we used birds to measure the effects of land use intensification and disturbance, 

not only because they have diverse and well-known habitat preferences, exhibiting a broad 

range of inter-specific responses to human impact, but also because they are relatively easy 

to identify, cost-effective to survey, and represent an important conservation target 

(Sekercioglu et al. 2007; Tscharntke et al. 2008). 

Although the status and distribution of Chaco avifauna have been studied in the past 

(Short 1975; Codesido & Bilenca 2004; Codesido et al. 2009; Lopez de Casenave et al. 1995; 

Lopez de Casenave et al. 1998), it was not until recently that researchers have started to 
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investigate the effects of habitat modification on the bird community. Mastrangelo and 

Gavin (2012, and 2014) studied the response of bird assemblages to intensification in cattle 

production in the Dry Chaco Region. They found that local structural attributes explained 

most of the variation in the distribution of birds among habitats, and that intermediate 

levels of intensification can maintain a highly diverse avian assemblage. Macchi and Grau 

(2012) analyzed the impact of traditional livestock management (“puestos”) on the bird 

community and found that the abundance of trophic guilds decreased with increasing 

distance from the puestos, showing a positive effect of the resources and the heterogeneity 

generated around human-modified habitats. On the other hand, both studies concluded 

that rare forest species had their highest densities in primary forest, highlighting the 

importance of the different range of requirements that can be present within the same 

taxonomic group. In this study, forests and silvopasture systems were sampled, and we add 

to the knowledge of previous studies by incorporating new landscape elements that were 

not considered before, and that constitute three distinctive land uses in the intensification 

gradient: (1) extensive and highly modified arable fields where mechanized agriculture is 

used to generate the highest possible yield; (2) arable fields of smaller size with the same 

management but surrounded by forest strips; and (3) we considered the forest strips 

themselves as an important feature since they are wide enough to preserve a well 

structured vegetation and may represent a suitable habitat for biodiversity (Barlow et al. 

2010). 

 

We characterized species diversity and composition of bird community in response to land 

use. We investigate the specific changes in diversity occurring between different human-

modified and natural habitats and which land-use type holds the most diverse bird 

assemblage. Functional diversity is as important as compositional diversity. Function 

involves important ecological and evolutionary processes as pollination, nutrient cycling, 

and biological control, among others. Hence, a community with a large number of species 

might be restricted to a few functional roles depending on the species arrangement. To 

analyse this aspect we examined the differences in bird assemblages between habitats at 

trophic guild level. Our predictions are that biodiversity should decrease in intensively 

cropped areas due to a decrease in habitat quality and availability. Given that each land-use 
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type has an associated value in terms of resources provision, a change in the characteristics 

of land uses or the intensity of its management should result in an equivalent change in the 

availability of those resources, and hence the abundance and diversity of the species should 

be modified. Changing to more intensively managed systems, or increasing the area under 

crop that provide fewer key ecological requirements, is likely to lead to an impoverished 

community in that system. We expect a gradual change in bird community composition in 

response to human management intensification, varying from very poor assemblages with 

low species richness and abundance of birds for highly modified environments (i.e. 

agriculture plots), to highly diverse communities for the native forest. A gradual increase in 

bird community diversity is predicted to match the gradient in habitat modification; hence 

agriculture under agro-ecological schemes and silvopasture should present intermediate 

degrees of bird community diversity. 

 

2.2. Methods 

 

Study site 

The study area is located in the semiarid part of the Chaco Region, and encompasses a 

rectangle of 600,000.00 ha (centered at 26° 24’ S, 61° 09’ W) in the southern portion of 

Almirante Brown Department, Chaco Province, and an adjacent portion of protected forest 

inside Copo National Park, Santiago del Estero Province (Figure 1.2, see Chapter 1). The area 

is characterized by a flat topography (approximately 160m above sea level) with no surface 

water bodies, except for the reservoirs made for livestock. The landscape is a mosaic of 

agricultural fields and interspersed fragments of subtropical semi deciduous dry forest. The 

farming land is periodically covered by different crops, depending on the time of the year. 

Winter crops include mainly wheat and oats, whereas alfalfa and other grasses are used in 

grazing areas. During this study, agricultural plots presented cotton or soy bean stubble 

remnants from the summer season, with a high percentage of bare soil. Strips of natural 

grassland occurred along ancient river beds, but over the last few decades, these have been 

replaced by crops (Adamoli et al. 1990; Tálamo et al. 2009).  

The Copo National Park (25° 46’ S, 61° 47’ W) represents one of the best-preserved 

and most extensive portions of Chaco woodland in Argentina, characterized by quebracho 
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colorado santiagueño (Schinopsis lorentzii.), quebracho blanco (Aspidosperma quebracho-

blanco) and mistol (Ziziphus mistol), as dominant tree species (Cabrera 1971; Bucher & 

Huszar 1999; Tálamo & Caziani 2003; Zak et al. 2004; Tálamo et al. 2009). The understory 

layer is formed by dense thorny shrubs, grasses, and exposed bare soil. Settlers reside inside 

the park where they also keep cattle that wander foraging in the west-central and northern 

part of the park. Therefore, sampling sites for birds in this study were located near the East 

border, where an extensive stand of old-growth forest persists, to avoid areas with high 

levels of human and livestock interference. The climate in this region is markedly seasonal, 

with rain (400 to 900mm) falling during November and March. The average annual 

temperature is around 22° C, with absolute maximum temperatures above 45° C in summer, 

and below zero during winter (Cabrera 1971; Grau et al. 2005).  

 

Sampling design 

Five land uses represented the most common elements in the agricultural landscape: forest, 

forest strips, silvopasture, and agriculture. Forest (F) is the characteristic natural habitat. 

However, almost all of the forest fragments in the area have been used for selective logging 

in the past, as well as for traditional ranching; therefore, it is second growth forest (Cabrera 

1971; Adamoli et al. 1990; Bucher & Huszar 1999; Tálamo & Caziani 2003). Silvopasture (S) is 

an agroforestry system for livestock production in which some trees and the woody 

understory are selectively removed, leaving an approximate density of 100 trees per hectare 

in the paddock; non-native grasses (e.g. Panicum maximun) are then sowed to feed the 

cattle. Following a gradient of intensification, two types of agricultural systems are present. 

Areas of highest intensification, cleared up more than 10 years ago, and consisting in big 

extensions of mechanized cropland with no remnant patches of forest nearby, and 

practically no hedgerows or live fences separating land uses represented agriculture plots 

(A). More recent agricultural systems of smaller size and enclosed by forest strips 

represented lower intensity agriculture with forest strips (AFS). Finally, forest strips (FS) 

consisting in long sections of forest, usually ranging between 80 to 100-meters-wide, that 

surround agriculture plots were considered the fifth land-use type. In addition, forest 

control sites were located inside Copo National Park to represent a habitat that has not 

been modified by logging or ranching, hence the sixth category was forest inside National 
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Park (FNP) (Tálamo & Caziani 2003; Tálamo et al. 2009). Several kilometres of abandoned 

roads inside the park, only accessible on foot, were used to reach sites deep in the forest. 

To select the sites inside the agricultural landscape, a LANDSAT 5TM image was 

overlaid with a 100 x 60km grid of 10 x 10km side, and 10 grid squares were randomly 

selected (Figure 2.1). Inside each grid square, all potential sites consisting of a patch or plot 

of homogeneous land use were identified. When the grid square selected did not contain 

the required sites, the nearest available site outside the grid square was used. Sites were 

identified, and visited to verify the dimension and configuration of the vegetation cover. 

Subsequently, five sites (one for each land use) inside each of the ten grid squares were 

selected randomly. Inside the National Park, all potential sites were restricted to the existing 

trails located along the East border, avoiding in this way, to survey in disturbed areas where 

cattle of local settlers are used to wander. We identified old and abandoned trails inside the 

forest and randomly selected five sites. 

 

Bird survey  

The bird community was sampled during spring season (mid-September), in 2011 and 2012 

at four randomly established points per site for the agricultural mosaic. As a result, each of 

the ten grid squares contained five sites (i.e. one for each land-use type) with four points 

each (40 points per land-use type, 200 points in total, Figure 2.1). Points inside sites were at 

least 200m apart, encompassing a homogeneous habitat, and in the case of agriculture with 

forest strips, points were inside the plot, 150 metres apart from the edge to specifically 

account for the forest strip effect (Hill 1973; Hutto et al. 1986; Bibby et al. 1992; Codesido & 

Bilenca 2000; Derlindati & Caziani 2005; Sutherland 2006). For the protected forest inside 

Copo National Park, five sites were surveyed during the same season, and the same years.  

Two teams of observers visited all the sites once each year. When possible, the same 

observers were maintained in order to minimize the variation resulting from differences in 

detection and identification skills. Each point was surveyed for 10 minutes using the fixed-

radius point count method and all the species, heard or seen within a radius of 100 meters, 

were registered (Hill 1973; Hutto et al. 1986; Bibby et al. 1992; Codesido & Bilenca 2000; 

Sutherland 2006). Surveys were carried out between 07:00 – 11:00 and 16:30 – 19:00, and 

were not undertaken in extreme weather conditions (windy and/or rainy days).  
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Data analysis 

Species accumulation curves were constructed to visually verify that the sampling effort 

adequately represented the true species richness of each habitat. Species were 

accumulated by point-count for all sites (sample-based using 10,000 random iterations 

without replacement, Soberon & Llorente 1993; Flather 1996; Gotelli & Colwell 2001; 

Thompson & Thompson 2007).  

To characterize alpha diversity in each site, two components of diversity were 

measured: species richness and dominance (Magurran 1988; McCune & Grace 2002; 

Magurran & McGill 2011). For the first component, the total number of bird species 

(hereafter species richness) was calculated. Species richness equals the total number of 

observed species and provides a great deal of information about the community, 

comparable across habitats. However, this index can be biased by sample size: as more 

individuals are sampled, more species will be recorded. Hence, differences in sample size 

between land-use types were incorporated using rarefied species richness. Rarefaction 

represented the interpolation of species richness to a smaller number of individuals. We 

rarefied species richness per site to the average number of individuals registered in the two 

land uses with the lowest mean number of individuals (i.e. approximately 20 individuals for 

A and AFS) (Magurran & McGill 2011; Gotelli & Chao 2013). For the second component of 

diversity we used the Berger-Parker dominance index that expresses the proportional 

importance of the most abundant species in the assemblage. Low values indicate low 

dominance by any one species and it is generally accompanied by an increase in evenness. 

Absolute number of individuals (hereafter abundance) was also measured. 

All indices were computed by grouping the data for the four points inside each site, 

and considering both years together, controlling for spatial and temporal pseudoreplication 

respectively (Hill 1973; Magurran & McGill 2011). In order to describe patterns and 

characteristics of bird assemblages we investigated the relationship between the response 

variables and land use followed by factor level reduction until reaching the minimum 

adequate model. We used model selection based on Akaike Information Criterion corrected 

for small samples (AICc) to identify the models that were best supported by the data. A set 

of biological meaningful models, established a priori, varied in the way that land uses (factor 

levels) were collapsed together (Table 2.1). An inspection of models residuals showed that 
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Poisson errors and log link provided the best fit for species richness, whereas residuals for 

models with Berger-Parker (square root transformed) and abundance of individuals as 

response followed normal distribution of errors. Generalized and General linear Mixed 

Models (GLMM and LMM, respectively) were used considering the hierarchical design of the 

study where sites are nested inside grid squares; therefore, grid square was the random 

variable in a random intercept model (Crawley 2007; Zuur et al. 2009). 

To assess variation in species composition of the bird assembly across land uses a 

Bray Curtis dissimilarity matrix was submitted to a Principal Coordinates Analysis (PCoA) 

(Faith et al. 1987; Quinn & Keough 2002). The dissimilarity matrix was first double 

standardized: along species range (to avoid a strong weighting by a few highly abundant 

species and to balance the contribution of rare ones) and along sites (to control for 

differences in sampling effort). The results of the ordination were assessed by inspecting the 

diagrams and the scores (Quinn & Keough 2002). We then performed single regressions 

(LMM) between the scores of PCoA axis 1 and land use (predictor variable) followed by 

factor level reduction.  

Functional diversity is another important measure for community characterization. 

Bird species were originally classified into seven feeding guilds: (1) insectivores, (2) 

granivores, (3) omnivores, (4) nectarivores, (5) frugivores, (6) carnivores, and (7) scavengers 

(Supplementary information Table 2.S1). The assignment of species was made based on 

known feeding habits described in ornithological literature (Kratter et al. 1993; del Hoyo et 

al. 1996; Lopez de Casenave et al. 1998; Narosky & Yzurieta 2003; del Hoyo et al. 2003; 

Codesido & Bilenca 2004; de la Peña 2011). Because of low sample sizes, bird species of 

nectarivores, frugivores, and scavengers (i.e. guilds that represented less than 5% of all 

captures) were included within omnivores, granivores, and carnivores respectively. To 

better understand the distribution of functional groups inside each habitat, we 

subsequently re-classified the granivore and insectivore species considering not only their 

diet composition, but also, their foraging behaviour. As a result, we obtained seven new 

groups: (1) TG: terrestrial granivores, (2) AG: arboreal granivores, (3) TI: terrestrial 

insectivores, (4) LFI: long-flight insectivores, (5) SFI: short-flight insectivores, (6) BI: bark 

insectivores, and (7) FI: foliage insectivores (Lopez de Casenave et al. 1998; del Hoyo et al. 

2003; Codesido & Bilenca 2004; de la Peña 2011; Macchi et al. 2013). We measured 
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diversity in each land-use type using proportional species richness (number of species of a 

given guild in a given site in relation to total number of species for that site) and 

proportional abundance (number of individuals of a given guild in a given site in relation to 

total number of individuals for that site) for each guild.  

For each response variable and guild we fitted a GLMM with Binomial distribution 

and logit link using land-use type as predictor variable (Zar 1996; Quinn & Keough 2002; 

Crawley 2007). We then assessed differences among the levels of land use using Tukey’s 

Honest Significant Difference tests (Tukey HSD). 

All the calculations and statistical analysis were carried out using software R v.3.1.1 

(R Core Team 2014). Species accumulation curves, the dissimilarity matrix, and the PCoA 

were calculated using package “vegan” (Oksanen et al. 2012). LMM and GLMMs were run 

using package “lme4” (Bates et al. 2014).  

 

2.3. Results 

 

Species richness 

We recorded a total of 5067 individuals of 126 bird species during the study (plus 29 species 

observed in the study area but not registered during the point-count sampling, 

Supplementary information Table 2.S1). Silvopasture plots had the highest absolute species 

richness (97 species, 77 % of the total); followed by forest strips, forest, and forest inside 

National Park (86, 82 and 66 species respectively; accounting for the 84% of the total 

species richness among all types of forests), while a much lower richness was found in 

agriculture (19 species) and agriculture with forest strips (18 species) (Table 2.2). This 

marked difference between arable fields and the other four land uses is also reflected in the 

species accumulation curves (Figure 2.2). The curves for A and AFS behave differently than 

the rest of the curves. The number of cumulative species rises uniformly with the addition of 

sites, and reaches an asymptote at considerably low values. For the forest-type habitats (i.e. 

forest inside and outside National Park, forest strips, and silvopasture), accumulation curves 

indicate a rapid increase in the initial number of species registered (Figure 2.2). The curve 

has almost plateaued for F and FS, and both curves have similar shape. Although the curve 

for S could yet reach a higher number of species, it is close to the asymptote. This indicates 
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that the sampling effort was large enough to accurately assess species richness in those 

habitats. For the FNP, the sampling effort resulted in half the number of points as compared 

to that of the rest of the land uses. It is clear that the species accumulation curve could be 

extrapolated to different numbers of species, and eventually species richness could exceed 

that of F or FS with additional sampling effort. 

 

Differences at habitat level  

We found that semiarid Chaco bird assemblages in multiple-use agricultural landscapes 

change markedly along the gradient of human impacts and land-use intensity. Species 

richness responded to habitat type with a clear pattern. As previously shown in the species 

accumulation curve, there were two similar land-use types with significantly lower species 

richness.  

Both agriculture and AFS showed a low number of bird species, and this 

characteristic differentiated them from the rest of the habitats (mean species richness, A= 

4.6+3.8; AFS= 3.5+1.3, Figure 2.3 A). A sharp increment in species richness is evident for land 

uses with trees, which remained grouped together in the best minimum adequate model 

(Table 2.3). Bird species richness was similar in S, FS, F and FNP (mean species richness= 

41.4+7.8; 39.3+5.3; 42.3+6.7; 37.8+8.5, respectively). Results for rarefied species richness 

were similar to the former, showing that differences in the number of individuals sampled 

do not change the pattern in the distribution of species among the land uses (Table 2.2 and 

2.3, Figure 2.3 B). The mean Berger-Parker index values showed an inverse result that 

corresponds with a significant decrease in dominance from A and AFS to the four other land 

uses (Figure 2.3 D). Both types of agriculture had the highest values in dominance, mainly 

represented by high numbers of the Eared Dove (Zenaida auriculata, Columbidae, BP index= 

0.6+0.3 for A, Supplementary information Table 2.S1) and the Southern Lapwing (Vanellus 

chilensis, Charadriidae, BP index= 0.5+0.1 for AFS), species commonly found in open and 

modified human environments (Kratter et al. 1993; del Hoyo et al. 1996; del Hoyo et al. 

2003). Silvopasture comes next with 0.16+0.14 dominance, followed by FS with 0.11+0.03, 

also for the Eared Dove. Whereas species more related with forest as the White-tipped 

Dove (Leptotila verreauxi, Columbidae) and the Masked Gnatcatcher (Polioptila dumicola, 
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Polioptilidae) were dominant in lower numbers in F and FNP (BP index= 0.08+0.01, and BP 

index=0.10+0.02 respectively).  

Only three bird species were registered in all land uses, the Eared Dove, the Picazuro 

Pigeon Patagioenas picazuro and the Rufous-collared sparrow Zonotrichia capensis, all of 

them considered species adapted to open habitats. In contrast, 28 bird species were 

reported in only a single habitat type: of these, thirteen were sighted in forested land-use 

types (four in FNPF, five in F, and four in FS), ten only in silvopasture and five only in A and 

AFS. The Principal Coordinates Analysis was performed on the Bray-Curtis dissimilarities for 

all 55 sites and 126 species. The first two axis of the ordination explained 47% of the 

variation in community composition. The inspection of the ordination graph provided useful 

information to understand the changes in the assemblages among the land-use types 

(Figure 2.4). The data showed a strong division between two main groups of habitats, as 

reflected by the previous analysis. Along the first axis, positive scores correspond to a 

packed group of sites (green characters in Figure 2.4) that showed similar community 

composition corresponding to S, FS, F and FNP. This first group clearly separates from the 

rest of the sites that belong to A and AFS. Community composition (PcoA axis 1) showed 

only significant differences between A+AFS and the rest of the land-use types, whereas the 

distribution along the second axis was not related with the characteristics of the habitats.  

 

Bird assemblages   

Significant variations were observed only for insectivores and granivores. These two groups 

resulted in the most diverse and abundant trophic guilds along the land-use gradient. 

Insectivores was the most abundant group (Supplementary information Table 2.S2), almost 

50% of all species registered belonged to this guild (71 species and 2507 individuals); 

followed by granivores (30 species and 2211 individuals, including frugivores), carnivores (16 

species and 106 individuals, including scavengers), and omnivores (9 species and 243 

individuals, including nectarivores).  

The insectivore guild was best represented in F and FNP with the highest 

proportional richness and number of individuals among all land uses (Table 2.4, Figure 2.5). 

The diversity of insectivore species was second-highest in S and FS; and smallest in both 

types of arable fields. Carnivores showed the opposite pattern with the lowest proportional 
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diversity in forested habitats, increasing with land use intensification (FS=F=FNP < S < 

AFS=A; 2=47.1, df= 3, p<0.001). Granivores and omnivores presented similar proportion of 

species across all land uses. The abundance of granivores and insectivores was evenly 

distributed in AFS, S and FS, whereas in A, F and FNP, insectivores were predominant. 

Omnivores represented a small proportion of individuals in all the environments. Carnivores 

were also scarce in most of the land uses apart from AFS, where they presented the highest 

proportion in species richness and abundance of individuals. 

Almost a quarter of the species considered in the subdivision belonged to foliage 

insectivore species, that resulted in the most diverse guild with 23 out of 94 species, 

followed by terrestrial granivores (17 species), terrestrial insectivores (16 species), short-

flight insectivores and bark insectivores (12 species), long-flight insectivores (8 species), and 

arboreal granivores with only 6 different species. When considering the number of 

individuals, terrestrial granivores was the most abundant guild (1659 individuals), followed 

by foliage insectivores (909 individuals), terrestrial insectivores (603), short-flight 

insectivores (480), arboreal granivores (406), bark insectivores (386), and the least 

abundant, long-flight insectivores (129).  

In arable plots (A and AFS) we only found species that feed on the ground (terrestrial 

granivores and insectivores), and insectivores with long attack distances (long-flight 

insectivores, mean attack distance over 1 metre). In the rest of the land uses (S, FS, F and 

FNP) all the guilds were present (Figure 2.6, Table 2.5 and Supplementary information Table 

2.S3). Differences in the proportional number of species among habitats were significant 

only for three guilds (Table 2.5), with terrestrial granivores, and terrestrial insectivores 

showing the highest proportion of species richness in A and AFS, and long-flight insectivores 

presenting the lowest proportional richness in S and FS (Table 2.5). The proportion of 

individuals of terrestrial granivores was highest in S and FS, and lowest in F and FNP, 

whereas terrestrial insectivores had the highest proportional abundance in A and AFS. 

Forest and forest inside the National Park showed similar proportion of individuals of long-

flight insectivores and foliage insectivores, both being the highest among the rest of the 

land-use types (Figure 2.6, Table 2.5). 
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2.4. Discussion 

 

Diversity and composition of bird assemblages in agricultural landscapes of the semiarid 

Chaco showed a clear segregation along the intensification gradient. This pattern reflected a 

substantial change in community structure with a sharp decline in diversity from low- to 

highly-modified habitats. Coincidentally with several studies assessing changes in bird 

diversity in production areas (Perfecto et al. 2003; Mastrangelo & Gavin 2012; Moura et al. 

2013), our results indicate that intensified land uses hold only a small portion of the regional 

avifauna; and, as we predicted, a reduced offer of relevant ecological resources is likely to 

be the cause of the low species richness and abundance of birds in these sites. During the 

sampling season, almost all the sites presented a high percentage of bare soil (80-90%), or 

remaining soybean or cotton stubble. In this conditions, only a few bird species were 

registered (e.g.: Zenaida auriculata, Ear Dove; Columbina picu, Picui Ground-Dove; 

Patagioaenas picazuro, Picazuro Pigeon; Nothura maculosa, Spotted Nothura). And unlike 

most of the forest-specialists, the species present in highly intensified arable fields were 

generalist, with terrestrial habits, usually foraging on the ground in open areas, where the 

lack of roosting or perching sites does not represent a major drawback. In that sense, when 

that important resource was available, it did not have the expected influence on the bird 

diversity; otherwise, differences should have arisen between A and AFS. We predicted that 

birds may be responsive to the location of less intensively managed habitats (like forest 

strips) in the surroundings of arable fields, and this would be translated into higher bird 

diversity in AFS. Many studies have highlighted the importance of non-cropped habitat in 

maintaining farmland biodiversity, where birds often use field edges more than areas 

further into the field, enabling them to forage close to cover (Benton et al. 2003; Perfecto et 

al. 2003; Tscharntke et al. 2008). This was the case for several ground dwelling species 

commonly found in edge-like environments (e.g.: Ortalis canicollis, Chaco Chachalaca; 

Crypturellus tataupa, Tataupa Tinamou; Guira guira Guira Cuckoo) that were frequently 

seen inside the plot and in the surroundings of forest strips. However, these events must 

have been too scarce or infrequent to be detected during the study. On the other hand, to 

correctly assess the use of the agricultural plot by birds inhabiting forest strips, a different 

sampling design should be employed, such as line transects along the border (Barlow et al. 
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2010), or possibly the sampling should be carried out in a different period when crop fields 

have vegetation cover (i.e. October-November). 

Bird species richness was similar among human-modified forested land uses (S and 

FS), including forest patches in and outside protected areas (F and FNP). This general 

conclusion is supported by results from similar studies of land-use intensity gradients 

elsewhere in the Chaco Region (Mastrangelo & Gavin 2012; Macchi & Grau 2012), in the 

Atlantic Forest (Moura et al. 2013), and Central America (Perfecto et al. 2003; Harvey & 

González Villalobos 2007). The number of species did not differ greatly for intermediate to 

low intensification land uses at the same time that the dissimilarity analysis showed high 

correspondence between the assemblages. Silvopasture is a type of agroforestry with an 

intermediate-intensity production level where human-caused alterations frequently occur 

due to livestock occupation and movements, periodical removal of the shrubby understory, 

and fire events. Avian community composition in this land use did not appear to be the 

result of a simple combination of grassland and forest assemblages (i.e. ecotone). Whilst 

81% of the species present in forested habitats (FS, F and FNP) were also found in 

silvopasture, no primarily grassland bird was found to be abundant. All the grassland 

dwelling species recorded in our samples (e.g. White-browed Blackbird Sturnella 

supercilliaris; Great Pampa-Finch Embernagra platensis; Southern Lapwing Vanellus 

chilensis) were registered solely in agricultural plots. The relatively high diversity present in 

silvopastures is likely to be related to the combined characteristics of this system that, 

although structurally simpler, retains some of the most representative native tree species in 

the canopy layer; and, on the other hand, introduces an open understorey with a novel set 

of resources (Nair 1985).  

The result obtained from the analysis of rarefied species richness showed the same 

trend obtained for species richness alone, and the best model remained significant, even 

when the sampling effort was reduced to 20 individuals (AICc=248.7, Table 2.3). Although 

the effect is non-significant, when the number of species is shown relative to the number of 

individuals in the sample (Figure 2.3 B), the silvopasture land-use type declined below the 

rest of the habitats (FS, F and FNP). As in our study, high abundance of most birds’ guilds 

was recorded in low intensity cattle management systems by Macchi & Grau 2012, whilst 

Mastrangelo & Gavin 2012 found that silvopastoral systems provided habitat for 70% of the 
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bird species also registered in forests. Despite that agroforestry land uses or secondary 

forests had relatively high diversity and abundance of bird species, these environments 

should not be consider as adequate replacements of primary forests, since their capacity to 

support forest interior or forest-dependent species has not been tested in this study and 

may depend on context-specific characteristics (Lopez de Casenave et al. 1998; Tscharntke 

et al. 2008). 

An important factor that could be influencing our results is the difference in the 

detectability of a species or a group of species (e.g. trophic guild) when we consider the 

range of land-use types sampled (MacKenzie et al. 2002). The vegetation structure, and the 

species behaviour associated with it, among other factors, could be facilitating the detection 

of individuals in the more open forested habitats (i.e. S and FS). We did not adjust for 

potential differences in detectability among land-use types because the requirements in the 

number of repeated surveys per location could have been almost impossible to meet in such 

a large-scale study. Additionally, in this type of subtropical biome, communities are 

composed of many naturally rare species that could have been left aside because of their 

extremely low recapture rate (Banks-Leite et al. 2014). However, some measures were 

taken in order to minimize this bias: (1) the same observer, or observers with similar 

knowledge and experience, performed the sampling; (2) training sessions and sampling drills 

were carried out in advance to standardize counting techniques and criteria; (3) special 

attention was paid to follow the movements of each individual bird when in S, FS, F and 

FNP, to avoid counting the same individual twice. 

Strips of forest also presented highly diverse assemblages. This reveals its 

importance as a distinctive feature in the farming landscapes. The width of this habitat 

ranged from 80 to 100 metres, and given the relatively small proximity of its borders, they 

could be considered as an edge environment altogether. High species richness and 

abundance of individuals could be related with the vegetation in these edges, which 

enhances the availability of cover and nesting sites. Lopez de Casenave et al. (1998) found 

that edges also hold a great number of insects, seeds and fruits promoting increased bird 

densities because food abundance is an important factor that influences the distribution of 

these birds. Therefore, the similarity in bird community structure obtained between forest 

strips and forest could be indicating the role of the former as a refuge during the period 
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between crops or the important role as a corridor connecting forest fragments and allowing 

the movement of individuals from one place to another (Barlow et al. 2010). Lopez de 

Casenave et al. 1998 found 10 avian species to be present exclusively in the forest interior, 

and 17 species, solely in edge environments. All but one of the species from the first group 

were registered in our study, all in forested habitats, not only in those with a good status of 

conservation (F and FNP), but also in land uses with “edge” characteristics (S, and FS). From 

the second group of birds (i.e. “edge species”), we registered 13 species, and 10 of them 

were found in different combinations of land-use types including at least one record in F or 

FNP (forest interior). Patterns of high species diversity in disturbed or modified forest 

patches have been reported for several regions elsewhere (Harvey & González Villalobos 

2007; Fischer et al. 2011; Cáceres et al. 2014) and are most likely to be related with the 

maintenance of forest cover at higher spatial scales that may provide the appropriate 

conditions for the persistence of bird communities in agricultural landscapes (Andrén 1994; 

Cushman & McGarigal 2002; Martensen et al. 2012; Banks-Leite et al. 2013).  

Differences in bird communities between forest and forest inside National Park were 

not evident in this study. We expected to find a higher diversity in Copo National Park than 

in forest fragments within the agricultural matrix, mainly due to the higher level of 

disturbance and history of use in the latter area. There are several possible factors to 

explain this result. Tálamo et al. 2012 described unlogged and livestock free areas inside the 

park as presenting similar diversity of woody vegetation to areas with previous disturbance 

history; therefore the composition and status of the forest can be considered as fairly 

undisturbed. This information was taken into account and, consequently, point-counts were 

located in the interior of the forest in an attempt to represent the best preserved 

conditions. However, the region surrounding the park might have had an effect in the bird 

assemblage composition given the proximity of the East limit (approximately between 300 

and 600 metres). In the neighbouring area, private land is currently under production, and 

deforestation and clearing, including the use of fire can be frequent. Therefore, the bird 

community sampled might not have been one of unique forest interior species. An 

alternative explanation could be that forests patches in unprotected areas have been 

increasingly reduced, modified and fragmented by exploitation and poorly developed 

management strategies resulting in degraded remnants of forests (Aizen & Feisinger 1994). 
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This process may have increased the heterogeneity in the forest, with the eventual 

colonization of new generalist species incorporated to the existing assemblage, hence 

increasing the species richness of the community. Interestingly, the only bird species under 

near-threatened category with distribution in the area (i. e. the Black-bodied Woodpecker, 

Dryocopus schulzi) was present in S, F and FNP. Yet, being registered only four times in total, 

it could be showing that available resources and conditions in these habitats are not 

profoundly different, given that the Black-bodied Woodpecker is a species considered to be 

restricted to Chaco woodland. 

The study of functional composition through the analysis of trophic guilds is an 

important contribution to the knowledge of community structure. Feeding habits of birds 

are linked to functional roles in ecosystems. Therefore, the absence of a trophic guild in a 

community can affect essential processes like seed dispersal, pollination, and biological 

control (Tscharntke et al. 2008). Analysing proportional diversity and abundance of birds 

instead of total numbers allowed us to detect differences in the functional roles present in 

each land-use type. Previous studies suggest that the replacement of forests with simplified 

agricultural systems results in shifts toward less specialized bird communities, with altered 

proportions of functional groups (Tscharntke et al. 2008). Our results show that all the 

trophic guilds were represented in each of the land-use types, therefore the differences in 

the provision of functional services would be more related with low numbers of individuals 

in more intensified land uses (Supplementary information Table 2.S2), rather than with the 

number of trophic guilds in these environments. 

Insectivores responded positively to low intensity land-use types, and both, species 

diversity and number of individuals, were the highest inside the forest. The structural and 

floristic diversity of these habitats is likely to provide excellent opportunities for species that 

feed on insects in several different ways. Accordingly, when the insectivore guild was 

subdivided based on the stratum and the way in which species forage, we observed that 

forest and forest inside National Park had the highest proportion of individuals feeding on 

insects from twigs, branches and leaves (i.e. foliage insectivores) and harboured species 

only present in well-preserved forest like the Short-billed Canastero Asthenes baeri, the 

Striped-crowned Spintail Cranioleuca pyrrhophia, the Greater Thornbird Phacellodomus 

ruber, and the Freckle-breasted Thornbird Phacellodomus striaticollis) (Lopez de Casenave 
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et al. 2008; Codesido et al. 2009; Macchi & Grau 2012). Also, with the highest proportion in 

F and FNP, we found insectivores like the Little Nightjar Caprimulgus parvulus, the Rufous 

Nightjar C. rufus, and the Crowned Slaty Flycatcher Empidonomus aurantioatrocristatus that 

feed mainly while flying (i.e. long-flight insectivores). Bark insectivores (woodpeckers and 

woodcreepers) rely heavily on the availability of trees as their diet consists primarily of 

insects and larvae that they probe from under the bark. Contrarily to Macchi et al. 2013 , 

that found an exponential decrease in the abundance of this guild for silvopastures, our 

results show that bark insectivore species were present in similar numbers in all the 

forested land-use types (S, FS, F and FNP), indicating that an adequate density of trees 

standing in the silvopasture paddocks could preserve these species. Fischer & Lindenmayer 

(2002) found that many birds commonly detected in woodland patches, in a pastoral 

landscape of Australia, were also common in paddock trees. However, some birds with 

special habitat requirements were absent from paddock trees. Surprisingly in our study, 

almost all the bark insectivore species (10 out of 12 species) were found in all the forested 

habitats, even the Black-bodied Woodpecker Dryocopus schulzi, as mentioned before. Inside 

the arable fields, the most abundant species had terrestrial habits (i.e. terrestrial granivores 

and insectivores) as expected, derived from the limitations in vegetation cover, both natural 

and cultivated (Lopez de Casenave et al. 1998; Harvey & González Villalobos 2007; 

Tscharntke et al. 2008; Macchi & Grau 2012; Mastrangelo & Gavin 2012). Carnivores 

preferred more open habitats where the absence of the understorey stratum facilitates 

hunting and visualization of prey. This guild was most abundant in agriculture with forest 

strips where the availability of sites to perch, might be related with the high numbers found 

for this land-use type.  

 

In general, our results shed light on the distribution and composition of bird communities in 

different land-use types related to human activities in the semiarid Chaco Region, where the 

degree of intensification in the agricultural practices generates a variety of habitats for the 

avian community. Our results support a nonlinear relation between land-use type and 

patterns of species richness and abundance with very poor communities present in the most 

intensified land uses, and similar assemblages of birds shared among intermediate to low 

intensification environments. However, the composition of the assemblages should be 
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analysed in detail taking into account habitat affiliations and species of conservation 

concern as the use of species richness does not reflects shifts between habitat specialists 

and habitat generalists species. Additionally, ecological processes are often simultaneously 

influenced by factors acting across a range of scales, or at several organizational levels. For 

these reasons, in the next chapters we incorporate into the analysis a taxonomic group with 

different habitat requirements, and we also consider landscape configuration variables that 

could be influencing animal movements between managed and natural habitats. 
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Table2.1. List and description of models for the categorical variable “land use”. Name refers to the name 

and number given to the explanatory variables with different factor level arrangement. Factor level 

arrangements were based on a set of a priori hypothesis that ensured biological interpretation of the 

results. Each particular model (hypothesis) was described by GLMM or LMM (depending on the 

response variable). We used model selection based on the Akaike Information Criterion corrected for 

small samples to compare the set of candidate models, with deletion tests (Wald’s chi-square test for 

species richness and F-test for abundance) to assess the significance of the increase in deviance that 

resulted when a given term was removed from the current model. 

Abbreviations: A: agriculture; AFS: agriculture with forest strips; S: silvopasture; FS: forest strip; F: forest; FNP: 

forest inside Copo National Parkd description of models for the categorical variable “land use”. 

Name Factor level arrangement Particular hypothesis justification 

Land use 1  A, AFS, S, FS, F, FNP 
Each land use has a particular effect at local scale, mainly 
given their specific vegetation cover and management 
regime.  

Land use 2 A + AFS, S, FS, F, FNP 

Intensive arable systems (A and AFS) are not different from 
each other in their bird community, mainly because habitat 
availability in these land uses is very low despite local 
differences in forest strips surrounding AFS plots. The rest 
of the land uses present a distinctive bird community.  

Land use 3 A + AFS, S, FS, F + FNP 
Intensive arable systems (A and AFS) are not different from 
each other. Land-use types presenting a well-preserved 
forest cover (F and FNP) are not different from each other. 

Land use 4 A + AFS, S + FS, F + FNP 

Intensive arable systems (A and AFS) do not differ. 
Intermediate intensity land uses (S and FS) are grouped 
accordingly to their habitat alteration level and disturbance 
regime. Land uses with a well-preserved forest cover (F and 
FNP) are not different from each other. 

Land use 5 A + AFS, S, FS + F + FNP 

High-intensity land uses (A and AFS) do not differ. 
Intermediate intensity land uses, where forest cover has 
been significantly reduced (S) hold a distinctive bird 
community. Land uses presenting a well-preserved and 
structured forest cover, regardless of size (FS, F and FNP) 
are not different from each other. 

Land use 6 A + AFS, S + FS + F, FNP 

High-intensity land uses (A and AFS) do not differ. Sites 
inside protected areas (FNP) hold a different bird 
community than the rest of forested land-use types (with 
reduced or slightly altered vegetation cover) outside the 
National Park. 

Land use 7 A + AFS, S + FS + F + FNP 

Intensive arable systems (A and AFS) are not different from 
each other. The category of protection does not affect bird 
community assemblages: land-use types presenting a range 
of intermediate forest cover (S), good forest cover outside 
protected areas (FS and F) and well-preserved forest cover 
inside National Park (FNP) do not differ. 
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Table 2.2. Summary statistics for the bird community data surveyed in the semiarid Chaco Region during 2011 and 2012. Land-use types included the most 

common land uses present in the study area and a reference land use (forest control) inside Copo National Park. Number of sites sampled in each land use 

are shown. Absolute values express the total number of individuals and total number of species registered in each land-use type. Mean values represent 

averaged abundance, species richness, rarefied species richness, and Berger-Parker dominance index per land use (+ standard error). Species richness was 

rarefied using 20 individuals (minimum mean number registered in agriculture and agriculture with forest strips). Berger-Parker dominance index 

represents the mean proportion of the most abundant species for each land use. 

 

Table 2. 1 Summary statistics for the bird community data surveyed in the semiarid Chaco Region during 2011 and 2012. 

Land-use type 
Number 
of sites 

Absolute values Mean values (+ se) 

Abundance 
Species 
richness 

Abundance 
Species 
richness 

Rarefied 
sp.richness 

Berger-
Parker 

Agriculture 10 173 19 17.3 + 18.1 4.6 + 3.8 3.7 + 2.4 0.6 + 0.3 

Agriculture with forest strips 10 103 18 10.3 + 10.0 3.5 + 1.3 3.3 + 1.2 0.5 + 0.1 

Silvopasture 10 1834 97 183.4 + 66.8 41.4 + 7.8 13.4 + 2.1 0.16 + 0.14 

Forest strip 10 1156 86 115.6 + 22.8 39.3 + 5.3 14.9 + 0.7 0.11 + 0.03 

Forest 10 1233 82 123.3 + 28.3 42.3 + 6.7 15.1 + 0.7 0.08 + 0.01 

Forest inside National Park 5 568 66 113.6 + 36.2 37.8 + 8.5 15.0 + 0.7 0.1 + 0.02 

Total 55 5067 126 - - - - 
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Table 2.3. Summary of statistical analysis and models tested. For each response variable tested, the table lists: 

the explanatory variables (a factor variable with 6 levels corresponding to each land-use type grouped in 

different ways, accordingly to a priori hypothesis, see Table 2.1); the number of parameters estimated in the 

model (k); the Akaike’s Information Criterion value corrected for small samples (AICc); the delta AICc (as a 

measure of each model relative to the best model), and the Akaike’s weight (w, indicating the probability of a 

model as the best among the whole set of models). Models are sorted in descending order of importance with 

the first model for each response variable being the best model. The best model selected is shown in bold. 

 2. 2 Summary of statistical analysis and models tested. 

Response variable Explanatory variable k AICc AICc w 

Species richness 

Land use 7 3 333.5 0.0 0.40 

Land use 6 4 334.7 1.2 0.22 

Land use 5 4 335.5 2.0 0.15 

Land use 4 4 335.7 2.2 0.13 

Land use 3 5 337.6 4.1 0.05 

Land use 2 6 338.5 5.0 0.03 

Land use 1 7 339.6 6.1 0.02 

intercept 2 1140.0 806.5 0.00 

Rarefied species richness 

Land use 7 3 248.7 0.0 0.39 

Land use 5 4 249.7 1.0 0.24 

Land use 4 4 250.5 1.8 0.16 

Land use 6 4 251.0 2.3 0.12 

Land use 3 5 252.2 3.5 0.07 

Land use 2 6 254.7 6.0 0.02 

Land use 1 7 257.1 8.4 0.01 

intercept 2 421.0 172.3 0.00 

Abundance 

Land use 5 5 553.7 0.0 0.70 

Land use 3 6 556.1 2.4 0.21 

Land use 2 7 558.4 4.7 0.07 

Land use 1 8 561.0 7.3 0.02 

Land use 4 5 571.0 17.3 0.00 

Land use 7 4 573.2 19.5 0.00 

Land use 6 5 573.7 20.0 0.00 

intercept 3 632.9 79.2 0.00 

Berger-Parker dominance 
(squared root) 

Land use 5 5 -84.4 0.0 0.34 

Land use 4 5 -83.5 0.9 0.22 

Land use 7 4 -83.1 1.3 0.18 

Land use 3 6 -82.5 1.9 0.13 

Land use 6 5 -81.0 3.4 0.06 

Land use 2 7 -80.1 4.3 0.04 

Land use 1 8 -78.7 5.7 0.02 

intercept 3 -5.2 79.2 0.00 
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Table 2.4. Summary statistics for the analysis of trophic guilds. Values represent the mean proportion of species richness and abundance of birds per 

trophic guild (+ standard error) in each land-use. We report 2: chi-square statistic and E.D: explained deviance as a measure of statistical significance. Mean 

proportions were calculated as: number of species of a given guild in a given site in relation to total number of species for that site (averaged by sites inside 

the same land use); and, number of individuals of a given guild in a given site in relation to total number of individuals for that site (averaged by sites inside 

the same land use). Superscript letters indicate the outcome of multiple comparisons using Tukey HSD (statistically different results at alpha=0.05 are those 

whose combination present at least one different letter). Significant comparisons among land uses with p<0.001 are in bold. 

Table 2. 3 Summary statistics for the analysis of trophic guilds. 

 

 

 

 

 

 

 

Abbreviations: A: agriculture; AFS: agriculture with forest strips; S: silvopasture; FS: forest strip; F: forest; FNP: forest inside Copo National 
Park. E.D: explained deviance. 

  

 
A AFS S FS F FNP 

2
 E.D 

Richness 
        

Granivores 0.27 + 0.21 0.37 + 0.39 0.33 + 0.05 0.35 + 0.04 0.29 + 0.05 0.280 + 0.007 6.01 0.03 

Insectivores 0.49 + 0.33 
a
 0.24 + 0.22 

a
 0.55 + 0.07 

b
 0.53 + 0.05 

b
 0.61 + 0.05 

c
 0.64 + 0.03 

c
 30.29 0.13 

Omnivores 0.13 + 0.14 0.06 + 0.13 0.06 + 0.04 0.09 + 0.03 0.07 + 0.02 0.05 + 0.02 9.03 0.06 

Carnivores 0.10 + 0.14 
a,b,c

 0.33 + 0.31 
a,b

 0.06 + 0.03 
a,c

 0.02 + 0.02 
d,e

 0.02 + 0.02 
d,e

 0.03 + 0.01 
d,e

 47.1 0.26 

Abundance 
        

Granivores 0.28 + 0.29 
a
 0.32 + 0.41 

a
 0.48 + 0.15 

b
 0.49 + 0.06 

b
 0.40 + 0.03 

c
 0.27 + 0.02 

c
 76.92 0.14 

Insectivores 0.60 + 0.34 
a
 0.33 + 0.26 

b
 0.46 + 0.16 

b
 0.43 + 0.06 

b
 0.53 + 0.03 

a
 0.68 + 0.03 

a
 56.93 0.11 

Omnivores 0.06 + 0.08 
a
 0.06 + 0.17 

a
 0.02 + 0.01 

b,c
 0.07 + 0.04 

a,c
 0.06 + 0.02 

a,c
 0.03 + 0.02 

a,c
 74.5 0.23 

Carnivores 0.05 + 0.08 
a
 0.27 + 0.31 

b
 0.03 + 0.02 

a,c
 0.006 + 0.008 

e
 0.007 + 0.007 

e
 0.011 + 0.007 

e
 80.4 0.30 
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Table 2.5. Summary statistics for the trophic guilds reclassified. Values represent the mean proportion of species richness and abundance of birds per 

trophic guild (+ standard error) in each land-use. We report 2: chi-square statistic and E.D: explained deviance as a measure of statistical significance. Mean 

proportions were calculated as: number of species of a given guild in a given site in relation to total number of species of granivores and insectivores for 

that site(averaged by sites inside the same land use); and, number of individuals of a given guild in a given site in relation to total number of individuals of 

granivores and insectivores for that site (averaged by sites inside the same land use). Numbers were averaged by sites inside the same land use. Superscript 

letters indicate the outcome of multiple comparisons using Tukey HSD (statistically different results at alpha=0.05 are those whose combination present at 

least one different letter). Significant comparisons among land uses with p<0.001 are in bold. 

 

 
A AFS S FS F FNP 

2
 E. D 

Richness 
        

Terrestrial granivores 0.41 + 0.33 
a
 0.51 + 0.41 

a
 0.28 + 0.05 

b
 0.27 + 0.05 

b
 0.19 + 0.03 

c
 0.19 + 0.02 

c
 33.8 0.16 

Arboreal granivores 0.00 + 0.00 0.00 + 0.00 0.07 + 0.04 0.10 + 0.03 0.08 + 0.04 0.07 + 0.02 0.89 0.01 

Terrestrial insectivores 0.55 + 0.35 
a
 0.43 + 0.37 

a
 0.11 + 0.03 

b
 0.11 + 0.04 

b
 0.08 + 0.04 

b
 0.08 + 0.02 

b
 32.28 0.17 

Long-flight insectivores 0.04 + 0.08 
a,b

 0.05 + 0.17 
a,b

 0.01 + 0.01 
a,b,c

 0.03 + 0.02 
a,b,c

 0.04 + 0.03 
a,b

 0.09 + 0.04 
a,b,d

 17.34 0.15 

Short-flight insectivores 0.00 + 0.00 0.00 + 0.00 0.12 + 0.04 0.13 + 0.04 0.16 + 0.04 0.16 + 0.08 2.83 0.02 

Bark insectivores 0.00 + 0.00 0.00 + 0.00 0.16 + 0.04 0.14 + 0.05 0.17 + 0.03 0.13 + 0.01 0.76 0.00 

Foliage insectivores 0.00 + 0.00 0.00 + 0.00 0.24 + 0.03 0.23 + 0.03 0.27 + 0.05 0.28 + 0.06 2.23 0.01 

Abundance 
        

Terrestrial granivores 0.33+ 0.35 
a
 0.39 + 0.41 

a
 0.42 + 0.15 

b
 0.38 + 0.05 

b
 0.32 + 0.05 

c
 0.21 + 0.02 

c
 54.9 0.11 

Arboreal granivores 0.00 + 0.00 0.00 + 0.00 0.08 + 0.06 
a
 0.13 + 0.05 

b
 0.09 + 0.03 

a
 0.04 + 0.01 

a
 14.69 0.06 

Terrestrial insectivores 0.65 + 0.33 
a
 0.37 + 0.40 

a
 0.11 + 0.06 

b
 0.08 + 0.03 

c
 0.09 + 0.05 

c
 0.09 + 0.03 

c
 331.06 0.48 

Long-flight insectivores 0.02 + 0.05 
a
 0.02 + 0.08 

a
 0.01 + 0.02 

a
 0.02 + 0.02 

a
 0.04 + 0.03 

b
 0.08 + 0.05 

b
 20.68 0.10 

Short-flight insectivores 0.00 + 0.00 0.00 + 0.00 0.10 + 0.07 
a
 0.12 + 0.06 

b
 0.12 + 0.03 

b
 0.14 + 0.06 

b
 6.25 0.02 

Bark insectivores 0.00 + 0.00 0.00 + 0.00 0.08 + 0.03 0.09 + 0.05 0.10 + 0.04 0.07 + 0.03 1.49 0.01 

Foliage insectivores 0.00 + 0.00 0.00 + 0.00 0.18 + 0.09 
a
 0.17 + 0.05 

a
 0.24 + 0.06 

b
 0.36 + 0.05 

b
 31.8 0.10 

Abbreviations: A: agriculture; AFS: agriculture with forest strips; S: silvopasture; FS: forest strip; F: forest; FNP: forest inside Copo National Park. E.D: explained 

deviance. 
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Figure legends 

 

Figure 2.1. Land cover map showing (A) the 100 x 60 km grid overlaid across the study area. 

Light grey shaded squares indicate each of the ten randomly selected grid squares for the 

survey, (B) detail of one of the grid squares selected, red dots represent the location of the 

site for each of the five land-use types, (C) detail of several sites located nearby, red dots 

indicate the layout of point-count stations. Different vegetation cover is represented by 

different colours. 

 

Figure 2.2. Bird species accumulation curves for each land use. Curves represent the total 

number of species recorded with increasing number of point-counts sampled. Different 

colours indicate different land-use types. A, agriculture; AFS, agriculture with forest strip; S, 

silvopasture; FS, forest strip; F, forest; FNP, forest inside National Park. The dashed vertical 

line illustrates a species richness comparison standardized to 20 point-count stations, which 

was the smallest number of points sampled in FNP.  

 

Figure 2.3. Bird diversity measures for each land-use type. (A) Species richness; (B) Species 

richness rarefied; (C) Abundance of individuals; (D) Berger-Parker dominance index. Thick 

lines represent the median, boxes represent the interquartile range and whiskers represent 

minimum and maximum values, points represent sites (replicates). On the horizontal axis, 

land-use types are sorted from the most intensified agricultural practices to the least 

modified habitats. A, agriculture; AFS, agriculture with forest strip; S, silvopasture; FS, forest 

strip; F, forest; and FNP, forest inside National Park. Land uses with different letters differ 

significantly in the diversity measure (Tukey’s Honestly Significant Difference test: P < 0.05). 

 

Figure 2.4. Principal Coordinates Analysis (PCoA) plot based on a Bray Curtis dissimilarity 

matrix for all 55 sites and 126 bird species. The first two axis of the ordination explained 

47% of the variation in community composition. A marked division is appreciated along the 

first axis, between positive scores corresponding to sites in forested land uses and negative 

scores corresponding to sites in A and AFS. Sites are shown in coloured symbols, with each 
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character indicating a different land use. A, agriculture; AFS, agriculture with forest strip; S, 

silvopasture; FS, forest strip; F, forest; FNP, forest inside National Park.  

 

Figure 2.5. Trophic guild distribution in each land-use type. (A) Proportional species richness 

per guild, per land use. Proportions in each bar represent the number of species of a given 

guild in relation to the total number of species in that land-use type. (B) Proportional 

abundance per guild per land use. Proportions in each bar represent the number of 

individuals of a given guild in relation to total abundance in that land-use type. Different 

colours represent different trophic guilds: Carn: carnivores; Omni: omnivores; Inse: 

insectivores; Gran: granivores. A: agriculture; AFS, agriculture with forest strip; S, 

silvopasture; FS, forest strip; F, forest; FNP, forest inside National Park. 

 

Figure 2.6. Subdivision of main trophic guilds and their distribution per land-use type. Only 

species belonging to major trophic guilds (granivores and insectivores) were reclassified into 

seven new groups defined by diet and foraging behaviour. (A) Proportion of species per 

guild, per land use. Proportions in each bar represent the number of species of a given guild 

in relation to the total number of species in that land-use type. (B) Proportional abundance 

per group per land use. Proportions in each bar represent the number of individuals of a 

given guild in relation to total abundance in that land-use type. Different colours represent 

different guilds: FI: foliage insectivores; BI: bark insectivores; SFI: short-flight insectivores; 

LFI: long-flight insectivores; TI: terrestrial insectivores; AG: arboreal granivores; TG: 

terrestrial granivores. A: agriculture; AFS, agriculture with forest strip; S, silvopasture; FS, 

forest strip; F, forest; FNP, forest inside National Park. 
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Figure 2.1. 

Figure 2. 1 
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Figure 2.2. 

 

Figure 2. 2 
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Figure 2.3. 

 

 

 

Figure 2. 3 



80 

 

Figure 2.4. 

 

 

Figure 2. 4 
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Figure 2.5. 

 

  

Figure 2. 5 
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Figure 2.6. 
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2.5. Supplementary information 

 
Table 2.S1. Bird species observed during the whole fieldwork period 2011 and 2012 inside the study area in the semiarid Chaco Region. Families are listed in 

alphabetical order. Species are listed by their scientific and English name. Trophic guild shows the original classification in seven guilds. However, analysis 

were done by grouping frugivores with granivores; nectarivores with omnivores, and scavengers with carnivores. Category specifies the conservation status 

under the criteria of IUCN (IUCN 2014). The first 126 species listed were registered during the point-count sampling period; species registered outside the 

sampling period were not classified by trophic guild, and are listed for the record.  

 

Family Species English Name Trophic guild Category 

1 Accipitridae Buteogallus meridionalis Savanna Hawk Carnivore LC 

2 Accipitridae Buteogallus urubitinga Great Black Hawk Carnivore LC 

3 Accipitridae Elanus leucurus White-tailed Kite Carnivore LC 

4 Accipitridae Parabuteo unicinctus Harris's Hawk Carnivore LC 

5 Accipitridae Rupornis magnirostris Roadside Hawk Carnivore LC 

6 Apodidae Chaetura meridionalis Southern Swift Insectivore LC 

7 Ardeidae Syrigma sibilatrix Whistling Heron Carnivore LC 

8 Bucconidae Nystalus maculatus Chaco Puffbird Insectivore LC 

9 Caprimulgidae Antrostomus rufus Rufous Nightjar Insectivore LC 

10 Caprimulgidae Setopagis parvula Little Nightjar Insectivore LC 

11 Cardinalidae Cyanocompsa brissoni Ultramarine Grosbeak Granivore LC 

12 Cardinalidae Piranga flava Hepatic Tanager Insectivore LC 

13 Cardinalidae Saltator coerulescens Greyish Saltator Granivore LC 

14 Cariamidae Chunga burmeisteri Black-legged Seriema Omnivore LC 

15 Cathartidae Cathartes aura Turkey Vulture Scavenger LC 

16 Cathartidae Coragyps atratus Black Vulture Scavenger LC 

17 Cathartidae Sarcoramphus papa King Vulture Scavenger LC 
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18 Charadriidae Vanellus chilensis Southern Lapwing Insectivore LC 

19 Columbidae Columbina picui Picui Ground-Dove Granivore LC 

20 Columbidae Leptotila verreauxi White-tipped Dove Granivore LC 

21 Columbidae Patagioenas maculosa Spot-winged Pigeon Granivore LC 

22 Columbidae Patagioenas picazuro Picazuro Pigeon Granivore LC 

23 Columbidae Zenaida auriculata Eared Dove Granivore LC 

24 Corvidae Cyanocorax chrysops Plush-crested Jay Omnivore LC 

25 Cotingidae Pachyramphus viridis Green-backed Becard Insectivore LC 

26 Cracidae Ortalis canicollis Chaco Chachalaca Frugivore LC 

27 Cuculidae Guira guira Guira Cuckoo Omnivore LC 

28 Emberizidae Ammodramus humeralis Grassland Sparrow Granivore LC 

29 Emberizidae Arremon flavirostris Saffron-billed Sparrow Insectivore LC 

30 Emberizidae Embernagra platensis Great Pampa-Finch Insectivore LC 

31 Emberizidae Rhynchospiza strigiceps Stripe-capped Sparrow Granivore LC 

32 Emberizidae Zonotrichia capensis Rufous-collared Sparrow Granivore LC 

33 Falconidae Caracara plancus Southern Crested-Caracara Carnivore LC 

34 Falconidae Falco sparverius American Kestrel Carnivore LC 

35 Falconidae Milvago chimachima Yelow-headed Caracara Carnivore LC 

36 Falconidae Milvago chimango Chimango Caracara Carnivore LC 

37 Fringillidae Euphonia chlorotica Purple-throated Euphonia Frugivore LC 

38 Fringillidae Sporagra magellanica Hooded Siskin Granivore LC 

39 Furnariidae Asthenes baeri Short-billed Canastero Insectivore LC 

40 Furnariidae Campylorhamphus trochilirostris Red-billed Scythebill Insectivore LC 

41 Furnariidae Coryphistera alaudina Lark-like Brushrunner Insectivore LC 

42 Furnariidae Cranioleuca pyrrhophia Stripe-crowned Spintail Insectivore LC 

43 Furnariidae Drymornis bridgesii Scimitar-billed Woodcreeper Insectivore LC 

44 Furnariidae Furnarius cristatus Crested Hornero Insectivore LC 

45 Furnariidae Furnarius rufus Rufous Hornero Insectivore LC 

46 Furnariidae Lepidocolaptes angustirostris Narrow-billed Woodcreeper Insectivore LC 
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47 Furnariidae Leptasthenura platensis Tufted Tit-Spintail Insectivore LC 

48 Furnariidae Phacellodomus ruber Greater Thornbird Insectivore LC 

49 Furnariidae Phacellodomus sibilatrix Little Thornbird Insectivore LC 

50 Furnariidae Phacellodomus striaticollis Freckle-breasted Thornbird Insectivore LC 

51 Furnariidae Pseudoseisura lophotes Brown Cacholote Insectivore LC 

52 Furnariidae Schoeniophylax phryganophila Chotoy Spintail Insectivore LC 

53 Furnariidae Sittasomus griseicapillus Olivaceous Woodcreeper Insectivore LC 

54 Furnariidae Synallaxis albescens Pale-breasted Spintail Insectivore LC 

55 Furnariidae Synallaxis frontalis Sooty-fronted Spintail Insectivore LC 

56 Furnariidae Tarphonomus certhioides Chaco Earthcreeper Insectivore LC 

57 Furnariidae Xiphocolaptes major Great Rufous Woodcreeper Insectivore LC 

58 Hirundinidae Progne tapera Brown-chested Martin Insectivore LC 

59 Icteridae Agelaioides badius Bay-winged Cowbird Insectivore LC 

60 Icteridae Cacicus chrysopterus Golden-winged Cacique Frugivore LC 

61 Icteridae Cacicus solitarius Solitary Cacique Frugivore LC 

62 Icteridae Icterus cayanensis Epaulet Oriole Insectivore LC 

63 Icteridae Molothrus bonariensis Shiny Cowbird Insectivore LC 

64 Icteridae Molothrus rufoaxillaris Screaming Cowbird Insectivore LC 

65 Icteridae Sturnella supercilliaris White-browed Blackbird Insectivore LC 

66 Incertae sedis Saltator aurantiirostris Golden-billed Saltator Granivore LC 

67 Incertae sedis Saltatricula multicolor Many-coloured Chaco-Finch Granivore LC 

68 Melanopareiidae Melanopareia maximiliani Olive-crowned Crescentchest Insectivore LC 

69 Mimidae Mimus triurus White-banded Mockingbird Insectivore LC 

70 Motacillidae  Anthus chacoencis Pampas Pipit Insectivore LC 

71 Motacillidae  Anthus lutescens Yellowish Pipit Insectivore LC 

72 Parulidae Setophaga pitiayumi Tropical Parula Insectivore LC 

73 Picidae Campephilus leucopogon Cream-backed Woodpecker Insectivore LC 

74 Picidae Colaptes campestris Field Flicker Insectivore LC 

75 Picidae Colaptes melanochloros  Green-barred Woodpecker Insectivore LC 
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76 Picidae Dryocopus schulzi Black-bodied Woodpecker Insectivore NT 

77 Picidae Melanerpes cactorum White-fronted Woodpecker Insectivore LC 

78 Picidae Melanerpes candidus White Woodpecker Frugivore LC 

79 Picidae Picumnus cirratus White-barred Piculet Insectivore LC 

80 Picidae Verniliornis mixtus Checkered Woodpecker Insectivore LC 

81 Polioptilidae Polioptila dumicola Masked Gnatcatcher Insectivore LC 

82 Psittacidae Amazona aestiva Turquoise-fronted Amazon Granivore LC 

83 Psittacidae Myiopsitta monachus Monk Parakeet Granivore LC 

84 Psittacidae Pionus maximiliani Scaly-headed Parrot Granivore LC 

85 Psittacidae Thectocercus acuticaudatus Blue-Crowned Parakeet Granivore LC 

86 Rhinocryptidae Rhinocrypta lanceolata Crested Gallito Insectivore LC 

87 Strigidae Athene cunicularia Burrowing Owl Carnivore LC 

88 Strigidae Glaucidium brasilianum Ferruginous Pygmy-Owl Carnivore LC 

89 Strigidae Pseudoscops clamator Striped Owl Carnivore LC 

90 Thamnophilidae Myrmorchilus strigilatus Stripe-backed Antbird Insectivore LC 

91 Thamnophilidae Taraba major Great Antshrike Insectivore LC 

92 Thamnophilidae Thamnophilus caerulescens Variable Antshrike Insectivore LC 

93 Thraupidae Coryphospingus cucullatus Red Pileated-Finch Granivore LC 

94 Thraupidae Paroaria coronata Red-crested Cardinal Granivore LC 

95 Thraupidae Poospiza melanoleuca Black-capped Warbling-Finch Granivore LC 

96 Thraupidae Poospiza torquata Ringed Warbling-Finch Granivore LC 

97 Thraupidae Sicalis flaveola Saffron Yellow-Finch Granivore LC 

98 Thraupidae Sicalis luteola Grassland Yellow-Finch Granivore LC 

99 Tinamidae Crypturellus tataupa Tataupa Tinamou Omnivore LC 

100 Tinamidae Nothoprocta cinerascens Brushland Tinamou Omnivore LC 

101 Tinamidae Nothura maculosa Spotted Nothura Omnivore LC 

102 Trochilidae Chlorostilbon lucidus Glittering-billied Emerald Nectarivore LC 

103 Trochilidae Heliomaster furcifer Blue-tufted Starthroat Nectarivore LC 

104 Trochilidae Hylocharis chrysura Gilded Sapphire Nectarivore LC 
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105 Troglodytidae Troglodytes aedon House Wren Insectivore LC 

106 Turdidae Turdus amaurochalinus Creamy-bellied Thrush Frugivore LC 

107 Tyrannidae Camptostoma obsoletum Southern Beardless-Tyrannulet Insectivore LC 

108 Tyrannidae Casiornis rufus Rufous Casiornis Insectivore LC 

109 Tyrannidae Elaenia parvirostris Small-billed Elaenia Frugivore LC 

110 Tyrannidae Empidonomus aurantioatrocristatus Crowned Slaty Flycatcher Insectivore LC 

111 Tyrannidae Euscarthmus meloryphus Tawny-crowned Pygmy-Tyrant Insectivore LC 

112 Tyrannidae Hemitriccus margaritaceiventer Pearly-vented Tody-Tyrant Insectivore LC 

113 Tyrannidae Inezia inornata Plain Tirannulet Insectivore LC 

114 Tyrannidae Knipolegus striaticeps Cinereous Tyrant Insectivore LC 

115 Tyrannidae Machetornis rixosus Cattle Tyrant Insectivore LC 

116 Tyrannidae Myiarchus tyrannulus Short-crested Flycatcher Insectivore LC 

117 Tyrannidae Myophobus fasciatus Bran-coloured Flycatcher Insectivore LC 

118 Tyrannidae Pitangus sulphuratus Great Kiskadee Insectivore LC 

119 Tyrannidae Pyrocephalus rubinus Vermilion Flycatcher Insectivore LC 

120 Tyrannidae Serpophaga griseiceps Grey-crowned Tyrannulet Insectivore LC 

121 Tyrannidae Serpophaga subcristata White-crested Tyrannulet Insectivore LC 

122 Tyrannidae Stigmatura budytoides Greater Wagtail-Tyrant Insectivore LC 

123 Tyrannidae Sublegatus modestus Southern Scrub-Flycatcher Insectivore LC 

124 Tyrannidae Suirirí suirirí Suiriri Flycatcher Insectivore LC 

125 Tyrannidae Tyrannus savana Fork-tailed Flycatcher Insectivore LC 

126 Vireonidae Cyclarhis gujanensis Rufous-browed Peppershrike Insectivore LC 

127 Accipitridae Accipiter bicolor Bicolored Hawk * LC 

128 Accipitridae Accipiter striatus Sharp-shinned Hawk * LC 

129 Accipitridae Buteo brachyurus Short-tailed Hawk * LC 

130 Accipitridae Chondrohierax uncinatus Hook-billed Kite * LC 

131 Anatidae Sarkidiornis melanotos African Comb Duck * LC 

132 Caprimulgidae Hydropsalis torquata Scissor-tailed Nightjar * LC 

133 Cariamidae Cariama cristata Red-legged Seriema * LC 
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134 Columbidae Columba livia Rock Dove * LC 

135 Cuculidae Coccyzus melacoryphus Dark-billed Cuckoo * LC 

136 Cuculidae Crotophaga ani Smooth-billed Ani * LC 

137 Falconidae Falco femoralis Aplomado Falcon * LC 

138 Furnariidae Anumbius annumbi Firewood-gatherer * LC 

139 Parulidae Geothlypis aequinoctialis Masked Yellowthroat * LC 

140 Passeridae Passer domesticus House Sparrow * LC 

141 Picidae Celeus lugubris Pale-crested Woodpecker * LC 

142 Picidae Piculus chrysochloros Golden-green Woodpecker * LC 

143 Psittacidae Pyrrhura frontalis Reddish-billed Parakeet * LC 

144 Recurvirostridae Himantopus mexicanus Black-necked Stilt * LC 

145 Rheidae Rhea americana Greater Rhea * NT 

146 Strigidae Asio flammeus Short-eared Owl * LC 

147 Strigidae Megascops choliba Tropical Screech-owl * LC 

148 Thraupidae Pipraeidea bonariensis Blue-and-yellow Tanager * LC 

149 Thraupidae Thraupis sayaca Sayaca Tanager * LC 

150 Tinamidae Eudromia elegans Elegant Crested Tinamou * LC 

151 Turdidae Turdus rufiventris Rufous-bellied Thrush * LC 

152 Tyrannidae Lathrotriccus euleri Euler's Flycatcher * LC 

153 Tyrannidae Xolmis cinereus Grey Monjita * LC 

154 Tyrannidae Xolmis irupero White Monjita * LC 

Abbreviations: LC, least concern; NT, near threatened 
*, species observed in the study area outside the sampling period, not considered for the analysis.  
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Table 2.S2. Distribution of species and individuals per feeding group in each land use. Species 

richness represents the total number of species, and abundance represents the total number of 

individuals registered for each trophic guild in each land-use type. 

 

 
 

Abbreviations: Gran: granivores; Inse: insectivores; Omni: omnivores; Carn: carnivores. 
 
  

Land-use type 
Total species richness Total abundance 

Gran Inse Omni Carn Gran Inse Omni Carn 

Agriculture 6 7 3 3 44 107 15 7 

Agriculture with forest strips 6 4 3 5 32 37 17 17 

Silvopasture 25 52 7 13 919 822 35 58 

Forest strip 24 50 8 4 573 499 76 8 

Forest 20 51 6 5 492 654 77 10 

Forest inside National Park 17 41 5 3 151 388 23 6 
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Table 2.S3. Distribution of species and individuals per guild in each land use. Species richness 

represents the total number of species, and abundance represents the total number of individuals 

registered for each trophic guild in each land-use type. 

 

 

Land-use type 
Total species richness  Total abundance 

TG AG TI LFI SFI BI FI 
 

TG AG TI LFI SFI BI FI 

Agriculture 6 0 5 2 0 0 0 
 

44 0 104 3 0 0 0 

Agriculture with forest strips 6 0 3 1 0 0 0 
 

32 0 36 1 0 0 0 

Silvopasture 14 6 10 1 10 10 21 
 

740 154 220 23 152 145 282 

Forest strip 13 6 10 3 11 10 16 
 

391 134 89 17 123 95 175 

Forest 9 5 8 4 10 12 17 
 

344 95 105 41 133 106 269 

Forest inside National Park 9 4 5 4 9 9 14 
 

108 23 49 44 72 40 183 

Abbreviations: TG: terrestrial granivores; AG: arboreal granivores; TI: terrestrial insectivores; LFI: long-flight insectivores;SFI: 
short-flight insectivores; BI: bark insectivores; FI: foliage insectivores. 
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Mammal species captured on camera-traps
4
 

 

 

 

 

 

 

3 MAMMAL COMMUNITY RESPONSE TO A GRADIENT OF LAND 

USE INTENSIFICATION 

                                                           
 

4
 Some mammal species captured in the study area. Pictures belong to INTA. From left to right: Myrmecophaga 

tridactyla; Eira barbara; Catagonus wagneri; Leopardus geoffroyi; Mazama gouazoubira. 
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Summary 

 

The semiarid Chaco landscapes have undergone severe modifications for pastoral and 

agricultural development through intensification and enlargement of farmed areas. More 

than 150 mammal species have been recorded for the Chaco Region. However, several 

studies suggest that distinctive species like the jaguar (Panthera onca), the giant armadillo 

(Priodontes maximus) and the endemic Chacoan peccary (Catagonus wagneri), have 

suffered major population declines. A good knowledge of the presence and distribution of 

species is crucial for planning and developing conservation strategies. Our main objective 

was to assess the effects of land use on mammal community structure. For that purpose, we 

associated these effects with the main habitat types and with landscape composition in the 

area surrounding the sampling sites. We deployed camera trap stations inside seven 

different land-use types (forest inside National Park; grassland inside National Park; forest; 

silvopasture; forest strip and two types of agricultural plots) during winter and spring season 

in 2012 and 2013. A total of 4217 camera trap nights captured 26 different species 

(approximately 78 % of the mammals reported for the region). Mammal distributions were 

most strongly correlated with local land-use characteristics. Species richness and relative 

abundance were highest in habitats with dense forest vegetation. Whereas land uses with 

moderate (silvopasture) to high human intervention (agriculture) showed a significant drop 

in number of species and capture frequency (an indicator of relative abundance). The 

National Park accounted for the highest mean species richness and capture frequency. 

Arable fields (agriculture with and without forest strips) were similar in their low number of 

species and capture frequency. Intermediate intensification land uses (i.e. silvopasture) 

maintained similar species composition to forested habitats, including those in the National 

Park, demonstrating that this type of agroforestry represent a good option to combine 

production with high levels of mammal diversity. We hope to use this information to 

promote land-use practices that will allow mammal species to persist within heavily 

managed areas in this region. 
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3.1. Introduction 

 

Landscape transformation is the main factor contributing to biodiversity decline (Fahrig 

2003; Tscharntke et al. 2005), acting through the quality reduction of habitats and habitat 

loss, together with the increasing homogeneity of the farmed landscape and more intensive 

field management (Andrén 1994; Fahrig 2003). The effects of these changes on the 

abundance and quality of food resources, shelter, and breeding habitat are likely 

mechanisms underlying species distribution. Their responses to habitat conditions and 

human pressures result from complex interactions and can be manifested in different ways 

and at different spatial scales (Andrén 1994; Woodroffe 2000; Gehring & Swihart 2003; 

Fracassi 2009). Several studies have demonstrated strong relationships between land cover 

and the presence of mammal species. A large scale study across Central and North America 

(Flynn et al. 2009) concluded that both species richness and functional diversity of mammals 

declined significantly with land use intensification; emphasizing that changes from natural 

to agricultural production systems can reduce the functional diversity of animal 

communities beyond mere changes in species richness, potentially affecting the provision of 

ecosystem services. Coincidentally, mammal assemblages in Mexico have shown a high 

degree of correlation with specific land-cover types, making their long-term persistence in 

the region critically dependent to modifications on land use trends (Cuaron 2000). In 

savannahs of Tanzania (Kiffner et al. 2014) and Australia (Kutt & Gordon 2012; Woinarski & 

Ash 2002), similar results suggest that native mammal communities are negatively affected 

by anthropogenic ground cover changes, where the highest species richness and abundance 

of species were found inside protected areas, whereas settlement and farmed areas had the 

lowest diversity.  

Percentage and conservation status of the forest cover (Pardini et al. 2009; Wearn et 

al. 2012; R. Cassano et al. 2014), the degree of connectivity between habitats (Gehring & 

Swihart 2003; Barlow et al. 2010; Minor & Lookingbill 2010), and the level of human 

pressure (Woodroffe 2000; Altrichter & Boaglio 2004; Altrichter 2005; Paviolo et al. 2009) 

are among the most important drivers of mammal species persistence. 

In South America, dry forest and savannah biomes have experienced extensive 

deforestation during the last decades (Aide et al. 2013). Most of the loss in woody 
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vegetation cover was concentrated in Bolivia, Paraguay, and northern Argentina where 

several studies have linked changes in landscape with deforestation for agribusiness (Boletta 

et al. 2006; Gasparri & Grau 2009). In the semiarid Chaco Region of Argentina, changes in 

climate conditions, grain prices and technology applied to production favour agribusiness, 

leading to a rapid conversion from natural ecosystems (grasslands and native forest) to 

planting areas in one of the most important temperate dry forests in the continent.  

 

Mammalian community in the semiarid Chaco 

The impact of agricultural intensification on wildlife in the Chaco Region has been the 

subject of increasing concern, particularly over the last decade (Zak et al. 2004; Gasparri & 

Grau 2006; Adamoli 2006; Codesido et al. 2009; Mastrangelo & Gavin 2012; Macchi & Grau 

2012; Macchi et al. 2013; Torres et al. 2014). This mosaic of agricultural and natural land 

provides habitat for at least 30 medium-sized and large mammalian species, represented by 

13 families (Myrmecophagidae, Dasypodidae, Canidae, Mustelidae, Mephitidae, Felidae, 

Procyonidae, Didelphidae, Tapiridae, Cervidae, Tayassuidae, Chinchillidae, and Leporidae).  

There are many emblematic species in the region with unique characteristics and 

requirements. A number of these species are listed on the IUCN Red List of Threatened 

Species (IUCN 2014) as well as on the Red List of Endangered Mammals of Argentina (Ojeda 

et al. 2012). For example, all three species of peccaries are present in the Chaco Region 

(collared peccary, Tayassu tajacu; white-lipped peccary, Tayassu pecari; and Chacoan 

peccary, Catagonus wagneri) with the latter being the rarest and most vulnerable, 

categorized as Endangered (Ojeda et al. 2012; Altrichter et al. 2014; IUCN 2014). These 

species play an important role as prey of top predators and, as ecosystems engineers, 

disperse the seeds of several fruiting trees and shrubs (Altrichter & Boaglio 2004; Tobler et 

al. 2009; Altrichter et al. 2014). Armadillos are the most diverse family with 8 species; one 

globally Vulnerable and regionally Endangered (giant armadillo, Priodontes maximus) and 

two Near Threatened (Chacoan naked-tailed armadillo, Cabassous chacoensis; and southern 

three-banded armadillo, Tolypeutes matacus) (Ojeda et al. 2012; Noss et al. 2014). These 

species feed almost exclusively on ants and termites and are mainly found in undisturbed 

environments (Wetzel 1985; Bolkovic et al. 1995; Soibelzon et al. 2007; da Silveira Anacleto 

2007; Abba & Superina 2010; Abba et al. 2012; Trujillo & Superina 2014). On the other hand, 
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the most common armadillo species (Dasypus novemcinctus, Chaetophractus vellerosus, 

Chaetophractus villosus, and Euphractus sexcinctus.) are opportunistic insectivores, feeding 

occasionally on other items (i.e. other invertebrates such as worms and larvae, and also 

carcasses) (da Silveira Anacleto 2007; Soibelzon et al. 2007; Abba & Superina 2010; Abba et 

al. 2012; Trujillo & Superina 2014). Also from the order of Xenarthrans and the insectivores 

guild, two species of anteaters inhabit the semiarid Chaco: the giant anteater, currently 

assessed as Vulnerable (Myrmecophaga tridactyla, IUCN 2014), and the collared anteater 

(Tamandua tetradactyla). These charismatic species require large areas for their survival, 

given their dietary specificity. 

Top predators in this region are represented by two species of felids; the jaguar 

(Panthera onca) and the puma (Puma concolor) (Taber et al. 1997; Maffei et al. 2004; 

Romero-Muñoz et al. 2010). The former is present in northern Argentina at its southern 

limit of distribution, although in extremely low densities (Altrichter et al. 2006; Quiroga et 

al. 2013; Quiroga 2013), it has been categorized as Critically Endangered at regional scale 

(Ojeda et al. 2012). Another eight species of mesopredators can be found, three canids 

(crab-eating fox, Cerdocyon Thous; Pampas fox, Lycalopex gymnocercus; and the Near 

Threatened maned wolf, Chrysocyon brachyurus) (Rodden et al. 2008), two mustelids (the 

tayra Eira barbara; and the lesser grison, Galictis cuja), and three cats (Geoffroy’s cat, 

Leopardus geoffroyi; jaguarundi, Puma jagouaroundi; and the ocelot, Leopardus pardalis). In 

addition to those mentioned earlier, a handful of other species play the role of prey (e.g. 

grey brocket deer, Mazama gouazoubira; white-eared opossum, Didelphis albiventris; forest 

rabbit, Sylvilagus brasiliensis, hog-nosed skunk, Conepatus chinga) (Parera 2002; Canevari & 

Vaccaro 2007; Barquez et al. 2007).  

Most of these medium- and large-sized mammals are species with large area 

requirements, and this determines that a mosaic landscape is generally inhabited by this 

taxa. Given their high mobility and their extensive home ranges, many mammalian species 

may be particularly sensitive to land-use changes. Some others might be more resistant to 

human pressures and habitat modification as a result of a broader trophic niche, or a higher 

intrinsic population growth rate, which might represent an advantage in human-altered 

landscapes (Gehring & Swihart 2003). However, the progressive destruction of habitat for 

agriculture and cattle ranching, as well as timber extraction, and the high hunting pressure 
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upon several of these species are among the factors repeatedly cited as the main causes of 

population decline (Ojeda et al. 2012; IUCN 2014). A considerable problem confronting the 

mammal community conservation in this environment is the lack of information. Very few 

studies exist on mammal communities inhabiting human-modified habitats in the semiarid 

Chaco. Apart from a small number of targeted studies focused on particular species 

(Altrichter & Boaglio 2004; Altrichter et al. 2006; Chillo et al. 2010; Torres & Jayat 2010; 

Serbent et al. 2011), or big predators and their prey in protected areas (Quiroga et al. 2013) 

or species outside Argentina (Stallings 1984; Taber et al. 1997; Maffei et al. 2004; Maffei et 

al. 2007; Dillon & Kelly 2008; Kelly et al. 2008; Silveira et al. 2009; Romero-Muñoz et al. 

2010).  

 

The aim of this chapter is to understand how mammalian communities change in response 

to anthropogenic management, and to further investigate the influence of the surrounding 

landscape. This represents one of the first studies to explore the influence of land use 

intensification on mammal distributions using camera traps. We assessed the effect of three 

different types of agricultural management on the components of mammals’ diversity, and 

compared them with non-production ecosystems. Only by examining such relationships and 

patterns on a local scale we can start to comprehend the effects of land use change on 

these communities. Nonetheless, species responses to habitat alterations and human 

pressures result from complex interactions and can be affected by different factors acting at 

different spatial scales (Gehring & Swihart 2003; Boscolo & Metzger 2009, R. Cassano et al. 

2009). Therefore, in this study we compared mammal community structure and 

composition using variables from local and landscape scales. Given that the physical and 

spatial characteristics of the sites sampled were strongly related with land-use type, we 

employed two continuous variables to test for a potential stronger effect or a better 

correlation with the mammal community metrics than land-use type itself. These two local 

scale measures were: area of the patch and distance to the nearest edge. Similarly, the 

importance of variables at landscape scale was evaluated by including percentage of forest 

cover and habitat diversity into the model selection procedure.  

We expect that intensified land uses, surrounded by highly altered environments 

would support poor communities with reduced species diversity, as fewer food and shelter 
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resources would be available. We also predict that land uses with intermediate level of 

modification (i.e. silvopasture) would present average values for the community metrics as a 

result of a higher offer of different types of vegetation cover. Whereas a species-rich and 

well-structured mammal community would be present in low- and non-productive 

environments (i.e. forest patches and forest within a National Park).  

The mammal community under study is formed by species with a broad range of 

requirements, some of them with large territories (for instance the felid species) and some 

others with smaller territories (e.g. forest rabbit, armadillos, etc.), for this reason some of 

the individualistic species responses to the landscape variables might be masked when we 

consider the community as a whole. On the other hand, the emergent properties of 

community composition will be best represented in the complete assemblage; therefore we 

expect that the amount of forest cover surrounding the study sites will be a good predictor 

independently of the species included in the assemblages. 

 

3.2. Methods 

 

Study site 

This study was carried out in the semiarid Chaco Biogeographic Province (Cabrera 1971), in 

Chaco and Santiago del Estero Provinces, Argentina. The region is a flatland characterized by 

semi deciduous xeromorphic forests, and natural grasslands running along ancient river 

beds. The climate is seasonal semiarid, with 400-800 mm of annual rainfall concentrated in 

spring and summer (October-March) and a dry season in autumn and winter (April-

September). Mean annual temperature is near 22°C, with maximum temperatures over 

45°C, and below zero in winter (Cabrera 1971). Sampling was partly conducted in a 6,000 

km2 agricultural landscape (26° 24’ S, 61° 09’ W) in the southern portion of Almirante Brown 

Department, Chaco Province. This area is a mosaic of patches of forest and a matrix of 

productive land represented by agricultural fields and cattle ranches (silvopastures). The 

remaining stands of forest are intermixed with cropland and connected with each other by 

strips of forest surrounding agricultural plots. Forest patches have undergone varying 

intensity and timing of log extraction and extensive livestock management, generating a 

range of intermediate to old second-growth forest and different heterogeneity at habitat 
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level (Bucher & Huszar 1999). In addition, we sampled an adjacent portion of protected 

forest inside Copo National Park (25° 46’ S, 61° 47’ W), Santiago del Estero Province. This 

control area is located 50 km away from the agricultural landscape (Figure 1.2, see Chapter 

1) and constitutes a continuous and well preserved stand of protected forest with moderate 

to low intensity exploitation.    

 

Mammals’ data collection 

We collected mammal community data using camera-traps. This type of survey had never 

been done before in the area. It is a particularly efficient technique, suitable for a broad set 

of different studies ranging from inventories of species richness (Silveira et al. 2003; Trolle & 

Kéry 2003; Silver et al. 2004; Tobler et al. 2008), to studies documenting the presence of 

rare or presumed-extinct animals (Silveira et al. 2009; Kierulff et al. 2004); for abundance 

estimations (Karanth & Nichols 1998; Carbone et al. 2001; Rowcliffe et al. 2008; Pereira et 

al. 2011) or animal traits and ecology studies (Di Bitetti et al. 2010; Rowcliffe et al. 2014). 

Despite relatively high initial costs, camera trapping is preferred over other techniques like 

track surveys and direct counts (Silveira et al. 2003) allowing a rapid faunal assessment.  

We employed 24 cameras triggered by an infrared heat-motion detector (Reconyx 

PC800 Hyperfire Professional IRTM). Cameras were deployed at 132 sites during winter and 

spring season (July to December 2012 and 2013), for an average 32 (± 11) camera-trap 

nights (CTNs), resulting in a total effort of 4217 CTNs (Table 3.1). Typically studies focused 

on estimating the densities of a single species using capture-recapture analysis, (Karanth 

1995; Karanth & Nichols 1998), place cameras along travel routes or trails used by the target 

species, in order to maximized the number of records (Maffei et al. 2002; Silveira et al. 

2003; Maffei et al. 2004; Di Bitetti et al. 2008; Tobler et al. 2009). However, studies focused 

on measuring species diversity, ideally should avoid biasing the sampling strategy by limiting 

it to trails, in order to sample the diversity of habitats in the region (Rowcliffe & Carbone 

2008; Wearn et al. 2013). A trail-based sampling approach may limit one’s ability to 

generalize the results from the study sites to the larger area. Recent studies have explored 

the advantages and disadvantages of a strictly-random versus an optimal deployment of 

camera-traps. Blake & Mosquera (2014) found no difference in the overall capture and 

species composition between trail and off trail cameras suggesting that species are equally 
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likely to use trails as not in their study area;  Wearn et al. (2013), however found significant 

differences in the relative abundances between random locations and on trail locations, 

with some important threatened species showing a tendency to avoid trails.  

In this study, we used a random placement strategy where possible. However, 

almost all the potential sites inside the agricultural matrix were situated on private land, and 

we were not always granted the permission to work there. We therefore used the following 

procedure to select camera trap sites: we mapped and numbered all the potential sites 

inside the agricultural landscape for five different land uses (agriculture, A; agriculture with 

forest strips, AFS; silvopasture, S; forest strip, FS; and forest, F). We visited all of the sites to 

check that they had the required characteristics, and to ask for the owner’s approval to 

conduct the study. Subsequently, 20 sites for each land use (and their correspondent spatial 

coordinates) were randomly selected (Figure 3.1). Additionally, we sampled two different 

habitats inside Copo National Park as control sites. These were forest (FNP) and natural 

grassland (GNP). A major issue for these control sites was the lack of internal roads and poor 

facility development in the park, restricting the chances of reaching totally random points. 

Consequently, all the potential sites in these land-use types were restricted to those that 

could be reached on foot, posing a trade-off between the time needed to set a minimum 

number of cameras, and the strict randomization of the sites. As a result, 12 out of 20 sites 

in protected forest were located on abandoned roads inside the park, opened more than 10 

years ago for oil prospecting (presenting canopy cover, in advanced successional state, 3-4 

metres width, Tálamo et al. 2012), whereas the remaining 8 were located off-road deep in 

the forest (Table 3.1, Figure 3.2). The park preserves some of the last stands of natural 

grasslands in the region. Forest vegetation is interrupted by belts (approximately 1 km wide) 

of natural grasslands arranged in a NW-SE direction. These grasslands are scarce inside the 

park, they present a well-established grass community dominated by Elionurus spp. (Lopez 

de Casenave et al. 1995) that grows in dense clumps up to 1 metre high, obstructing the 

deployment of the camera trap. Therefore, we tried to improve detectability by attaching 

the camera trap to a wooden stick at 70 cm height, tilted downwards, and by removing the 

vegetation in the first 3 metres right in front of the camera. We were able to access only 

four of these grasslands; hence, a fewer number of points was set in this land use (Table 

3.1). All sites, inside and outside the park were reached on foot, by opening a small track (<1 
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meter wide) when needed, and using a GPS receiver (Garmin GPS Map 62s, Olathe, Kansas, 

USA). We deployed one camera-trap per site at an average height of 30 cm, almost always 

facing south (to avoid the sun reflection when the station was in an open space, such as 

agriculture). For sampling stations in AFS, camera-traps were deployed pointing towards the 

forest strip (regardless of the cardinal points). Cameras were attached to trees or wood 

poles, no bait was used, and vegetation was cleared in front of the camera to facilitate the 

recognition of species and individuals. The mean distance between nearest sites was 1.7 km 

(Table 3.1), to capture the range of all the species included in the mammal assemblage. 

Camera-traps were set to take 10 consecutive pictures at each trigger event, with no delay 

period between triggers, and a time lapse of 12 h (10 pictures automatically triggered at 

noon and midnight) to be sure that cameras were functioning even when no capture was 

made that day. When possible, camera stations were visited to check for any malfunction, 

to replace batteries or to download pictures. In the event that either the batteries or flash 

card memory ran out (e.g. resulting from cattle presence or vegetation in silvopasture plots 

which continuously triggered the camera), we excluded the gap from total camera-trapping 

effort. 

 

Predictor variables: local and landscape scales 

Explanatory variables were measured for each site at two different scales. Local variables 

included: (i) land-use type (categorical variable with 7 levels: A, AFS, S, FS, F, FNP and GNP); 

(ii) total area of the habitat patch (Log transformed, LogAREA); and (iii) distance to the 

nearest edge (Log transformed, LogEDGE). Patch area was calculated by carefully digitizing 

polygons of homogeneous land cover holding each of the 132 sites. Distance to the edge 

was calculated as the straight-line distance from the sampling point to the nearest boundary 

with a dissimilar habitat type. This procedure was done using the software Quantum GIS 

2.0.1 (QGIS Development Team 2014), on 2013 Landsat 8 OLI/TIRS and Quickbird satellite 

imagery (available at GoogleEarthTM, http://earth.google.com). Landscape scale variables 

included: (i) proportion of forest cover (FC) and habitat diversity (H) within four circular 

buffers of radii 500 m, 1000 m, 1500 m, and 3000 m around the sampling point. Forest cover 

measures including only primary and well preserved forest areas (FC) was used as a 

predictor for mammal species richness, whereas forest cover including primary, secondary 

http://earth.google.com/
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forest, and silvopasture areas (SFC) was used as a predictor for relative abundance. To 

measure these variables, we developed a land cover map for 2013 from Landsat 8 OLI/TIRS 

images obtained from the U.S Geological Survey (http://glovis.usgs.gov/, see Supplementary 

Information for a detailed description). Five classes were identified: forest (mature primary 

forest in good condition), agriculture (winter and summer annual crops), pasture (exotic 

pastures growing in plots with zero or very low density of trees per hectare), silvopasture 

(secondary forest, degraded forest and forest under use for timber harvesting or livestock 

production), and natural grassland (native grasses growing along ancient river beds). Forest 

cover was calculated using FRAGSTATS (McGarigal et al. 2012) and Shannon-Wiener Index 

was appraised as a diversity measure of land-use types (Gehring & Swihart 2003; Krauss et 

al. 2003; Bennett et al. 2006; De Angelo et al. 2011) using package vegan in R (Oksanen et al. 

2012).  

 

Data analysis 

All the images captured in the 132 sites during the 4281 camera trap nights were reviewed 

using an image management software (Reconyx MapView Professional, version 3.1.2080). 

All photographs including large- and medium-sized mammals that we were able to identify, 

were considered in the analysis. The only small mammal registered and identified during the 

study (i.e. the common yellow-toothed Cavy, Galea musteloides) was also considered part of 

the assemblage since it plays an important role as prey of carnivore species. For every 

picture taken, useful data was automatically added by the camera-trap (e.g. date, time, 

infrared illumination, temperature, moon phase, etc.) and specific data was incorporated 

(e.g. site, species, sex, number of individuals, etc.). To assess the effectiveness of our survey 

for inventorying mammal species, we used the graphical method of species accumulation 

curves. These plots show the cumulative number of species detected against the sampling 

effort per unit time, which in the case of camera-traps can be CTNs. Species were 

accumulated by land-use type using 10,000 random iterations without replacement 

(Soberon & Llorente 1993; Gotelli & Colwell 2001). To compare among land uses we plotted 

the results against the number of camera-trap nights, and to evaluate the completeness of 

our survey we compared the total number of species registered with a list of known species 

from previous studies at the study area (Wetzel 1985; Bolkovic et al. 1995; Parera 2002; 

http://glovis.usgs.gov/
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Altrichter & Boaglio 2004; Canevari & Vaccaro 2007; Barquez et al. 2007; Abba et al. 2012; 

Quiroga 2013; Quiroga et al. 2013). 

Based on the pooled pictures of 2012 and 2013, we determined the number of 

species observed (hereafter, species richness) and the capture frequency (c) for each site. 

Capture frequency, detection frequency, trap success or trapping rate are different names 

for the same relative abundance index (Carbone et al. 2001; Silveira et al. 2003; O’Brien 

2008; Rowcliffe et al. 2008; Rovero & Marshall 2009). The application of this index is 

controversial because does not take into account the probability of detection (Jennelle et al. 

2002; Carbone et al. 2002). More robust indexes can be obtained when individuals (those 

previously marked or presenting a natural coat pattern) can be recognized (Karanth & 

Nichols 1998; Karanth et al. 2004; O’Connell et al. 2011). The use of capture-recapture 

models provides, in such cases, unbiased density estimates (Jennelle et al. 2002), but 

excludes from the computation species without individual markings. Based on Carbone et al. 

(2001), and Rowcliffe et al. (2008) we devised the study design to reduce the differences in 

detection probability between sites in each land use. First, we set camera stations in at least 

20 sites per land-use type (only 10 sites for GNP given methodological restrictions). Second, 

we set camera stations randomly, avoiding increasing detection probability by optimal 

deployment. Third, the camera detection zone did not vary greatly across sites because the 

terrain was always flat and also because vegetation was cleared creating an average area of 

15 m2 in front of the camera, independently of the habitat.  

We calculated capture frequency for a given site as the number of independent 

captures divided by the number of CTNs for that site, and standardizing the value to 100 

CTNs. Independent captures were defined if individuals of the same species, appearing in 

subsequent images, could be unambiguously distinguished, or if the interval between 

captures was longer than 1 hour.  

 

Statistical analysis 

To investigate the effects of land use intensification and landscape variables on the mammal 

community we used species richness and capture frequency as response variables 

(Magurran & McGill 2011; Carbone et al. 2001). We controlled for the pseudoreplication in 

our data by pooling together and averaging the 2012 and 2013 records. As count data, 
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species richness does not usually follow normal distributions; therefore, we used 

generalized linear models (GLM) with Poisson errors and a log link function. Whereas 

capture frequency (c +1) was log transformed and modelled using normal distribution of 

errors (Zar 1996; Crawley 2007; Zuur et al. 2009). 

Single variable regressions were used in a multiscale approach to assess for the 

contribution of each factor to the models (Gehring & Swihart 2003; Banks-Leite et al. 2013; 

De Angelo et al. 2013). We also compared linear, quadratic, and cubic functions to test 

possible non-linear adjustments for each continuous predictor variable. To organize model 

selection, we grouped the hypothesis hierarchically, starting with the single regression 

models for local scale variables, and followed by regression models for landscape 

composition-related metrics (refer to Table 3.2 for a complete list of the models tested). To 

examine for dependencies of predictor variables we used both visual (matrix of scatterplots 

of every variable against every other) and analytical methods (Pearson’s correlation 

analysis). We found high correlation among all the landscape metrics (FC and H at the four 

radii, Supplementary information Table 3.S1), thus we performed a Principal Components 

Analysis (PCA) to reduce the number of variables into uncorrelated axes that incorporated 

the variation in the landscape metrics. PCA axes were obtained by previously scaling all the 

variables to have a zero mean and unit variance. We used these axes in the regressions to 

assess the importance of forest cover and habitat diversity combined.  

To describe the relationship of community similarity among land uses in terms of 

mammal species composition, we used a Principal Coordinates Analysis (PCoA) based on a 

matrix of Sørensen dissimilarities. Changes in mammal community were measured at site 

level using incidence data. We used one-way ANOVA to test for differences among land-use 

types in the scores of the PCoA, and checked which land uses were significantly different 

from each other with Tukey’s Honestly Significant Difference test (Tukey HSD) (Faith et al. 

1987; Quinn & Keough 2002).  

Hypothesis testing for the model including the categorical variable “land-use type” 

was performed by sequentially grouping the levels of the variable from the full model and 

testing for a significant increase in deviance. The factor level grouping followed an a priori 

description of biological sensible hypothesis (Table 3.3). If the result was significant we 

retained the levels separately in the final model. To select the best fitting function for each 
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variable we used the Akaike Information Criterion corrected for small samples (AICc), 

comparing the differences of the AICc values between the models with the lower AICc, 

where AICcmim is the AICc value for the best-fitting model (Burnham & Anderson 2002; 

Crawley 2007; Zuur et al. 2009). All analysis were performed in R v.3.1.1 (R Core Team 

2014). Species accumulation curves, Sørensen dissimilarity matrix, and PCoA were 

calculated using package “vegan” (Oksanen et al. 2012). GLM were calculated using package 

“lme4” (Bates et al. 2014). 

 

3.3. Results 

 

Species list and accumulation curves 

During the total sampling period, we obtained c.27,281 photos, consisting of 1,367 

independent captures of 26 species of mammals. We registered 22 species in 2012 and 25 

species in 2013. The latency to first detection in 2012 was 1 day, and 2 days for 2013; 

whereas the average time to reach 80% of the species was 37.5 days. The most commonly 

photographed species was the Pampas fox, (Lycalopex gymnocercus), followed by the forest 

rabbit (Sylvilagus brasiliensis), and the gray brocket deer (Mazama gouazoubira). Whereas 

the rarest and most elusive species were photographed only once: the giant armadillo 

(Priodontes maximus), the Chacoan peccary (Catagonus wagneri) and the South American 

tapir (Tapirus terrestris); or twice: the white-lipped peccary (Tayassu pecari), and the 

collared anteater (Tamandua tetradactyla) (Table 3.4).  

Two more species were found in the study area without being registered by the 

camera-traps, these were the Chacoan naked-tailed armadillo (Cabassous chacoensis) 

classified as Near Threatened (Ojeda et al. 2012; IUCN 2014), which was identified through 

an incidental sighting of a single individual crossing a narrow trail inside a forest patch (26° 

28’ 36’’ S, 61° 32’ 38’’ W). There was also an individual maned wolf (Chrysocyon brachyurus), 

found drowned in a water reservoir, inside a cattle ranch (25° 07’ 29’’ S, 61° 40’ 50’’ W). Our 

total count species includes 28 species. Approximately, between 33 and 34 species of 

medium to large terrestrial mammals have been reported for the region (Parera 2002; 

Altrichter & Boaglio 2004; Altrichter et al. 2006; Canevari & Vaccaro 2007; Barquez et al. 
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2007; Quiroga et al. 2013). This study successfully registered 80 % of the species in that list 

(without considering the common yellow-toothed cavy, as it is a small mammal species).  

The highest absolute number of species was recorded for sites inside the forest (FS= 

21, FNP= 19 and F= 17), followed by a second group represented by wider open land uses 

like silvopasture and grasslands (S= 10, GNP= 8), with the agricultural plots holding the 

lowest species richness of all (AFS= 8, A=7) (Table 3.5). This result matched the species 

accumulation curves (Figure 3.3) where A and AFS yielded fewer species per trapping day 

than the rest of the land uses. Only A, AFS and S seemed to reach an asymptote at low 

species richness. The relatively high number of species in GNP, according to the camera 

trapping effort, produced an accumulation curve that did not level off, indicating a 

potentially higher species richness for this land use, maybe close to or even higher than S. 

The steepness of the curves showed a very rapid increase in species richness for FS, FNP and 

F reaching high values in few trapping nights. Whereas the number of species in forest 

seemed to have plateaued, species richness for FS and FNP could be even higher than the 

one registered. 

 

Determinants of mammal diversity 

Land-use type was the variable that best explained mammal species richness and relative 

abundance of individuals not only when local scale variables were analysed but also when 

landscape scale metrics were compared. There was no evidence that any factor had a 

consistently higher contribution to explaining the response variables. From the single 

regression models the minimum adequate model for species richness revealed significant 

differences between three main groups of habitats (AICc=518.3, AIC weight=1.0; Table 3.6). 

We found that mean species richness increased gradually from agriculture, to forest covered 

land uses (Figure 3.4 A). Agricultural environments showed the lowest average species 

richness (A=1.5 ± 0.9, AFS=2.1 ± 1.4) which did not differ from each other nor from species 

richness in natural grasslands (GNP=1.4 ± 1.2). Intermediate-intensified land uses, like 

silvopastures, showed a small but significant increase in the number of species (S=3.1 ± 1.6) 

and all forested habitats together had the most diverse mammal assemblage (F=4.3 ± 2.2, 

FS=5.4 ± 2.4, FNP=6.2 ± 1.8). At landscape level, percentage of forest cover within 500 

metres was the most important variable explaining species richness. A non-linear cubic 
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model best described the relationship (Supplementary information Figure 3.S1, Table 3.6), 

where species richness rapidly increased with forest cover until a local maximum; after 

which the number of species decreases (corresponding with grasslands inside National Park 

sites), to start increasing again for habitats with high forest cover. This pattern reflects a 

specific response that can only be explained considering the particular landscape 

composition present inside the National Park, where a long- and narrow-shaped open 

habitat, like natural grasslands, are closely surrounded by primary forest (Supplementary 

information Figure 3.S2). Therefore, the percentage of forest cover within 500 metres 

ranges from 30% to 80% but the number of species registered is low, as in the rest of the 

open habitats, forcing a local minimum.  

Looking at capture frequencies we found that the two types of agricultural plots did 

not vary greatly (A=15.5 ± 10.8, AFS=14.9 ±11.7); however, the relative abundance of 

individuals increased significantly for S, and land uses with forest outside the National Park 

(F and FS); followed by an even greater relative abundance in FNP (Figure 3.4 B, Table 3.7). 

Considering this result, and in the search of potential stronger relationship, we decided to 

include silvopasture and secondary forest cover when calculating the forest cover metric for 

each of the distance radii (SFC- 500, 1000, 1500 and 3000). At landscape level, the 

percentage of forest cover SFC-1000 metres was the most relevant predictor variable (Table 

3.7). 

The first two axes of the PCA performed on the landscape variables explained 61 and 

35% of the variation respectively. However, visual inspection of the data revealed an 

uninformative second axis determined by a horse-shoe shaped distribution (Supplementary 

information Figure 3.S3); therefore we only used the first PCA axis in the analysis. The 

interpretation of the first principal component was: positive values were associated with 

low FC (for all radii, the same for SFC) and high habitat diversity at 500 m. Negative values 

were associated with high FC (constant through all radii, the same for SFC) and low land use 

diversity. When included in the model selection procedure, neither species richness nor 

capture frequency presented a strong relationship with this variable (Table 3.6 and 3.7). 
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Community composition 

Community composition was measured as a single axis of a PCoA which explained nearly 

40% of the variation among the 132 sites. Because it was performed on an incidence matrix, 

mainly reflected changes in species richness and in species with low capture rates. A clear 

division was observed along axis 1, with the scores for forested sites (FS, F and FNP) 

positioned in the range of negative values, silvopasture sites scattered from positive to 

negative values, and agricultural plots mostly grouped in positive values (Figure 3.5 A). 

Mammal community composition was significantly different among all land-use types 

(F6,117= 40.61, p<0.005), with the exception of S, FS, and FNP that presented similar mammal 

assemblages (Figure 3.5 B).  

To get a more detailed understanding of community composition, we produced two 

more figures. Firstly, we graphically combined the information of capture frequency and 

occurrence of species using the grouped categories obtained from the best capture 

frequency model (Figure 3.6). Both types of arable fields (A and AFS) had a very uneven 

community with the Pampa’s fox (Lycalopex gymnocercus) as the most abundant species 

(Table 3.5) and also sharing other species that were less common. The grey brocket deer 

(Mazama gouazoubira) was the most abundant species in silvopasture closely followed by 

the Pampa’s fox, whereas the capture frequencies for the rest of the species detected in this 

habitat were approximately evenly distributed (Figure 3.6). Inside forest strips, the Pampa’s 

fox and the forest rabbit (Sylvilagus brasiliensis) were the most abundant species, with the 

latter being the most frequently recorded in F as well. Inside the National Park, sites located 

in forest had five species dominating the community with very high relative abundances for 

the forest rabbit and the Pampa’s fox, whilst the gray brocket deer was the most commonly 

photographed species in natural grasslands (Figure 3.6). 

Secondly, the distribution of endangered mammal species was summarized in a 

graph of the total number of species and their relative abundance along the gradient of land 

use intensification (Figure 3.7). Only species categorized under one of the global and/or 

regional endangered classes (i.e. near threatened, vulnerable, and endangered) were 

included. Both, the highest number of endangered species as well as the highest abundance 

was found inside forest in the National Park, with seven different species and a capture 

frequency of 15.7 individuals per 100 CTN. Forest strips and forest outside the National Park 
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followed, with only one-species difference between them. We registered less endangered 

species in silvopasture plots than in GNP, although the relative abundance was higher. Only 

one mammal species, the giant anteater (Myrmecophaga tridactyla, Vulnerable), was 

present in AFS with a very low capture frequency of 0.16 individuals per 100 CTN, and no 

endangered species was found inside intensified arable plots. The pattern in the number of 

species correlated with the pattern for relative abundance, except in the case of grassland 

inside the National Park, where four different species were present in very low numbers 

(only 1 or 2 independent captures per species); therefore the number of species registered 

was relatively higher than the capture frequency for those sites. 

 

3.4. Discussion 

 

A great deal of the existing research has been conducted to assess the effects of alterations 

in the natural environment on wildlife biodiversity (Tscharntke et al. 2005; Fischer & 

Lindenmayer 2007; Henle et al. 2008; Macchi & Grau 2012; Fischer et al. 2011; Lira et al. 

2012; Moura et al. 2013), and more specifically, on medium and large mammal communities 

(Kinnaird et al. 2003; Michalski & Peres 2007; Kelly et al. 2008; Paviolo et al. 2009; Ahumada 

et al. 2011; Samejima et al. 2012; De Angelo et al. 2013). However, few studies have 

focussed directly on the analysis of the complete mammal assemblage in human-modified 

habitats (Altrichter & Boaglio 2004; R. Cassano et al. 2012; R. Cassano et al. 2014). This 

study provides the first community estimates for mammals along a gradient of land use 

intensification resulting from the main human activities in comparison with natural forest in 

the semiarid Chaco Region.  

We assessed the entire mammal assemblage acknowledging that species-specific 

responses might go undetected; nonetheless using composite measures of community 

diversity allowed us to retain species that were rarely detected and to include in the 

modelling potential effects of interspecific interactions that constitute an important 

property of communities (Tscharntke et al. 2005; Ewers et al. 2009). Accordingly, the 

randomized sampling design of the study proved to be successful as we obtained registers 

for most of the species present in the area, and more importantly, it allowed us to calculate 
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un-biased relative abundances for small-scale habitat comparisons (Wearn et al. 2013; Blake 

& Mosquera 2014). 

Our results were broadly concordant with several studies showing negative effects of 

human managed environments on mammal assemblages (Gehring & Swihart 2003; Daily et 

al. 2003; Šálek et al. 2009; Kiffner et al. 2014). The most important factor influencing 

mammal communities was land-use type, and its explanatory power has proved to be 

stronger than any other variable. Medium-sized mammal assemblages in semiarid Chaco did 

not respond as expected to the landscape context (percentage cover of forest and habitat 

diversity) at any of the spatial scales measured (500, 1000, 1500 and 3000m radius around 

sampling point); while parameters related to local management intensification had the most 

important negative effects on this group. This result supports the idea that ecology studies 

are highly context-dependent. Andrén (1994) concluded in his review that, the importance 

of changes in local forest cover may depend on the surrounding landscape. Moreover, in 

landscapes with a considerable large area (more than 30%) of suitable habitat, the spatial 

arrangements of its elements will be of secondary importance. The comparison of our 

results with previous studies addressing this issue for mammal assemblages (R. Cassano 

2014) suggests that our study area is placed in a favourable context. As a result, the impact 

of the amount of remaining forest on species richness and abundance was less important 

compared to that shown by different land-use types. 

We found a decreasing relationship between species richness and abundance in 

relation to human disturbance. As expected, the lowest numbers were registered within 

agricultural fields. All the species present there are usually associated to open habitats and 

benefit from the physical conditions in farmlands mainly due to their feeding habits (Parera 

2002; Canevari & Vaccaro 2007; Superina et al. 2010; Abba et al. 2012). In arable fields we 

registered three of the most common species of armadillos (Chaetophractus vellerosus, 

Chaetophractus villosus, and Euphractus sexcinctus), where soil condition probably 

facilitates foraging for food as some of the individuals were photographed digging borrows. 

The hog-nosed skunk (Conepatus chinga), and the European hare (Lepus europaeus) were 

also recorded, with the latter being an exotic species only present in this habitat. Lastly, 

both species of canids (crab-eating fox Cerdocyon thous, and Pampa’s fox Lycalopex 
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gymnocercus, Figure 3.6) appear capable of moving among all components of the landscape 

(Gehring & Swihart 2003). 

Mammal species richness and relative abundance showed very little variability 

between A and AFS, that basically shared the same assemblage of species (with the 

exception of the European hare). Although, the presence of forest dweller species in AFS 

revealed the influence of the surrounding forest strips as we also registered the giant 

anteater (Myrmecophaga tridactyla) and the grey brocket deer (Mazama gouazoubira). 

Giant anteaters required large areas for their survival mostly inhabiting forest patches, the 

same as the grey brocket deer (Figure 3.6); however both species can venture into open 

areas to forage (Parera 2002; Canevari & Vaccaro 2007; Superina et al. 2010; Trujillo & 

Superina 2014). In this case, the presence of a neighbouring forest strip could have 

encouraged these individuals to go into the agricultural plot (Barlow et al. 2010; Šálek et al. 

2009). In this regard, Redford & da Fonseca (1986) suggested that gallery forest in the 

Brazilian Cerrado provide refuge, food and water for species not necessarily confined to this 

environment. Another habitat with similar low records was natural grassland inside National 

Park. However, significant differences were found in community composition between this 

land-use type and the arable fields (A and AFS, Figure 3.5 B). Moreover, two species were 

exclusive of this environment, the lesser grisson (Galictis cuja) and the white-lipped peccary 

(Tayassu pecari, Figure 3.6). Low records in GNP might also be related to the vegetation 

structure that probably affected detectability in these sites.  

Silvopastoral systems integrate trees and pastures for production purposes providing 

a buffer from deforestation (Dagang & Nair 2003; Perfecto & Vandermeer 2008). Many 

combinations of agroforestry can be found in other regions (e.g. shaded cacao, coffee and 

rubber plantations) and numerous studies have highlighted their role in providing 

ecosystems services as well as a matrix that can maintain biodiversity and movement of 

organisms (Saunders et al. 1991; Perfecto et al. 2005; Perfecto & Vandermeer 2008). 

Coincidentally R. Cassano et al. (2012), found high mammal species diversity in cabrucas 

(cacao agroforestry systems in Brazil), as we found that silvopasture plots in the semiarid 

Chaco harboured a more diverse mammal community than intensified land uses; whilst, also 

as in R. Cassano et al. (2012), the assemblage structure was similar to that in forested sites 

(FS and FNP). Moreover, two species of conservation concern were registered in 
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silvopastures (the three-banded armadillo Tolypeutes matacus, and the Geoffroy’s cat 

Leopardus geoffroyi, Figure 3.6). These results support the importance of silvopastures as 

productive systems with conservation value simultaneously holding an interesting mammal 

community and cattle ranching activities. 

Forest is the primary habitat for most of the species registered in this study and, 

consequently, it presented the highest diversity values. Forest strips, and forest in and out 

the National Park had similar number of species but differed in abundance and community 

composition. As Barlow et al. 2010, we also detected higher mammal activity in forest strips 

than in continuous forest patches outside the National Park. In this case, detection 

probability might have been increased by the linear shape and dimensions of this 

environment which may have concentrated animal movements leading to an 

overestimation of the relative abundance of individuals. Therefore we should be cautious in 

drawing conclusions and comparing the final numbers. However, our results are consistent 

with Šálek et al. (2009) and Gehring & Swihart (2003) who showed that predators in 

fragmented agricultural landscapes tend to use hedgerows in higher proportion. As well as 

having a possible role as corridors, hedgerows can provide habitat for a rich community of 

smaller mammals. In our study, two of the most photographed species in forest strips were 

the Pampa’s fox and the forest rabbit (Sylvylagus brasiliensis, Figure 3.6); the former is an 

open-habitat species that probably takes refuge and use these strips to move around or to 

hunt; whereas the latter is a forest-restricted species. Both species find in forest strips a 

suitable habitat according to their very different traits. 

The mammal species list recorded in forest inside National Park included all the 

species previously found in a recent study (Quiroga 2013) with the addition of the nine-

banded armadillo (Dasypus novemcinctus), the crab-eating fox (Cerdocyon thous), and the 

Chacoan peccary  (Catagonus wagneri, Figure 3.6). Sites inside the park presented the 

highest mean species richness and capture frequency of all environments. However, both 

measures could be probably an underestimation of true values due to methodological 

constraints: first, the lack of roads inside the park prevented us from reaching sites in the 

core area; and second, the sampling effort was the result of a compromise between time 

availability and number of camera traps deployed. Regardless of the values, the importance 

of the protected area for the conservation of endangered species is supported by the 
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exclusive records of the giant armadillo (Priodontes maximus), the White-lipped Peccary, 

and the Chacoan peccary inside the protected area, as well as the fact that the highest 

number of endangered mammal species was recorded inside the limits of Copo National 

Park (Figure 3.7). The decline in the range and numbers of these species is probably due to a 

combination of factors including hunting by humans, habitat destruction, and diseases. Of 

these, hunting pressure undoubtedly has the most negative impact (Altrichter & Boaglio 

2004; Altrichter 2005; IUCN 2014); therefore, the preservation and implementation of 

exclusion areas like reserves and national parks are key to the conservation of these species 

in the semiarid Chaco. Nonetheless, other important species considered scarce in the study 

area were also registered outside the National Park (e.g. the South American tapir Tapirus 

terrestris, the Tayra Eira barbara, and the collared anteater Tamandua tetradactyla). In this 

regard, several studies have suggested that the amount of forest cover in the surrounding 

landscape influences species responses to local management intensification (Andrén 1994; 

Bennett et al. 2006; Fischer et al. 2011; R. Cassano et al. 2014) by maintaining viable 

populations of species that move along corridors and “wildlife-friendly” productive 

environments, using mainly well preserved forest patches. The mammal distribution 

patterns registered in our study support this hypothesis and numerous records of several 

species photographed with their offspring (e.g. puma Puma concolor, collared peccary 

Tayassu tajacu; giant anteater; grey brocket deer, and the South American tapir) are proof 

that species find in this landscape suitable habitats to breed. 

 

To summarize, this study encompassed an important area of high agricultural activity were 

habitat transformation is extending over natural land at an alarming rate. Our results 

demonstrates that the pattern in distribution of mammal assemblages follows the 

intensification gradient and that land-use type associated with level of intensification is the 

most important factor driving mammal diversity and community composition. Conservation 

strategies should consider the use of intermediate modified habitats such as silvopasture 

and the maintenance of forest patches and strips in order to minimise the impacts of 

agricultural practices on important and charismatic mammal species of the Chaco Region.  
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Table 3.1. Sampling effort for each land-use type studied: total number of sites surveyed; camera trap night per year, total for both years, and averaged (+ 

standard error) per land-use type; mean distance between sites was calculated for camera-traps in the same land-use type (km + se); and number of 

camera traps deployed on and off existing trails 

Table 3. 1 Sampling effort 

for each land- use type 

studied 

 

 

 

 

 
CTNs: camera trap nights was defined as the total number of complete 24-hour periods during which the camera was functioning. 

 

 

 

Land-use type 
Number 
of sites 

CTNs per year Total 
CTNs 

Average CTNs 
Average distance 

between sites 

Camera placement 

2012 2013 On trail Off trail 

Agriculture 20 128 422 550 27.5 ± 10 1.8 ± 0.5 - - 

Agriculture with forest strip 20 261 370 631 31.5 ± 9.3 2 ± 0.6 - - 

Silvopasture 22 278 365 643 29.2 ± 8.6 1.6 ± 0.4 - - 

Forest strip 20 283 404 687 34.3 ± 7 1.9 ± 0.4 3 17 

Forest 20 282 405 687 34.3 ± 7 2.2 ± 1 0 20 

Forest in National Park 20 271 492 763 38.1 ± 14.4 1.5 ± 0.4 12 8 

Grassland in National Park 10 117 139 256 29.1 ± 16 1.1 ± 0.3 - - 

Total 132 1649 2632 4217 32 ± 10.7 1.7 ± 0.4 15 45 
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Table 3.2. List and description of all the models considered in relation to local and landscape 

predictor variables. Each particular model was described by GLM or LM (depending on the response 

variable). We used model selection based on the Akaike Information Criterion to compare the set of 

candidate models, with deletion tests (Wald’s chi-square test for species richness and F-test for 

capture frequency) to assess the significance of the increase in deviance that resulted when a given 

term was removed from the current model. 

 
Table 3.S 1  

Polynomial (x, num): fits a polynomial model with predictor x to the power of the 
number. 
Log AREA: area (ha.) of the land-use patch log-transformed. 
Log EDGE: distance to the nearest edge (metres) log-transformed. 
FC- 500, 1000, 1500 and 3000: percentage of forest cover within each radii (SFC 
included secondary forest and was analysed in the same way). 
H- 500, 1000, 1500 and 3000: land-use diversity within each radii. 
PCA1: Principal Component Analysis axis one. 

  

Model Local scale predictor variable 1 = AREA 

m1 Log (AREA) 
m2 Polynomial (Log (AREA),2) 
m3 Polynomial (Log (AREA),3) 

 
Local scale predictor variable 2 = EDGE 

m1 Log (EDGE) 
m2 Polynomial (Log (EDGE),2) 
m3 Polynomial (Log (EDGE),3) 

 
Landscape scale predictor variable 1 = FC 

m1 FC 500 
m2 Polynomial (FC 500,2) 
m3 Polynomial (FC 500,3) 
m4 FC 1000 
m5 Polynomial (FC 1000,2) 
m6 Polynomial (FC 1000,3) 
m7 FC 1500 
m8 Polynomial (FC 1500,2) 
m9 Polynomial (FC 1500,3) 

m10 FC 3000 
m11 Polynomial (FC 3000,2) 
m12 Polynomial (FC 3000,3) 

 
Landscape scale predictor variable 2 = H 

m1 H 500 
m2 Polynomial (H 500,2) 
m3 Polynomial (H 500,3) 
m4 H 1000 
m5 Polynomial (H 1000,2) 
m6 Polynomial (H 1000,3) 
m7 H 1500 
m8 Polynomial (H 1500,2) 
m9 Polynomial (H 1500,3) 

m10 H 3000 
m11 Polynomial (H 3000,2) 
m12 Polynomial (H 3000,3) 

 
Landscape scale predictors 1 and 2 combined 

m1 PCA1 
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Table 3.3. List and description of models for the categorical variable “land use”. Factor level arrangements 

were based on a set of a priori hypothesis that ensured biological interpretation of the results. Each particular 

model (hypothesis) was described by GLM or LM (depending on the response variable). We used model 

selection based on Akaike’s Information Criterion to compare candidate models, with deletion tests (Wald’s 

chi-square test for species richness and F-test for capture frequency) to assess the significance of the increase 

in deviance that resulted when a given term was removed from the current model. (Adapted from Table 2.1, 

Chapter 2). 

Table 3. 2 List and description of models for the categorical variable “land use” 

Abbreviations: A: agriculture; AFS: agriculture with forest strips; S: silvopasture; FS: forest strip; F: forest; FNP: 
forest inside Copo National Park; GNP: Grassland in National Park. 

Model Factor level arrangement Particular hypothesis justification 

m1  A, AFS, S, FS, F, FNP, GNP 
Each land-use type has a particular effect at local scale, mainly 
given to their specific vegetation cover and management 
regime.  

m2 A + AFS, S, FS, F, FNP, GNP 

Intensive arable systems (A and AFS) are not different from 
each other in their mammal community, mainly because 
habitat availability in these land uses is very low despite local 
differences in forest strips surrounding AFS plots. The rest of 
the land uses present a distinctive mammal community.  

m3 A + AFS, S, FS, F + FNP, GNP 

Intensive arable systems (A and AFS) are not different from 
each other. Land-use types presenting a well-preserved forest 
cover (F and FNP) are not different from each other. Natural 
grasslands inside National Park present a distinctive mammal 
assemblage. 

m4 A + AFS, S + FS, F + FNP, GNP 

Intensive arable systems (A and AFS) do not differ. Intermediate 
intensity land uses (S and FS) are grouped accordingly to their 
habitat alteration level and disturbance regime. Land uses with 
a well-preserved forest cover (F and FNP) are not different from 
each other. Natural grasslands inside National Park present a 
distinctive mammal assemblage. 

m5 A + AFS, S, FS + F + FNP, GNP 

High-intensity land uses (A and AFS) do not differ. Intermediate 
intensity land uses, where forest cover has been significantly 
reduced (S) hold a distinctive mammal community. Land uses 
presenting a well-preserved and structured forest cover, 
regardless of size (FS, F and FNP) are not different from each 
other. Natural grasslands inside National Park present a 
distinctive mammal assemblage. 

m6 A + AFS, S + FS + F, FNP, GNP 

High-intensity land uses (A and AFS) do not differ. Sites inside 
protected areas (FNP and GNP) hold a different mammal 
community than the rest of forested land-use types (with 
reduced or well-preserved vegetation cover) outside the 
National Park. 

m7 A + AFS, S + FS + F + FNP, GNP 

Intensive arable systems (A and AFS) are not different from 
each other. The category of protection does not affect mammal 
community assemblages: land-use types presenting a range of 
intermediate forest cover (S), good forest cover outside 
protected areas (FS and F) and well-preserved forest cover 
inside National Park (FNP) do not differ. Natural grasslands 
inside National Park present a distinctive mammal assemblage. 
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Table 3.4. Mammal species registered during 2012 and 2013 in the semiarid Chaco. Family, scientific and common name for the total 28 species registered during the survey, 

global and regional category of threat, and number of direct sightings. Number of photos is the total number of pictures taken for each species, number of independent 

captures considers only images of different individuals or images obtained more than one hour apart. Capture frequency (relative abundance) is calculated as total number of 

independent captures per 100 camera trap nights. Naive occupancy is the proportion of sampled sites at which the species was detected. Scientific names follow Barquez et al. 

2007. Regional status assessment taken from Ojeda et al. 2012. 

Table 3. 3 Mammal species registered during 2012 and 2013 in the semiarid Chaco 

Family Scientific Name Common Name 
IUCN 

Red List 
Category 

Regional 
Assessment 

Category 

Direct 
sightings 

Camera trapping 

Number 
of photos 

Independent 
captures 

Capture 
frequency (c) 

Naive 
occupancy 

CANIDAE Cerdocyon thous Crab-eating Fox LC LC 1 772 57 1.33 0.220 

CANIDAE Chrysocyon brachyurus *  Maned Wolf NT EN 1 0 0 0.00 0.000 

CANIDAE Lycalopex gymnocercus Pampas Fox LC LC 0 4532 297 6.94 0.598 

CAVIIDAE Galea musteloides Common Yellow-toothed Cavy LC LC 0 67 4 0.09 0.030 

CERVIDAE Mazama gouazoubira Grey Brocket Deer LC LC 4 6750 164 3.83 0.485 

DASYPODIDAE Cabassous chacoensis *  Chacoan Naked-tailed Armadillo NT NT 1 0 0 0.00 0.000 

DASYPODIDAE Chaetophractus vellerosus Screaming Hairy Armadillo LC LC 0 286 28 0.65 0.076 

DASYPODIDAE Chaetophractus villosus Large Hairy Armadillo LC LC 5 99 13 0.30 0.091 

DASYPODIDAE Dasypus novemcinctus Nine-banded Armadillo LC LC 0 108 9 0.21 0.053 

DASYPODIDAE Euphractus sexcinctus Yellow Armadillo LC LC 2 732 57 1.33 0.205 

DASYPODIDAE Priodontes maximus Giant Armadillo VU EN 0 6 1 0.02 0.008 

DASYPODIDAE Tolypeutes matacus Southern Three-banded Armadillo NT NT 2 1709 112 2.62 0.326 

DIDELPHIDAE Didelphis albiventris White-eared Opossum LC LC 0 118 6 0.14 0.030 

(*) Indicates species observed in the study area outside the sampling period, not considered for the analysis.  
IUCN: International Union for the Conservation of Nature. NE: not evaluated; LC: least concern; NT: near threatened; VU: vulnerable; EN: endangered. 

 

 

 

 

(Continues in next page) 
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Family Scientific Name Common Name 
IUCN 

Red List 
Category 

Regional 
Assessment 

Category 

Direct 
sightings 

Camera trapping 

Number 
of photos 

Independent 
captures 

Capture 
frequency (c) 

Naive 
occupancy 

FELIDAE Leopardus geoffroyi Geoffroy's Cat NT NT 2 1074 70 1.64 0.280 

FELIDAE Puma concolor Puma LC LC 0 205 18 0.42 0.083 

FELIDAE Puma yagouaroundi Jaguarundi LC LC 0 61 7 0.16 0.053 

LEPORIDAE Lepus europaeus European Hare LC - 0 63 6 0.14 0.030 

LEPORIDAE Sylvilagus brasiliensis Forest Rabbit LC LC 0 5213 277 6.47 0.326 

MEPHITIDAE Conepatus chinga Hog-nosed Skunk LC LC 0 776 77 1.80 0.295 

MUSTELIDAE Eira barbara Tayra LC NE 2 78 5 0.12 0.023 

MUSTELIDAE Galictis cuja Lesser Grison LC VU 2 22 4 0.09 0.015 

MYRMECOPHAGIDAE Myrmecophaga tridactyla Giant Anteater VU VU 7 2171 121 2.83 0.341 

MYRMECOPHAGIDAE Tamandua tetradactyla Collared Anteater LC NT 0 40 2 0.05 0.015 

PROCYONIDAE Nasua nasua South American Coati LC LC 0 41 3 0.07 0.015 

TAPIRIDAE Tapirus terrestris South American Tapir VU EN 0 50 2 0.05 0.008 

TAYASSUIDAE Catagonus wagneri Chacoan Peccary EN EN 0 3 1 0.02 0.008 

TAYASSUIDAE Tayassu tajacu Collared Peccary LC VU 2 2266 24 0.56 0.053 

TAYASSUIDAE Tayassu pecari White-lipped Peccary VU EN 0 39 2 0.05 0.015 

IUCN: International Union for the Conservation of Nature. NE: not evaluated; LC: least concern; NT: near threatened; VU: vulnerable; EN: endangered. 
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Table 3.5. Summary statistics for the data collected during 2012 and 2013 in the semiarid Chaco. The 

table lists: mammal species richness for each land use calculated as total and mean number of 

species, mean capture frequency (c), and the most abundant species (scientific name) captured in 

each land use. 

Table 3. 4 Summary statistics for the data collected during 2012 and 2013 

 

 

Land-use type 
Total number 

of species 
Mean species 
richness (± se) 

Mean capture 
frequency (± se) 

Most abundant species 

Agriculture 7 1.55 ± 0.94 15.53 ± 10.83 Lycalopex gymnocercus 

Agriculture with forest strip 8 2.1 ± 1.41 14.95 ± 11.7 Lycalopex gymnocercus 

Silvopasture 10 3.14 ± 1.61 26.31 ± 21.23 Mazama gouazoubira 

Forest strip 21 5,45 ± 2.4 44.63 ± 31.25 Lycalopex gymnocercus 

Forest 17 4.35 ± 2.23 30.03 ± 24.53 Sylvilagus brasiliensis 

Forest in National Park 19 6.2 ± 1.85 63.33 ± 30.44 Sylvilagus brasiliensis 

Grassland in National Park 8 1.4 ± 1.17 10.58 ± 13.6 Mazama gouazoubira 
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Table 3.6. Summary of model selection for mammal species richness. For each spatial scale (local 

and landscape), and predictor belonging to that scale, the table lists only the best minimum final 

model; a complete list of the models compared is shown in Table 3.2. An offset term was included in 

the models (camera trap nights) to standardize for sampling effort per site. Models were fitted using 

GLM with Poisson error and log-link. We report AICc: Akaike Information Criterion value corrected 

for small samples;  AIC: difference in AICc values between each model and the best model, and w: 

the percentage of model weight attributed to each model. The best model selected is shown in bold. 

 

 
 
 3. 5 Summary of 

regression model 
selection for 
mammal species 
richness. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Polynomial (x, number): fits a polynomial model with predictor x to the power 
of the number (e.g. Polynomial (x, 2) is a quadratic polynomial for x). 
Log AREA: area (ha.) of the land-use patch log-transformed. 
Log EDGE: distance to the nearest edge (metres) log-transformed. 
GNP: Grassland in National Park; A: agriculture; AFS: agriculture with forest 
strip; S: silvopasture; FS: forest strip; F: forest; FNP: forest inside National Park. 
FC-500, 1000, 1500 and 3000: percentage of forest cover within each radii. 
H-500, 1000, 1500 and 3000: land use diversity measured with Shannon-
Weiner index, basically a measure of proportion of different habitats within 
each radii. 
PCA1: Principal Component Analysis axis one. 

 
 
  

Response variable: Species richness AICc AIC w 

Null model 577.7 
  

Local scale       

Polynomial (Log AREA,2) 540.2 21.8 0.00 

Log EDGE 568.6 50.3 0.00 

Land use factor m5 (GNP, A+AFS, S, FS+F+FNP) 518.3 0.0 1.00 

Landscape scale       

Polynomial (FC 500,3) 560.0 0.0 0.68 

FC 1000 563.4 3.4 0.12 

FC 1500 568.6 8.6 0.01 

Polynomial (FC 3000,3) 565.6 5.6 0.04 

Polynomial (H 500,3) 564.9 4.9 0.06 

Polynomial (H 1000,2) 564.5 4.5 0.07 

H 1500 579.8 19.8 0.00 

Polynomial (H 3000,2) 572.6 12.6 0.00 

PCA1 567.7 7.7 0.01 
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Table 3.7. Summary of model selection for mammal capture frequency. For each spatial scale (local 

and landscape), and predictor belonging to that scale, the table lists only the best minimum final 

model; a complete list of the models compared is shown in Table 3.2. Because capture frequency 

already takes into account the sampling effort, no offset term was necessary. Models were fitted 

using LM with Normal error distribution. We report AICc: Akaike Information Criterion value 

corrected for small samples;  AIC: difference in AICc values between each model and the best 

model, and w: the percentage of model weight attributed to each model. The best model selected is 

shown in bold. 

 

able 3. 6 Summary of 

regression model 

selection for 

mammal capture 

frequency 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Polynomial (x, number): fits a polynomial model with predictor x to the power of 
the number (e.g. Polynomial (x, 2) is a quadratic polynomial for x). 
Log AREA: area (ha.) of the land-use patch log-transformed. 
Log EDGE: distance to the nearest edge (metres) log-transformed. 
GNP: Grassland in National Park; A: agriculture; AFS: agriculture with forest strip; 
S: silvopasture; FS: forest strip; F: forest; FNP: forest inside National Park. 
SFC-500, 1000, 1500 and 3000: percentage of forest cover (considering primary 
and secondary forest together) within each radii. 
H-500, 1000, 1500 and 3000: land use diversity measured with Shannon-Weiner 
index, basically a measure of proportion of different habitats within each radii. 
PCA1: Principal Component Analysis axis one. 

 

Response variable: Log Capture frequency (+1) AICc  AIC w 

Null model 402.3 
  

Local scale 
   

Polynomial (Log AREA,2) 375.3 22.4 0.00 

Log EDGE 400.1 47.1 0.00 

Land use factor m6 (GNP, A+AFS, S+FS+F, FNP) 353.0 0.0 1.00 

Landscape scale 
   

Polynomial (SFC 500,3) 389.9 0.0 0.44 

Polynomial (SFC 1000,3) 390.4 0.5 0.35 

Polynomial (SFC 1500,3) 395.9 6.0 0.02 

Polynomial (SFC 3000,3) 394.3 4.4 0.05 

H 500 393.6 3.7 0.07 

Polynomial (H 1000,2) 399.7 9.8 0.00 

H 1500 403.8 13.9 0.00 

H 3000 403.0 13.1 0.00 

PCA1 393.5 3.6 0.07 
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Figure legends 
 

Figure 3.1. Land cover map of the study area. (A) a 100 x 60 km agricultural landscape inside 

which 100 camera trapping sites were deployed (red dots), (B) detail showing several 

sampling sites scattered within different land-use types, (C) detail of the sites located in two 

different land-use types: forest strip and agriculture. Different vegetation cover is 

represented by different colours. 

 

Figure 3.2. Land cover map showing (A) Copo National Park and its borders depicted in grey, 

and (B) close-up detail of several sites inside the park. Red dots mark sites where camera 

traps were deployed. Different vegetation cover is represented by different colours. 

 

Figure 3.3. Mammal species accumulation curves for each land use showing the total 

number of species recorded with increasing sampling effort (camera trap nights, CTNs). 

Species were accumulated by number of camera trap nights. The dashed vertical line 

indicates a species richness comparison standardized to the minimum camera trap effort, 

and corresponds to 256 CTNs, the total CTNs for GNP. A, agriculture; AFS, agriculture with 

forest strip; S, silvopasture; FS, forest strip; F, forest; FNP, forest inside National Park, and 

GNP, grassland inside National Park. 

 

Figure 3.4. Variation in diversity measures for each land use. (A) Mammal species richness; 

(B) Capture frequency. Thick lines represent the median, boxes represent the interquartile 

range and whiskers represent minimum and maximum values, points represent sites 

(replicates). A, agriculture; AFS, agriculture with forest strip; S, silvopasture; FS, forest strip; 

F, forest; FNP, forest inside National Park; GNP, grassland inside National Park. Statistical 

differences in the mean of the variable are true when letters differ between factor levels 

(Tukey HSD at alpha= 0.5). 

 

Figure 3.5. Result of a Principal Coordinates Analysis (PcoA) based on a Sørensen 

dissimilarity matrix for all 132 sites and 26 mammal species. (A) Plot of the first two axes of 

the PCoA. Highly modified environments (A and AFS) had community composition with 
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positive scores in the first axis. Forest-like land uses mostly presented negative values. Sites 

are shown in coloured symbols; each character corresponds to a different land-use type. (B) 

Results from an ANOVA of community composition (PCoA axis 1) and land-use type. Open 

habitats (GNP, A and AFS) presented significant changes in composition among them and 

also with the rest of the land uses, whereas mammal assemblages in forests did not vary 

significantly (S=FS=FNP). Thick lines represent the median, boxes represent the interquartile 

range and whiskers represent minimum and maximum values, points represent sites 

(replicates). Land uses marked with the same letter did not showed significant differences in 

community composition (Tukey HSD at alpha=0.05). A, agriculture; AFS, agriculture with 

forest strip; S, silvopasture; FS, forest strip; F, forest; FNP, forest inside National Park; GNP, 

grassland inside National Park.  

 

Figure 3.6. Capture frequencies distribution per land use for each species registered during 

the study. Records are drawn following the subdivision in groups according to the best 

model selected for capture frequency (i.e. A and AFS grouped together; S, FS and F grouped 

together, and FNP separately). All 26 species registered are listed in the horizontal axis. 

Vertical axes are scaled differently for each group, with the broader range corresponding to 

FNP. Different colours represent different land uses. A, agriculture; AFS, agriculture with 

forest strip; S, silvopasture; FS, forest strip; F, forest; FNP, forest inside National Park; GNP, 

grassland inside National Park. 

 

Figure 3.7. Mammal species of conservation concern distributed along the gradient of land 

use change. Bars represent number of species and relative abundance of mammal species 

within a category of threat following the IUCN criteria and the regional status assessment 

(near threatened, vulnerable; or endangered, IUCN 2014; Ojeda et al. 2012). Slate gray bars 

(scaled axis to the left) represent total number of species, and light gray bars (scaled axis to 

the right) represent capture frequency, both obtained for each land-use type. The dotted 

line was added to facilitate the identification of the land covers located inside the National 

Park. A, agriculture; AFS, agriculture with forest strip; S, silvopasture; FS, forest strip; F, 

forest; FNP, forest inside National Park; GNP, grassland inside National Park. 

  



133 

 

Figure 3.1. 
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Figure 3.2. 
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Figure 3.3. 
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Figure 3.4. 

Figure 3. 4 
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Figure 3.5. 
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Figure 3.6. 

  

Figure 3. 6 
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Figure 3.7. 
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3.5. Supplementary information 

 

Land cover map for 2013 

A land cover map was derived from three Landsat 8 OLI/TIRS scenes (path: 228, Row: 78; 30-

m pixel size) for 2013 (30th July, 17th October, 3rd November), and one scene for 2014 (7th 

February) in order to account for changes in the phenology of the vegetation and facilitate 

the classification. Cloud free images were obtained  from the United States Geological 

Survey website (http://glovis.usgs.gov/), and re-projected to UTM 20 South using software 

ArcGIS 9.1 (ESRI 2005). Six multispectral bands (3 visible bands, the near-infrared band and 2 

medium infrared bands) from all images were combined into a single stack of 24 layers.  

Land cover maps were produced through a supervised classification scheme based on 

ground truth data taken during the camera trap sampling period and complemented with 

Quickbird images available in Google Earth (earth.google.com). Training areas for five 

different classes were digitized on the raw images using Quantum GIS 2.0.1 (QGIS 

Development Team 2014).  From the total training sites per class, a random sample of 70% 

of the pixels was selected to run the classification. The remaining 30% was used to validate 

the map. Five classes were mapped: natural grasslands (native grassland vegetation 

occurring in the sandy soils of ancient river beds or in forest gaps generated by fire, and 

dominated by Elyonorus cf. adustus, Trichloris crinita, Gouinia latifolia, and Setaria 

macrostachya, Tálamo et al. 2012); primary forest (well preserved primary xerophytic forest 

and old-growth secondary forest formed by Schinopsis lorentzii, Aspidosperma quebracho-

blanco, Bulnesia sarmientoi, Ziziphus mistol, Prosopis alba and Prosopis nigra, Cardozo et al. 

2011; Tálamo et al. 2012); silvopasture (included silvopasture management, highly modified 

forests stands and secondary forest); agriculture (included several crops in different 

phenological stages: wheat, soybean, sorghum, maize, sunflower, oats, cotton, and also 

bare soil); and pastures (exotic perennial pastures dominated by the dwarf variety of 

Panicum maximum (Gatoon Panic)). Images were classified using a Maximum Likelihood 

algorithm in the software ERDAS 9.1 (ESRI 2005). To eliminate small misclassifications, 

patches of less than four pixels were assigned to the dominating surrounding class. Maps 

were validated with error matrices, overall accuracies, user's and producer's accuracies and 

the area adjusted kappa statistics (Congalton 1991; Foody 2002; Olofsson et al. 2013). 

http://glovis.usgs.gov/
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Commission and omission errors ranged between 0.6 - 42.2, and 0.1 – 45.3 respectively for 

all the classes. The overall classification accuracy of the map was 90.14 % with an overall 

area adjusted Kappa statistic of 0.86. 



142 

 

Table 3.S1. Pearson’s correlation matrix for local and landscape scale variables. Measured metrics 

were calculated using the software QGIS (AREA and EDGE), and software Fragstats. Non significant 

correlations are indicated in bold red. 

 
Table 3.S 2 . Pearson’s correlation matrix for local and landscape scale variables 

 
AREA: area of the land-use patch (ha.). 
EDGE: distance to the nearest edge (metres). 
FC- 500, 1000, 1500 and 3000: percentage of forest cover within each radii. 
H- 500, 1000, 1500 and 3000: land-use diversity measured with Shannon-Weiner index, basically a measure of 
proportion of different habitats within each radii. 
  

 
AREA EDGE FC 500 FC 1000 FC 1500 FC 3000 H 500 H 1000 H 1500 H 3000 

AREA 1.000 
         

EDGE -0.050 1.000 
        

FC 500 0.640 -0.090 1.000 
       

FC 1000 0.650 -0.100 1.000 1.000 
      

FC 1500 0.750 -0.170 0.880 0.900 1.000 
     

FC 3000 0.810 -0.170 0.750 0.780 0.940 1.000 
    

H 500 -0.620 -0.170 -0.800 -0.800 -0.720 -0.620 1.000 
   

H 1000 -0.270 -0.600 -0.130 -0.120 -0.090 -0.100 0.570 1.000 
  

H 1500 -0.470 -0.470 -0.160 -0.160 -0.210 -0.290 0.450 0.790 1.000 
 

H 3000 -0.690 -0.230 -0.350 -0.360 -0.450 -0.540 0.480 0.510 0.840 1.000 
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Figure 3.S1. Mammal diversity metrics and landscape variables. A) Species 

richness response to forest cover within 500 metres (FC 500) from the 

camera trap site. B) Capture frequency (log transformed) response to forest 

cover within 1000 metres (SFC 1000). Each point represents a site with the 

shape and colour of the character indicating land-use type. The line 

represents the predicted response according to the best model selected for 

each variable. 

  

Figure 3. 7 
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Figure 3.S2. Detail of one camera trap site located within grassland in National 

Park (GNP). Red dots mark a camera trap station. Concentric circles indicate 

buffers at 500, 1000, 1500 and 3000 metres from the point for which proportion 

of forest cover was measured. Pale grey: natural grassland; grey: agriculture; the 

two darkest grey shades belong to forest (primary and secondary). 

 

 

 
Figure 3. 8 
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Figure 3.S3. Principal Component Analysis plot obtained for forest cover and land-use 

diversity variables. A distinctive horse-shoe effect is noticeable along the second axis. 

Bubbles represent each of the sites sampled, with their size matching the value of 

species richness for that site. 

 

 

Figure 3. 10 

Figure 3. 9 
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Agricultural environments in the semiarid Chaco
5
 

 

 

 

 

 

 

4 BALANCING BIODIVERSITY AND AGRICULTURAL PRODUCTION: 

CONSERVATION OF BIRD AND MAMMAL COMMUNITIES IN AN 

AGRICULTURAL FRONTIER 

                                                           
 

5
 Pictures by the author, otherwise stated in brackets. From left to right: Soybean field-forest edge; 

Silvopasture; Soybean field in the front and forest being burned further behind; White quebracho 
Aspidosperma quebracho-blanco standing alone in a soybean field; Agriculture field edge, a grey brocket deer, 
in the front, and some Chaco chachalacas, in the back, ventured out from the forest strip (Blas Fandiño).   



147 

 

Summary 

 

Large areas once occupied by natural ecosystems are being transformed to cropland and 

pastures worldwide. Moreover, the United Nations’ Food and Agriculture Organization 

(FAO) recognise that by the year 2050, the demand of food and goods will increase by 70%. 

The expansion of agribusiness for crop production and cattle ranching in the South 

American Chaco in particular has resulted in one of the highest rates of global forest loss. In 

this scenario, land use planning and the strategic assessment of agricultural landscape 

design is crucial to accommodate food production and manage resources in a sustainable 

fashion while minimizing negative impacts on species diversity. We studied the relationships 

between gradients of agricultural intensification (with associated profitability) and species 

richness, abundance, and community integrity in birds and mammals in the Chaco Region. 

Biodiversity data for both taxa and agricultural productivity data were recorded in six 

different land-use types during a three year period (2011-2013). We analysed crop and meat 

production to evaluate the relationship between land use management and economic 

revenue, and we related those results with diversity measures for birds and mammals to 

understand the trade-offs between agricultural productions and biodiversity. The economic 

revenue obtained from each land-use type differed markedly from extensive practices, with 

intermediate-to-high intensification, to industrialized silvopastures and agriculture plots. All 

diversity measures for both bird and mammal assemblages were negatively associated with 

profit increases but trends differed among taxa. Overall, bird diversity was highest in 

primary forest and kept similar values for low- to intermediate-profit management 

practices. It was only at much higher levels of intensification that dramatic declines in bird 

diversity were observed, with an average 90% reduction in species richness, abundance and 

community integrity for highly intensified land uses. Diversity values for the mammal 

community changed gradually: a significant increase in profit (from extensive cattle ranching 

to low-intensity silvopasture systems) caused a 40% decline in species richness and 

abundance, and a 20% change in community integrity. Whereas a further 36% increase in 

profit (from silvopasture to mechanized agriculture) produced a 45% decline in the number 

of species and individuals and 70% change in community composition. Although broadly, 

our results highlight that there are important differences in the species’ responses and 
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validate the need of considering more than one unique group to evaluate the effects of 

habitat alterations on biodiversity. We conclude that a combination of land sparing and 

wildlife-friendly farming provides the best compromise between biodiversity and profit. 
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4.1. Introduction 

 

Across the globe, land conversion of natural ecosystems for human activities has been 

proposed as one of the major causes of biodiversity loss and threaten of ecosystem 

functions (Tilman 1999; Sala 2000; Foley et al. 2005). Worldwide agricultural production is 

projected to double over the next 50 years in response to human population demands, 

increasing direct and indirect negative impacts on biodiversity (Balmford et al. 2005).  

Recently, the study of the potential integration of conservation and food production 

has been divided between two main strategies: a land sparing approach, and a combined 

wildlife-friendly farming approach (Figure 1.1, see Chapter 1) (Green et al. 2005). In land 

sparing, wildlife conservation and agricultural production are maintained in separate 

locations with high yield and heavily mechanized agriculture in areas not expected to 

sustain high biodiversity levels. In turn, unmodified habitats, are set aside (“spared”) for 

biodiversity conservation. Alternatively, wildlife-friendly farming combines conservation and 

agriculture, promoting low impact practices (e.g. reduced use of agrochemicals) and 

increasing fine-grain heterogeneity (e.g. including patches of native vegetation scattered 

throughout the landscape). Land sparing is typically managed for commodity production 

maximizing yield per unit area, whereas wildlife-friendly farming reduces yields, therefore, 

larger areas are required to meet a given production target.  

The challenge for ecological research is to identify the most appropriate land 

management strategy for an area that attains effective biodiversity conservation in the face 

of land-use change driven by agriculture. Green et al. (2005) proposed a model to quantify 

the trade-offs between species diversity and yield, based on the assumption that the 

ecological and biological characteristics of the species determine the shape of the response 

along the intensification gradient. The model highlights two basic patterns: if diversity 

metrics for a given community fall dramatically with little habitat disturbance (Function type 

I in Figure 1.1, Chapter 1), then land-sparing is the best option. However, if species are 

resilient to low levels of disturbance and a sharp decline in species diversity is only observed 

at much higher levels of intensification (Function type II in Figure 1.1, Chapter 1), then 

wildlife-friendly farming would be the most appropriate approach to concurrently achieve 

conservation and production objectives. Framed in this dichotomy, different studies have 
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supported land sparing (Balmford et al. 2005; Green et al. 2005; Ewers, Scharlemann, et al. 

2009) or wildlife-friendly farming (Dorrough et al. 2007; Makowski et al. 2007; Clough et al. 

2011; Tscharntke et al. 2012). However, these attempts have not always covered the whole 

range of possibilities. Based on their study in oil palm plantations, Koh et al. (2009) 

proposed to expand the approach to incorporate discontinuous responses in which dramatic 

changes in ecosystem composition results from a small increment in the intensification level 

(Function type III in Figure 1.1, Chapter 1). Perfecto and Vandermeer (2012) also pointed out 

that factors other than biodiversity (e.g. socio-economic needs of the smallholders living in 

the agricultural landscape) should be considered when using this framework to decide the 

best strategy for conservation and production. 

In this context, the South American Chaco provides a good setting to study the 

relationship between biodiversity and revenue coming from agricultural production. The 

semiarid Chaco Region has suffered intense transformation from agricultural development 

and cattle ranching (Bucher & Huszar 1999; Gasparri & Grau 2009; Portillo-Quintero & 

Sánchez-Azofeifa 2010) and is one of the least studied and protected ecosystems in the 

continent. Furthermore, since 1970, this region has suffered the combined consequences of 

an increase in rainfall, which has eliminated environmental limitations for crop growth; a 

rise in agricultural commodity prices that generates high profits; and the adoption of new 

technologies, like genetically modified crops, chemical fertilizers and pesticides, that provide 

high-yielding cultivars and lower production labour costs (Grau et al. 2005; Torrella & 

Adamoli 2006; Zak et al. 2008).  

The expansion and intensification of agriculture in former forested areas generated a 

growing concern for the potential biodiversity loss in natural habitats and, as a 

consequence, a “Forest Law” was enacted in 2007. From this point, environmentally-

sensitive farming was encouraged by favouring less intensive silvopasture practices over 

intensive agricultural management. In addition, regulations were put in place to maintain 

forest strips between agriculture plots, and to protect existing forest patches. The resulting 

landscape design presented a combination of spared land for biodiversity conservation 

(forest patches and forest strips) and shared land with a less intensive management 

approach (silvopasture) as well as intensively produced croplands.  
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The availability of empirical information is important to understand the benefits and 

limitations of land-sparing and wildlife-friendly farming to provide appropriate guidelines in 

accordance with the local conditions. To our knowledge only two previous studies have 

assessed the relationship between biodiversity and yield in agricultural systems of the Chaco 

Region (Mastrangelo & Gavin 2012; Macchi et al. 2013). Both studies found that bird 

richness remained relatively high for low and intermediate levels of intensification, 

favouring the integration of environmental-friendly practices into the production system. 

However, their results differed when analysing community similarity; whereas Mastrangelo 

and Gavin (2012) results supported the same strategy as for species richness, Macchi et al. 

(2013) found that even low intensification levels resulted in highly altered bird assemblages. 

Bird community has been the focus of extensive research given its well know biology and 

the accessible sampling techniques employed for studying it. Here, we investigate the 

relationship between production revenue (i.e. economic profit) and bird community data 

gathered in the semiarid Chaco Region, and we also provide the first assessment for 

medium- and large-sized mammals in the context of the land sparing/land sharing approach. 

Examining community diversity metrics from these two taxonomic groups would shed light 

on the question of whether any of the proposed strategies is suitable to achieve 

conservation and agricultural targets.  

 

We met four critical points that would allow us to meaningfully assess the biodiversity-yield 

relationship (Phalan, Balmford, et al. 2011): (1) both taxa were extensively sampled across 

the land-use gradient, from highly disturbed to pristine habitats; (2) community-wide 

metrics were calculated to consider optimal farming solutions at the community level; and 

(3) quantitative measures of crop yield were combined with meat production to obtain 

direct information of the economic output per site, facilitating the integration of different 

production systems in the land-use intensification gradient; (4) measurements of 

biodiversity in a baseline habitat (i.e. forest inside National Park) was included. In this 

chapter we specifically aim to assess the responses of community measures (species 

richness, abundance and community integrity) for birds and mammals along the gradient of 

production profit, to analyse economic profit differences between farming systems, and 

ultimately, to evaluate a potential unified strategy that takes into account the ecological 
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requirements of two distinctive taxonomic groups. Agricultural production–biodiversity 

relationships of these two taxa across the range of existing land uses in the semiarid Chaco 

Region would increase understanding of the response of biodiversity to human managed 

habitats, and in turn, would be useful to inform decisions on the adoption of land sparing 

and wildlife-friendly farming to preserve biodiversity and improve sustainability. 

 

4.2. Methods 

 

Study area 

The study area comprises about 600,000.00 ha of an agricultural landscape in the western 

limit of Chaco Province (26° 24’ S, 61° 09’ W), and an additional portion of c. 118,120.00 ha 

of protected forest and grasslands in Copo National Park (25° 46’ S, 61° 47’ W), Santiago del 

Estero Province, Argentina. The area is part of the “Gran Chaco”, one of the most extended 

seasonally-dry forests in South America. The Semiarid part of Chaco Region in Argentina was 

once a mosaic of dense forest and grassland (Morello & Saravia-Toledo 1959; Bucher & 

Huszar 1999; Morello et al. 2006), however  after more than three decades of unplanned 

use of the resources and forest clearing, much of the region is now reduced to degraded 

forest patches inserted in a matrix of arable fields, implanted pastures and agro forestry 

managements (Zak et al. 2004; Aizen et al. 2009; Aide et al. 2013). Currently the area 

represents one of the most active and expanding agricultural frontiers in Argentina (Zak et 

al. 2008; Aide et al. 2013; Piquer-Rodriguez et al. 2015), and in consequence it has been the 

focus of active political debate centred in the conflict between modern agriculture 

production and nature conservation.  

The topography of the area is predominantly flat; the climate is seasonal semiarid, 

with rainfalls concentrated in summer. Mean annual temperature is around 22°C, with 

maximum temperatures above 45°C (Cabrera 1971). For more details about the study area 

refer to Methods in Chapters 2 and 3. 

 

Bird and mammal surveys 

Birds and mammals were surveyed in sites spread across the agricultural landscape as well 

as in control sites inside Copo National Park. We sampled in five land-use types that 
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appropriately represented the range of environments and production systems in the area 

(agriculture (A); agriculture with forest strips (AFS); silvopasture (S); forest strip (FS), and 

forest (F)). Additionally to quantifying biodiversity across the range of farming systems, we 

took samples inside the National Park that were considered as a baseline (Phalan, Balmford, 

et al. 2011), given the relatively good status of conservation of the forest stand (Tálamo et 

al. 2012).  

Birds were sampled during spring in 2011 and 2012 in a total of 55 sites, 10 in each 

of the land uses for the agricultural landscape (A, AFS, S, FS, and F) and 5 sites in FNP. Each 

randomly selected site encompassed a homogeneous habitat. All birds seen or heard during 

a 10 minutes period were registered using a point count methodology (100 m fixed-radius) 

(Hill 1973; Hutto et al. 1986; Bibby et al. 1992; Sutherland 2006). Mammals were sampled 

using camera traps deployed from July to December in 2012 and 2013. The same 

arrangement of land-use categories surveyed for birds were used for mammals, with 20 

replicates per land use (A, AFS, S, FS, F and FNP). Sites sampled for this taxon were also 

randomly selected. Camera-traps were attached to trees or wood poles, no bait was used, 

and vegetation was cleared in front of the camera to facilitate the recognition of species and 

individuals. An averaged 32 (+ 11) camera-trap nights (CTNs) per site resulted in a total 

effort of 4281 CTNs. For a detailed explanation of the bird and mammal sampling methods 

refer to Methods in Chapters 2 and 3 respectively. 

 

Profit assessment 

We analysed crop and meat production for all sites (55 for birds and 120 for mammals, from 

which 41 overlapped in both studies). We obtained data on production (mean harvested 

mass in tonnes per year) of four of the most frequent crops found in the sites visited 

(soybean; corn; sunflower, and sorghum, Table 4.1.A). Cotton and oats fields were present 

in very low numbers and were considered as soybean to facilitate calculations. Given that 

both taxa were surveyed in a different sequence of years (birds: 2011-2012; mammals: 

2012-2013) and that crop rotation is a frequently adopted practice in the area, even those 

sites with shared bird-mammal sampling resulted in a different combination of crops (for 

instance, if the sequence of planted crops for a given site surveyed for both taxa was: 

soybean to corn to sorghum in 2011, 2012 and 2013 respectively, then yield will be the 
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averaged combination of soybean-corn for birds and corn-sorghum for mammals generating 

a slight variation in the revenue). Similarly, we calculated livestock production (mean meat 

in kilograms per year) for the whole range of cattle ranching alternatives, from extensive 

systems inside forest patches to more industrialized silvopasture plots (Table 4.1.B and C). 

Sites in protected forest (FNP) and inside forests strips were assumed to have zero 

production, although in some cases there was small number of cattle foraging in these 

environments. 

Crop and meat production were converted from mass to economic output (United 

State dollars per hectare per year, US$ ha-1.year-1). We used it as a proxy of yield to facilitate 

comparisons and combinations among land uses, and we refer to it throughout the chapters 

as profit (Balmford et al. 2005; Phalan, Balmford, et al. 2011). In the case of agriculture, 

profit was calculated for each site as the economic input derived from the production 

averaged for both years (Supplementary information Table 4.S1). For livestock production, 

the difference in the capacity to produce meat was given by the technological level and 

development of the ranch. In this case, profit reflected the average yearly revenue obtained 

in each site (Supplementary information Table 4.S1). 

 

Biodiversity measures 

We computed three community diversity measures: species richness, abundance and 

community integrity. Bird and mammal species richness for each site was calculated as the 

observed number of species. The total number of bird individuals registered in a given site 

was considered as the total abundance for that site. Whereas for mammals we incorporated 

differences in sampling effort among sites by calculating a relative abundance index: 

capture frequency was the number of independent captures divided by the number of CTNs 

for that site, standardizing the value to 100 CTNs. Images sequences were considered 

independent if they contained different individuals or if they were separated by an interval 

longer than 1 hour. 

Following Ewers et al. 2009, and Banks-Leite et al. 2014 we calculated the averaged 

similarity of community composition relative to the control sites (FNP) using the Sørensen 

index, that measures incidence-based similarity between ecological communities (Magurran 

& McGill 2011), we called this measure “community integrity” (Banks-Leite et al. 2014) . The 
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Sørensen index takes values between zero and one, with zero indicating that a community 

has no species in common with the control sites, and one representing an assemblage 

similar to those found inside protected forest. Some level of natural turnover is expected 

even among control sites due to the heterogeneity in the environment and natural 

differences among sites; therefore, we re-scaled the values of similarity among sites in FNP 

to equal the mean value of Sørensen index for those sites. Sørensen similarity values were 

calculated using the package “vegan” in R v.3.1.1 (Oksanen et al. 2012; R Core Team 2014). 

All three diversity measures were calculated using the pooled data for both years in 

which each group was sampled. 

 

Statistical analysis 

We analysed per area annual productivity variations among land-use types by comparing 

means of profit at site level. We used general linear models (LM) and a posteriori multiple 

comparisons using Tukey’s HSD tests to determine the significant differences among land 

uses. Normality and homogeneity of variance were checked using standard graphical 

methods (Quinn & Keough 2002; Crawley 2007).  

We fitted separate biodiversity-profit functions for each taxa with species richness, 

abundance (or capture frequency for mammals), and community integrity as the response 

variables, and profit as the predictor variable. We assessed whether these measures were 

best described by a convex, concave or sigmoid function (Type I, II or III curves in Figure 1.1, 

see Chapter 1). We used alternative formulations of linear and non-linear functions 

(Supplementary information Table 4.S2) to test a wide range of shapes for the curves 

relating diversity to profit. Bird and mammal diversity measures were modelled using 

Generalized Linear Models (GLM) for linear, quadratic and cubic polynomials of the 

response variable. Error distribution for species richness was modelled with Poisson and log-

link, whereas abundance and community integrity were modelled with normal distribution. 

Other exponential and logistic functions were fitted using non-linear regression (nls). Only 

capture frequency was log transformed to achieve normality of the residuals. GLMs were 

run in R v.3.1.1 (R Core Team 2014) using package “lme4” (Bates et al. 2014). To find the 

value of profit that separated the diversity data in distinctive levels we run a post hoc tree 

model analysis in R using package “tree” (Ripley 2014; Crawley 2007).  
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To select the best fitting function for each variable we employed the Akaike Information 

Criterion value corrected for small samples (AICc), and delta AIC (  AIC) and Akaike weights 

(w), which we used in model comparisons (Burnham & Anderson 2002; Crawley 2007). We 

also report the explained deviance (pseudo-R2) as a measure of the explanatory power of 

the models. 

 

4.3. Results 

 

Production intensity gradient and profit 

In sites where we measured diversity of birds and mammals, mean annual profit ranged 

from zero to c. 435 US$ ha-1 with a similar pattern of differences between land uses for both 

groups (comparing profit among land uses: F5,49=236.8 birds, and F5,115=641.5 mammals, 

p<0.001). Sites inside forest categories (FS, F, and FNP) produced the lowest profit with 

protected forest and forests strips generating zero direct revenue, and a non-significantly 

higher profit made in forests used for extensive livestock production (mean profit of 4.2 and 

2.9 US$ ha-1.year-1 for birds and mammals respectively, Table 4.2, Figure 4.1). Silvopastures 

followed the gradient of intensification with a profit c. 82 times higher than that in forests 

for both birds and mammals (Table 4.2, Figure 4.1). The following transition from 

silvopastures to agriculture was much more moderate yet significant, increasing c. 150 US$ 

ha.-1 year-1 for bird sites and c. 68 U$S ha.-1year-1 for mammal sites, whereas, as expected, 

different types of agriculture had the highest profit in the whole range, and revenue was 

similar for the two types of arable systems (A and AFS) (Table 4.2, Figure 4.1). 

 

Birds, mammals and profit relationships 

We registered a total of 126 bird species (5067 individuals) and 26 medium- and large-sized 

mammal species (1367 independent captures) in the agricultural landscape and the 

protected forest (Table 4.3).  

All bird diversity measures showed significant correlations with profit. Species 

richness (F1,53=78.6, p<0.001), abundance (F1,53=19.0, p<0.001), and community integrity 

(F1,53=159.5, p<0.001) decreased abruptly in high-profit land uses showing values about 85-

90% lower than in forested habitats. Species richness and abundance initially increased with 
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low levels of intensification (4% increase in species richness, and 35% increase in 

abundance), showing a local maximum, whilst community integrity responded always 

negatively (20% decrease). However, these changes were not important enough to be 

significant. As a result, the best selected model describing the data was a logistic (sigmoid) 

function (Table 4.4), indicating that low and medium levels of land-use production did not 

alter significantly the bird assemblages up until a point were higher intensification resulted 

in a sharp decline in the number of species and individuals, and a significant change in 

community integrity (Figure 4.2.A to C). The value explaining the maximum deviance in the 

tree model was 360.35 U$S ha.-1year-1, indicating that any production system with profits 

above that threshold were expected to have a significant negative impact in the bird 

assemblage in this landscape. 

Overall for the mammal community, diversity measures declined with agricultural 

intensification. However, this decline followed a different pattern for each measurement 

(Figure 4.3), and an inflexion point was not as clear as the one observed for birds. The 

number of species and capture frequency for mammals decreased around 70% from FNP to 

agriculture land uses (F1,119=533.4, p<0.001; F1,119= 52.9, p<0.001), and community 

composition changed around 50% (F1,119= 109, p<0.001). Mammal species richness showed 

a similar response to bird species richness, as it was best fitted by a logistic model (Table 

4.4) with an S-shaped curve (Figure 4.3.A) that presented a threshold at 239.55 U$S ha.-

1year-1. Capture frequency maintained a relatively high number of species in low- and 

intermediate-intensity systems, and decreased the most in high-intensity systems (Table 

4.4, Figure 4.3.B).  

The best model for community integrity of mammal species (AIC=0, and w=0.31) 

was represented by an exponential function (Table 4.4), although a linear model also had a 

good fit to the data (AIC=0.6, and w=0.23). We maintain the exponential model as the 

selected one since it showed a higher probability (w) of being the best model, and also 

because the number of parameters estimates in both models was the same. However, we 

acknowledge that the decreasing trend may not be as steep as the function type would be 

indicating (Figure 4.3.C). 
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4.4. Discussion 

 

Profitability gradient of the agricultural landscape 

The economic revenue obtained in each type of production management in the study area 

showed a marked division between very-low intensification practices and intermediate-to-

high intensification practices. In turn, this resulted in a gradient of profit lacking 

intermediate values, despite having used several measures to capture as much variability as 

possible in the calculation (e.g. crop rotations and silvopasture categorization, see Table 

4.1.A to C, and Table 4.2). Using averaged estimates to calculate net profit doubled this 

effect. On the one hand, mean values are appropriate as yield commonly fluctuates 

between years depending on climate, with dry years resulting in poor harvests, therefore 

profit calculated for a period of time more accurately represents the economic revenue of 

agricultural activities. On the other hand, averaged values could have masked significant 

differences in crop types and silvopasture categories because values of costs were available 

only for some crops and some categories of ranches. However, all land-use types under 

production generated different yearly economic revenue, with the exception of the two 

agricultural systems. 

Several different options could be considered to smooth the relationship between 

land-use type and profit. First, in this study A and AFS did not vary significantly in their 

economic gain because profit was considered by area and time unit (i.e. U.S dollars per 

hectare per year) and only gains coming from farmed areas were used in the calculations. If 

a measure of profit incorporating the total area of the plot would have been used instead, 

then AFS would have had lower profit. This approach is similar to consider the profitability 

of a landscape rather than specific land-use types. The question in this case would be if 

locally sparing land would reduce profit significantly and increase biodiversity in the system 

at the same time (Balmford et al. 2012), in which case the shape of the biodiversity-profit 

function should not change. However, if the reduction in profit is non-significant but a 

considerable increment in biodiversity is achieved, then the relationship would be 

significantly altered. A similar idea with a different approach was studied in cacao 

agroforestry systems in Indonesia (Clough et al. 2011) where the biodiversity-yield 

relationship was not affected by the landscape context. 
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Second, low-to-intermediate intensity practices should be added to the profit gradient. In 

this study, low intensification practices were represented by a few sites with extensive 

livestock production. Any other low or intermediate intensification practice was too scarce 

to be considered in the sampling design. Macchi et al. 2013 collected relevant production 

data from low intensification silvopastoral systems (locally called “puestos”) and from 

grasslands in a nearby area in the semiarid Chaco. However, those land-use types were not 

common in our area. Probably, the advanced conversion of land and reduction of forest 

patches made extensive cattle ranching impracticable in our study area.  

Third, economic revenue coming from systems different than agricultural ones could 

also be included. For instance, profit coming from nature-based tourism activities developed 

in Copo National Park. Currently, admission to National Parks in Argentina are free of cost, 

yet indirect regional economic returns could be taken into account by considering the 

money spent in hotel bookings, restaurants, and other local businesses that could benefit 

from tourism and the outdoor recreation industry (Heberling & Templeton 2009). 

Several studies working with economic revenues from agricultural activities 

presented similar values of profit, confirming that our calculations were representative. 

Banks-Leite et al. 2014 reported a median gross profit of 467 US$ ha.-1year-1 for agricultural 

land in the Brazilian Atlantic Forest, whereas Koh et al. 2009 found that farmers in Indonesia 

collected from corn an average 580 US$ ha.-1 during 2006. More local and closely related 

studies reported similar meat production values for silvopasture systems (Mastrangelo & 

Gavin 2012), and agricultural land-use gradients (Macchi et al. 2013) in the Chaco Region.  

 

Bird community relationships 

In this study the development of human-managed production systems in the semiarid 

landscape of Chaco Region was associated with loss of bird diversity. These observations 

coincide with numerous studies worldwide (Aratrakorn et al. 2006; Gordon et al. 2007; 

Phalan, Onial, et al. 2011) and supports the theory of a trade-off between conservation and 

agricultural production (Green et al. 2005; Balmford et al. 2005; Ewers, Scharlemann, et al. 

2009). As expected, bird community responded negatively to intensification, showing 

consistent similar patterns for the complete set of diversity measures under consideration.  
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Bird species richness, abundance and community integrity changed nonlinearly with 

increasing land-use intensification. The shape of the best-fitting functions obtained for each 

measure can be analysed as follows: the highest values of all measures are reached in low 

intensity land uses, not surprisingly protected forests and forest with relatively low 

disturbance levels (FS) had the most diverse and complete assemblages. When moving from 

low- to intermediate-intensity managements, bird community characteristics remain stable, 

indicating that wildlife-friendly farming would be a good strategy to maximize conservation 

and production. However, if intensification increases, the shape of the relationship changes 

and further interventions in the production system cause a rapid decline in bird diversity 

leading to a new state of equilibrium for the community.  

Recent studies suggested either a land sharing (Mastrangelo & Gavin 2012) or a land 

sparing (Macchi et al. 2013) strategy for the Chaco region. Our results coincide with 

Mastrangelo & Gavin 2012 in that silvopastures (wildlife-friendly cattle production) support 

relatively well preserved bird assemblages, and therefore, this system would represent the 

best strategic option to maintain production and biodiversity integrated in the same 

landscape. Agroforestry schemes have been confirmed as valuable wildlife-friendly farming 

option mainly in developing countries (Mattison & Norris 2005) where profitable species of 

plants (i.e. cacao, rubber, coffee) and animals (i.e. livestock) can share resources and benefit 

from ecosystem services (Koh et al. 2009) provided by native plants (Dorrough et al. 2007; 

Makowski et al. 2007), insects, bats, and birds, among other vertebrates (Perfecto et al. 

2003; Harvey et al. 2006; Fischer et al. 2008; Clough et al. 2011). 

At the same time, our analyses uphold the findings of Macchi et al. 2013 in that 

higher modification and intensification accompany a detriment in bird assemblages 

composition in which case some land should be spared from production in order to 

guarantee the preservation of healthy bird communities including habitat specialist that rely 

upon resources only provided by unaltered forests or native patches of grassland 

(Aratrakorn et al. 2006; Kleijn et al. 2009; Phalan, Onial, et al. 2011).  

Interestingly, all three measures of bird diversity responded with the same pattern 

to land-use intensification. Whilst variance in species richness and community integrity was 

small for all land-use types, the range in abundance values for silvopasture was wider and 

also held the highest mean abundance. The difference in the number of individuals 
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registered in this environment is likely due to a methodological constraint. The lack of 

understorey vegetation could have facilitated the detection of individuals, whereas in 

forested land uses detection and identification relies mainly on sound as most of the 

individuals are hidden in the vegetation.  

Overall, the results found for birds facilitate the analysis about which strategy is best 

to maximize production and conservation at the same time. In the case of bird assemblages 

in the semiarid Chaco landscapes, species richness, abundance and community integrity 

only show substantial declines at high intensification levels.  

 

Mammal diversity-profit relationship 

Our results provide the first direct, quantitative estimation of a profitability-biodiversity 

relationship for medium- and large-sized mammals in the semiarid Chaco Region. As was 

found in birds, variation in mammal community diversity showed a strong decline with 

increasing production intensity. 

Mean mammal species richness was highest in unmodified forest patches and did 

not change in habitats converted to low-intensity production. However, with further 

modification of the habitat, the number of mammal species decreased sharply. It is 

important to notice that mammal species richness declined at a lower intensification level 

than that for birds, moreover, only two silvopasture sites presented species richness similar 

to unaltered forest, whereas the rest of sivopastures were mingled among high 

intensification agricultural plots presenting low number of species. This difference may arise 

for a few reasons: (1) birds and mammals did not share all the locations during sampling. In 

some sites only sampled for mammals, the profit generated in highly developed cattle 

ranches equalled the profit generated in intensively farmed areas. These cattle ranches 

presented similar structural characteristics to the ones that yielded lower profits, but 

employed diet supplementation and paddock rotation to improve productivity. With 

basically the same level of intervention in the environment, these highly developed cattle 

ranches obtained better revenues. (2) Costs associated to farming activities increased 

between 17-36% from 2011-2012 to 2012-2013 (Table 4.1.A) reducing the net profit of 

agriculture sites and closing differences in revenue between livestock production and 

farming. (3) Lastly, and more importantly, wildlife sensitivity to environmental changes are 
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determined by their requirements and their tolerance to habitat alterations, and in turn, 

requirements and tolerance change for different groups depending on their ability to move 

throughout the landscape (Andrén 1994; Fahrig 2003). The response threshold for mammal 

species richness was found to be lower than the threshold for birds, indicating that 

intermediate intensification practices cause a significant decline in the number of mammal 

species. 

The capture frequency-profit function indicated that small decreases in mammal 

relative abundance corresponded to small increases in profit between forest patches and 

low-intensity production systems. Further small changes in mammal abundance 

accompanied large profit increments between low- and intermediate-intensity 

silvopastures. This kind of win-win situation has been reported in agroforestry systems 

elsewhere, in studies focusing on large mammals (R. Cassano et al. 2012; R. Cassano et al. 

2014) and other vertebrates (Perfecto et al. 2003; Harvey et al. 2006; Clough et al. 2011) 

where the heterogeneity of the habitat and the structure of the canopy cover provide key 

resources potentially benefiting the persistence and dispersion of this group in agricultural 

landscapes. 

Community integrity among sites inside forest in National Park (i.e. the land-type 

taken as baseline) was lower for mammals (54%) than for birds (72%); however mammal 

community integrity decrease steadily with increasing profit. Highly intensified 

managements, producing the highest profits, had the lowest community integrity. In the 

Atlantic Forest of Brazil, R. Cassano et al. 2012 found highly valuable communities of large 

mammals inhabiting cacao agroforestry systems, where a high number of species and 

similar composition to primary forest was also accompanied by the presence of some 

endemic and threatened mammal species. However, they also recognised that potentially 

altered communities in control sites (i.e. “original” habitats impoverished by previous use 

and/or hunting pressure) may have an important role in the interpretation of the results and 

should be considered. In this study, an important number of threatened species were only 

registered in FNP and, albeit they presented very low numbers, their presence inside the 

National Park validate the use of this habitat as a reference to compare community 

integrity. Based in these results, the most suitable approach to balance production and 

conservation would be land sparing (Barlow et al. 2007; Harvey & González Villalobos 2007). 
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Diversity measures for the mammal community showed different responses along the 

gradient of production intensification. This results support the idea that more than a single 

strategy should be considered to achieve production targets and, at the same time, preserve 

mammal communities. The easiest way would be to adopt land sparing, excluding some 

areas from economic revenues and intensifying at the same time production in other lands. 

Nonetheless, this option neglects other important factors arising from environmental-

friendly practices, such as, ecosystem services, smallholders’ livelihood provision, and 

coarse-grain landscape connectivity.  

 

Balancing strategies 

This study represents a first step to understand the effects of land use intensification on the 

diversity patterns of birds and mammals, and to evaluate those effects in light of the land 

sparing versus wildlife friendly farming approach. 

In the agricultural landscapes of semiarid Chaco Region wildlife-friendly practices 

generate lower revenues than high-yielding agriculture. Additionally, both communities of 

birds and mammals presented a negative association with land-use intensification, resulting 

in highly altered values of diversity for the most productive systems, and posing a 

consequent trade-off between wildlife conservation and productivity. Our results showed 

that bird and mammal communities in the semiarid Chaco can benefit from wildlife-friendly 

farming to maintain highly diverse assemblages favoured by the provision of habitat and 

resources at a local scale, and a heterogeneous matrix that facilitates movements and 

dispersion of individuals at landscape scale. At the same time, the exclusion of some areas 

from modification and production activities must be ensured in order to preserve a wider 

range of forest-dependent and threatened species. Overall this research supports the idea 

that wildlife-friendly farming and land sparing are not mutually exclusive options, but should 

be recognized to offer potentially complementary advantages for land management. 
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Table 4.1.A. Agricultural input data used for calculations of profit per site in the study area. Mean yield values 

were calculated using information of average yields of each crop type harvested in Almirante Brown 

Department (Chaco Province, Argentina) during the period 2011 to 2013. Mean crop price represents FAS 

values (free alongside ship values) paid for grain in Argentina averaged for the period 2011 to 2013. Mean 

yield and mean price values were taken from the official website of the Ministry of Agriculture, Livestock and 

Fisheries of Argentina. Production costs represent labour costs associated to crop management (i.e. seeds, 

agrochemicals, machinery leasing). Values were available only for soybean and corn; therefore, we consider 

that sunflower and sorghum had the same costs as soybean given that corn is always the crop with the highest 

costs. 

 

B. Cattle ranching input data used for calculations of profit per site in the study area. Cattle ranch type 

indicates the kind of management: subsistence livestock production in forest patches or more industrialized 

management in silvopasture plots. Each site inside either forest or silvopasture was classified accordingly to 

their level of intensification. The classification was made based on interviews with the owners, on professional 

assessment made by a local agronomist, and on personal knowledge of the sites. Sites were assigned to one of 

five categories based on the number of paddocks present (i.e. high number of paddocks means higher 

production associated to a bigger space and higher availability of pastures), and on diet supplementation. 

Mean cattle production was assessed based on interviews with the owners, and on information provided by a 

local agronomist of the National Institute of Agricultural Technology (INTA).  

 

 

(Continues in next page) 

A Agricultural production 

Crop type 
Mean yield (ton/ha.year) Mean crop price (AR$/ton) Production costs (AR$/ha) 

2011-2013 2011-2013 2011 2012 2013 

Soybean (SB) 1.62 1571.28 636.10 810.35 998.42 

Corn (C) 3.79 931.75 656.75 892.29 1075.22 

Sunflower (SF) 1.68 1559.32 - - - 

Sorghum (SG) 3.25 745.31 - - - 

Source 1 2 3 

B Livestock production 

Cattle ranch type Category 
Number of 
paddocks 

Supplementary 
fodder 

Mean cattle production 
(kg/ha.year) 

Extensive, inside forest 0 0 No 10 
Silvopasture 1 0 No 20 
Silvopasture 2 1-2 No 90 
Silvopasture 3 >2 No 250 
Silvopasture 4 >2 Yes 400-500 

Table 4.S 1 B. Cattle ranching input data used for calculations of profit per site 
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(Continues from previous page) 

 

C. Cattle ranching input data used for calculations of profit per site in the study area. Mean cattle 

price is presented for each year and averaged. Values correspond to the General Index of Livestock 

Production (from the Spanish words: Indice General de Cria e Invernada, IGCeI). This index 

represents the averaged price paid per kilogram of live cattle. Production costs represent labour 

costs associated to cattle ranching (i.e. veterinary services, fodder, workers wages). Values were 

taken from the official website of the Ministry of Agriculture, Livestock and Fisheries of Argentina. 

 

Table 4.S 2 C. Cattle 

ranching input data 

used for 

calculations of profit per site in the study area 

 
 
 
 

The following table lists the websites where the input data, before mentioned in tables A and C, was taken 
from.  

Source Website 

1 http://www.siia.gov.ar/_apps/siia/estimaciones/estima2.php  

2 http://www.minagri.gob.ar/new/0-0/programas/dma/precios_referencia/precio_ref_acum/01_valores_acum_2012.php  

3 http://www.margenes.com  

4 http://www.minagri.gob.ar/site/ganaderia/bovinos/05=Mercados/01=Hacienda%20en%20Pie/index.php  

 

  

C Livestock production 

 

Year Mean 
value 

Source 
2011 2012 2013 

Mean cattle price (AR$/kg) 11.17 11.43 11.38 11.33 4 

Production costs (AR$/kg) - 6.66 8.53 7.60 4 

http://www.siia.gov.ar/_apps/siia/estimaciones/estima2.php
http://www.minagri.gob.ar/new/0-0/programas/dma/precios_referencia/precio_ref_acum/01_valores_acum_2012.php
http://www.margenes.com/
http://www.minagri.gob.ar/site/ganaderia/bovinos/05=Mercados/01=Hacienda%20en%20Pie/index.php
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Table 4.2. Productivity of land-use types sampled in the semiarid Chaco. Land management systems 

vary in size and annual production. Values show the averaged profit (+ standard error) in sites 

surveyed for birds and mammals.  

Table 4. 1 . Productivity of land-use types sampled in the semiarid Chaco. 

 

 

Land-use type 
Mean patch 

size (ha) 

Birds Mammals 

Mean profit (US$ / ha. year) Mean profit (US$ / ha. year) 

Agriculture 297.1 ± 75.9 419.2 ± 5.0 360.8 ± 4.6 

Agriculture with forest strip 67.0 ± 30.3 434.3 ± 5.1 366.2 ±4.6 

Silvopasture 42.5 ± 6.8 285.6 ± 6.6 298.3 ± 4.8 

Forest strip 12.2 ± 6.4 0.0 ± 0.0 0.0 ± 0.0 

Forest 470 ± 237.5 4.2 ± 0.4 2.9 ± 0.4 

Forest in National Park 118,118 0.0 ± 0.0 0.0 ± 0.0 
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Table 4.3. Summary statistics for bird and mammal diversity and economic output data registered for six representative land uses present in the semiarid 

Chaco Region. For each taxonomic group we present averaged values (+ standard error) per land-use type of species richness, abundance, and community 

integrity. In the bottom row we show: total number of species for the whole survey for birds and mammals, total number of bird individuals, and total 

number of independent captures for mammals. 

Table 4. 2 Summary statistics for bird and mammal diversity and economic output data 

 

 

 

 

 

 

 

 

 

Community integrity was based on Sørensen index and shows the similarity of the community in each land-use type in relation 

to the assemblages found in forest sites inside the National Park (control sites). 

Land-use type 

Birds Mammals 

Species 
richness 

Number of 
individuals 

Community 
integrity 

Species 
richness 

Capture 
frequency 

Community 
integrity 

Agriculture 4.6 ± 3.8 17.3 ± 20.3 0.03 ± 0.04 1.5 ± 0.9 15.5 ± 10.8 0.24 ± 0.03 

Agriculture with forest strip 3.5 ± 1.3 10.3 ± 9.9 0.05 ± 0.04 2.1 ± 1.4 15.0 ± 11.7 0.26 ± 0.10 

Silvopasture 41.4 ± 7.8 183.4 ± 66.8 0.51 ± 0.05 3.3 ± 1.5 27.5 ± 21.0 0.37 ± 0.13 

Forest strip 39.3 ± 6.7 115.6 ± 22.8 0.55 ± 0.02 5.4 ± 2.4 44.6 ± 31.2 0.47 ± 0.12 

Forest 42.3 ± 5.3 123.3 ± 28.3 0.61 ± 0.04 4.3 ± 2.2 30.0 ± 24.5 0.45 ± 0.11 

Forest in National Park 37.8 ± 8.5 113.6 ± 36.2 0.72 6.2 ± 1.8 63.3 ± 30.4 0.54 

Total 126 5067 - 26 1367 - 
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Table 4.4. Summary of regression model selection applying the land sparing / wildlife-friendly farming approach for birds and mammals. Only the best 

minimum model for each predictor variable is shown. Each model shows the estimated parameters + standard error. We report df: degrees of freedom for 

each model, AICc: Akaike Information Criterion value corrected for small samples;  AIC: difference in AICc values between each model and the best model, 

w: the percentage of model weight attributed to each model, and explained deviance (pseudo-R2): as a measure of statistical significance.  

 

Table 4. 3 Summary of regression model selection 

Taxon Response variable Best Model Df AICc  AIC W Explained deviance 

B
ir

d
s 

Species richness = 40.8 (+ 1.1) - 38.8 (+ 2.7) / (1 + exp (36.2 (+ 0.4) - profit)) 52 363.5 0.00 1.00 0.89 

Abundance = 136.9 (+ 7.5) - 131.2 (+ 19.4) / (1 + exp (36.5 (+ 0.8) - profit)) 52 576.8 0.00 1.00 0.65 

Community integrity = 0.57 (+ 0.01) - 0.54 (+ 0.02) / (1 + exp (36.9 (+ 0.3) - profit) / 0.07 (+ 0.18)) 51 -152.6 0.00 0.95 0.95 

M
am

m
al

s Species richness = 1.8 (+ 0.2) + 0.5 (+ 0.5) / (1 + exp (28.3 (+ 0.9) - profit)) 117 489.3 0.00 0.39 0.46 

Log(Capture frequency) = 3.14 (+ 0.07) - 5.9 (+ 0.8) * profit - 2.0 (+ 0.8) * profit ^2 117 294.9 0.00 0.64 0.89 

Community integrity = 0.52 (+ 0.01) * exp( -0.017 (+ 0.002) * profit) 117 -158.7 0.00 0.31 0.46 
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Figure legends 

 

Figure 4.1. Mean economic output along the land use intensification gradient in the 

semiarid Chaco. Mean profit was calculated for each land-use, and separately for each 

taxonomic group given that (A) birds, and (B) mammals were sampled in different sites 

(represented by points, replicates). Thick lines represent the median, boxes represent the 

interquartile range and whiskers represent minimum and maximum values. Land-use types 

are sorted from the least to the most productive systems: FNP, forest inside National Park; 

FS: forest strip; F: forest; AFS: agriculture with forest strips; A: agriculture. Statistical 

differences in the mean of the variable are true when letters differ between factor levels 

(Tukey HSD at alpha= 0.5). 

 

Figure 4.2. Diversity-profit functions for the bird community showing the changes in: (A) 

species richness, calculated as total number of species in each site, (B) abundance, 

calculated as total number of individuals registered in each site, and (C) community 

integrity, calculated as species composition per site (using Sørensen index) in relation to 

species composition in control sites (i.e. sites in forest inside National Park). Each point with 

a distinctive shape and colour represents a replicate for a given land-use type. The line 

represents the predicted values obtained from the best model selected for each diversity 

measure (Table 4.4). Points for some of the land uses overlapped (mainly those 

corresponding to profit=0 US$), therefore the shape and colour that predominates is the 

one belonging to the last land-use type added to the graph hiding underneath the rest of 

the points for other land uses. 

 

Figure 4.3. Diversity-profit functions for the mammal community showing the changes in: 

(A) species richness, calculated as total number of species in each site, (B) capture 

frequency, calculated as the number of independent captures of all species present at a site 

per 100 camera trap nights, and (C) community integrity, calculated as species composition 

per site (using Sørensen index) in relation to species composition in control sites (i.e. sites in 

forest inside National Park). Each point with a distinctive shape and colour represents a 

replicate for a given land-use type. The line represents the predicted values obtained from 
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the best model selected for each diversity measure (Table 4.4). Points for some of the land 

uses overlapped (mainly those corresponding to profit=0 US$), therefore the shape and 

colour that predominates is the one belonging to the last land-use type added to the graph 

hiding underneath the rest of the points for other land uses. 
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Figure 4.1. 

 

Figure 4. 1 
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Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

Figure 4. 2 
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Figure 4.3. 
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4.5. Supplementary information 

Table 4.S1. Summary data for the calculations of profit of the sites surveyed in the semiarid Chaco Region. Only data for some of the sites visited during the mammal community survey is shown 

as an example (profit for sites surveyed for the bird community were attained using the same methodology and input data). Only sites with unique profit values > 0 US$ are listed (i.e. sites 

inside FNP, FS and some sites in F outside National Park were excluded from the table given their profit was zero). The first row called “Col” was added to facilitate the explanation of 

calculations, with each letter corresponding to a different column on the table.  

- Site correspond to the number allocated to each site sampled and is shown only as a reference, sites are sorted in two groups from smallest to largest values of profit; first, sites with an 

agricultural land use, followed by sites with livestock production. 

- Mean yield for each crop type represents the average weight of grain harvested per year (during 2011 to 2013) according to the crop sown in the corresponding year of sampling. Based in 

values from Table 4.1.A. 

- Mean grain price represents the economic value of each crop type averaged for the years 2011 to 2013, according to the crop sown in the corresponding year of sampling. Based in values from 

Table 4.1.A. 

- Gross profit A represents the economic output of agriculture obtained in a given year. It was calculated as G= C*E, and H=D*F. 

- Mean gross profit is the averaged economic revenue obtained between 2012 and 2013. It was calculated as I= (G+H)/2. 

- Production costs per year represent the costs associated to farming depending on the crop type sown each year. Based in values from Table 4.1.A. 

- Mean production costs are the values of costs averaged per year. It was calculated as L= (J+K)/2. 

- Cattle ranch category was assigned to each site located either in forest or silvopasture dedicated to livestock production. The classification was based on interviews with the owners, on 

professional assessment made by a local agronomist, and on personal knowledge of the sites. Based in values from Table 4.1.B. 

-  Mean cattle production represents the average production per year depending on the ranch category (infrastructure and development). Based in values from Table 4.1.B. 

- Mean cattle price is the economic value of livestock averaged for the years 2011 to 2013. Based in values from Table 4.1.C. 

- Gross profit B represents the economic output of cattle ranching obtained in a given year. It was calculated as P= N*O. 

- Production costs A represents the costs associated to cattle ranching expressed in Argentine pesos per kilogram. Based in values from Table 4.1.C. 

- Production costs B represents the costs associated to cattle ranching expressed in Argentine pesos per hectare per year. It was calculated as R= N*Q. 

Lastly, profit is the net economic output per site according to each production averaged for 2012 and 2013. It takes into account gross profit and costs of production according to the land use 

and its history of management. Initially calculated using Argentine currency, it was later transformed to United State dollars (US$) using a value of 5.02 as conversion rate (based on averaged 

rates from 2011 to 2013 acquired from official site http://www.bcra.gov.ar/index.asp ). We subtracted averaged annual costs from annual value of produce to get net estimates of profit as 

follows, S (for agriculture) = (I-L)/5.02; S (for cattle ranching) = (P-R)/5.02.            (Continues in next page) 

http://www.bcra.gov.ar/index.asp
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(Continues from previous page) 

 

 

 

 

Table 4.S 3 Summary data for the calculations of profit 

Col A B C D E F G H I J K L M N O P Q R S 

Site 

Crop type 
Mean yield 

(ton/ha.year) 
Mean grain price 

(AR$/ton) 
Gross profit A 
(AR$/ha.year) 

Mean gross 
profit 2012-

2013 
(AR$/ha.year) 

Production costs  
(AR$/ha.year) 

Mean 
production 

costs 2012-13 
(AR$/ha.year) 

Cattle 
ranch 

category 

Mean cattle 
production 

(kg 
/ha.year) 

Mean cattle 
price 2011-

2013 
(AR$/kg) 

Gross profit B 
(AR$/ha.year) 

Production 
costs A 

(AR$/kg) 

Production 
costs B 

(AR$/ha.year) 

Profit 
(US$/ha.year) 

2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 

81 SG SB 3.25 1.62 745.31 1571.28 2422.26 2539.19 2480.72 810.35 998.42 904.39 - - - - - - 314.01 

110 SG SF 3.25 1.68 745.31 1559.32 2422.26 2611.86 2517.06 810.35 998.42 904.39 - - - - - - 321.25 

121 SB SB 1.62 1.62 1571.28 1571.28 2539.19 2539.19 2539.19 810.35 998.42 904.39 - - - - - - 325.66 

38 SF SB 1.68 1.62 1559.32 1571.28 2611.86 2539.19 2575.52 810.35 998.42 904.39 - - - - - - 332.90 

28 C SG 3.79 3.25 931.75 745.31 3533.20 2422.26 2977.73 892.29 998.42 945.36 - - - - - - 404.85 

120 C SB 3.79 1.62 931.75 1571.28 3533.20 2539.19 3036.19 892.29 998.42 945.36 - - - - - - 416.50 

129 SB C 1.62 3.79 1571.28 931.75 2539.19 3533.20 3036.19 810.35 1075.22 942.79 - - - - - - 417.01 

83 C SF 3.79 1.68 931.75 1559.32 3533.20 2611.86 3072.53 892.29 998.42 945.36 - - - - - - 423.74 

3 - - - - - - - - - - - - 0 10 11.3 113 7.6 76 7.37 

126 - - - - - - - - - - - - 3 250 11.3 2825 7.6 1900 184.26 

109 - - - - - - - - - - - - 4 400 11.3 4520 7.6 3040 294.82 

12 - - - - - - - - - - - - 4 500 11.3 5650 7.6 3800 368.53 

Abbreviations: SG: sorghum; SB: soybean; SF: sunflower; C: corn. AR$: Argentine currency (peso).
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Table 4.S2. List of mathematical functions tested during the model selection procedure. Response 

variable corresponded to species richness, abundance (Log [capture frequency], for mammals) and 

community integrity for each taxa. The equation shows the mechanistic relationship of the 

independent variable “profit” with the corresponding response variable; k is the number of 

parameters estimated from the model, and Name describes the type and shape of the function. 

Table 4.S 4 List of mathematical functions tested 

 

Polynomial (x, number): fits a polynomial model with predictor x to the power of the 
number (e.g. Polynomial (x, 2) is a quadratic polynomial for x). 

 

 

  

Variable Equation k Name 

Response a + b * profit 2 Linear 

Response Polynomial (profit, 2) 3 Quadratic 

Response Polynomial (profit, 3) 4 Cubic 

Response a * exp (-b * profit) 2 Exponential 

Response a + b * exp (-c * profit) 3 Exponential 

Response exp (a + b * profit) / (1 + exp (a + b * profit)) 2 Logistic 

Response a + (b - a) / (1 + exp (c - profit)) 3 Logistic 

Response a + (b - a) / (1 + exp ((c - profit) / d)) 4 Logistic 
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5 GENERAL DISCUSSION 

 

Biodiversity and ecosystems around the world are being threatened by increasing human 

pressure to generate food and goods (Sala 2000). Therefore, assessing the conservation 

potential of human-dominated landscapes is crucial, and requires investigating the 

activities, movements, and persistence of species not only in remnants of native habitat, but 

also in the full array of productive agricultural systems (Saunders et al. 1991; Henle, 

Lindenmayer, et al. 2004). The main aim of this thesis was to identify the patterns and 

processes underlying species persistence and distribution in human-altered environments. 

In previous chapters we empirically analysed the status and occurrence of bird and mammal 

species in one of the last remaining dry forest extensions in South America, that is being 

currently threatened by habitat loss and modification through rapid expansion of 

agricultural lands in the region (Grau, Gasparri, et al. 2005; Portillo-Quintero & Sánchez-

Azofeifa 2010; Aide et al. 2013). Overall, this body of work constitutes an important step in 

the study of wildlife communities that survive in the heterogeneous mosaics of the semiarid 

Chaco Region.  

 

Bird species diversity across a gradient of agricultural intensification 

 

In Chapter 2 we found that relatively large forest tracts, inside and outside a National Park, 

forest strips, and silvopastures immerse in the agricultural matrix, hold the highest species 

richness among land uses, with a steep fall of diversity from these forested environments to 

heavily managed crop fields. Whereas, species richness responded similarly in several 

studies elsewhere (Harvey et al. 2006; Maas et al. 2009; Tscharntke et al. 2008; Macchi & 

Grau 2012; Banks-Leite et al. 2012; Moura et al. 2013), a great proportion of these studies 

have also pointed out the importance of analysing species composition, as significant 

differences in the structure of assemblages have been detected for secondary forests 

(Harvey et al. 2006; Banks-Leite et al. 2012). In this study, variation in bird community was 

strongly correlated with land-use type and the employment of several diversity measures 

reinforces this conclusion. These results indicated that communities in forest outside the 

National Park retained a composition of species similar than communities in protected 
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areas. This could be related with the amount of remaining forest at the landscape scale 

(Andrén 1994; Martensen et al. 2012) which has been proved to be an important predictor 

affecting the response of several groups to local habitat variables (Pardini et al. 2009; 

Tscharntke, Tylianakis, et al. 2012). We did not measure forest cover at landscape scale, 

however, the relatively large remnant patches (>200 ha) in the study area could be 

determining the presence of forest specialist species, not only in forested land uses, but also 

in other land-use types within the agricultural matrix. In that regard, a sound knowledge of 

the community composition in natural or more pristine habitats is key to accurately 

compare integrity between land-use types (Gardner et al. 2009).  

 

Possible factors influencing the estimates of bird species richness in modified land-use types 

 

Estimates of bird species diversity in this study may have been partially biased by habitat 

structure in different agricultural environments. A more open vegetation structure in 

silvopasture plots, for example, could have led to the detection of a higher number of 

individuals, simply because it is easier to see birds in this setting than in the more closed 

forest. The sampling method employed in this study (i.e. 100 metres fixed radius point-

count station) is designed to minimise this bias by limiting the survey to a relatively small 

area (Bibby et al. 1992). However, the probability of spotting a bird that is not singing or 

moving in an open habitat like silvopasture is likely to be higher than for more dense 

vegetation.  

Total and averaged bird abundance was higher in silvopastures, consistent with the 

intermediate disturbance hypothesis (Connell 1978) where medium levels of intensification 

can create high local habitat diversity playing a significant role in the maintenance of larger 

numbers of individuals and species. Macchi & Grau 2012 found that human-modified 

habitats provided important additional resources (e.g. water and food) for bird species, 

resulting in highly diverse communities associated to low-intensity livestock production. 

Similarly, the high diversity measures registered in forest strips could be related to the 

enhanced variety and availability of food resources found in these edge habitats (Lopez de 

Casenave et al. 1995). Forest strips may also provide a greater opportunity for dispersal and 

foraging movements among habitats (i.e. spill over) leading to a higher species richness and 



183 

 

abundance in these areas (Tscharntke, Tylianakis, et al. 2012). This effect is highly probable 

if we consider that forest strips frequently surround silvopasture plots as well as arable 

fields, possibly providing food and shelter, and in addition, some of these strips connect to 

larger forest patches. 

Neighbouring tracts of forest can often enhance local diversity in lower quality 

habitat patches by spill over from source environments. Additionally, periodically high 

productivity and resource availability inside the field, when crops emerge, can attract 

certain functional groups (i.e. pollinators, seed eaters, predators) from the edges and into 

the fields (Tscharntke et al. 2008; Tscharntke, Tylianakis, et al. 2012). In this study, such 

effects were not strong enough to significantly increase bird species diversity inside the 

agricultural plots; however, the intrinsic value of forest strips was demonstrated by the high 

diversity measures registered for this land use. Notwithstanding, to accurately assess the 

potential spill over of individuals from the forest edge to the arable plot, measures should 

be taken in a different season or based on a different sampling design, one which focuses on 

fine scale movements of birds from crop edges. To our knowledge, this study is the first one 

contributing to the evaluation of forest strips as an important element influencing bird 

species diversity in an agricultural mosaic. 

 

Factors influencing mammal species richness and abundance across agricultural landscapes 

 

Although understanding the influences of land use intensification on medium- and large-

sized mammals is increasing (Daily et al. 2003; De Angelo et al. 2011; R. Cassano et al. 2012; 

Msuha et al. 2012; De Angelo et al. 2013), few large-scale studies have evaluated the 

conservation potential of human-modified landscapes for mammal communities. 

Undertaking such studies is particularly important in the Chaco Region, where a major 

fraction of its biodiversity is threatened by habitat loss and fragmentation (Zak et al. 2004; 

Portillo-Quintero & Sánchez-Azofeifa 2010). From the analysis made in Chapter 3 we 

conclude that the mammal assemblage responded with a gradual change across land-use 

types, showing significant differences between three main groups. High intensity land uses 

(agriculture, and agriculture with forest strips) did not differ in the number of mammal 

species. Intermediate intensity land uses, were forest cover has been reduced 
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(silvopasture), harboured significantly higher mammal species than arable fields. Land-use 

types presenting a well preserved and structured forest cover, independently of size (forest 

strip, forest, and forest inside National Park) followed with the highest species richness; and 

lastly, natural grasslands inside National Park presented a distinctive mammal assemblage, 

characteristic of open habitats, with fewer species. Relative abundance (capture frequency) 

of mammals varied in a slightly different way to that of birds, with the smallest assemblages 

being found in high intensity land-use types (agriculture and agriculture with forest strips), 

and forest inside National Park holding the most abundant community. The rest of forested 

land-use types with reduced or well preserved vegetation cover (silvopasture, forest strips 

and forest) contained intermediate values of mammal abundance.  

 

Influence of local and landscape scale factors on mammal species distributions 

 

The inclusion of landscape variables in the analysis showed that their importance was not 

strong enough to override the effect of land-use type. This finding corroborates the results 

discussed for birds, in which the study area, still presenting a relatively well preserved 

network of forest patches, can maintain mammal community diversity at landscape scale 

(Daily et al. 2003; Pardini et al. 2009). The complementary analysis of capture frequency 

distributions (Figure 3.6, Chapter 3) showed that forest patches are contributing to the 

persistence of the mammal community as well as forest strips and silvopasture plots. First, 

although not significant, the presence of forest-dependent species in agricultural fields (i.e. 

Myrmecophaga tridactyla and Mazama gouazoubira) indicated that mammals may 

eventually venture from favourable habitats (forest strips) to less favourable habitats 

(agriculture with forest strips) most probably searching for food (Gehring & Swihart 2003; 

Fahrig 2007). Second, species richness and abundance of mammals inside forest strips were 

amongst the highest of all land uses. This suggests that mammal species are moving across 

land uses, using forest strips to traverse the agricultural landscape. Coincidentally Barlow et 

al. 2010 found high mammal activity with associated dung beetle abundance in forest strips 

linking nearby forest remnants, suggesting in turn, its great value for conservation. 
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Modified environments as well as native forest are important for mammal community 

conservation 

 

Forest inside National Park and forest strip together accounted for 24 out of the 26 total 

species registered during the study; emphasizing the importance of these environments 

associated to the persistence of the mammal community. Recent studies have highlighted 

the important role of secondary forest and agroforestry systems as alternative habitats 

holding highly diverse mammal assemblages (R. Cassano et al. 2012; R. Cassano et al. 2014; 

Banks-Leite et al. 2014). In this study, the mammal community inhabiting silvopasture 

systems presented significantly less species than forested land uses; however, records of 

predator species and species classified under threat (IUCN 2014) indicate its important role 

in maintaining a friendly agricultural matrix to facilitate the movements of species with 

broad home-ranges, and to provide alternative environments for the conservation of 

compromised species. 

 

Evidence of direct human pressure e.g. hunting, persecution and disturbance. 

 

Direct human disturbance has been pointed out as an important factor of altered large 

mammal assemblages. High capture frequency of domestic dogs negatively affected 

mammals in cacao agroforestry systems in the Atlantic Forest (R. Cassano et al. 2014); 

several wild mammal species were killed as they were perceived to endanger domestic 

animals in Costa Rica (Daily et al. 2003), whereas the abundance of all three species of 

peccaries decreased significantly with the number of human settlements in a previous 

research in our study area (Altrichter & Boaglio 2004). In this study, we registered a few 

events of human disturbance inside the different environments. In highly intensified 

systems (agriculture and agriculture with forest strips), human presence was evident by 

records showing the use of heavy machinery. Despite silvopasture represented a less 

altered land-use type than arable fields, it inevitably had some level of disturbance: firstly, 

by the cattle using the plots and the people in charge of their management (i.e. horse-back 

riders with dogs); and secondly, by machinery used for shrubs removal. Lastly, neither inside 

forest strips, forest patches nor forest sites in the National Park we registered significant 
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human presence on the camera traps. We detected only low levels of intervention in these 

habitats during our walks to reach the sampling station (i.e. footprints, cut twigs and 

branches, abandoned objects, etc.). In this study we did not specifically collect evidence to 

assess the direct effects of human disturbance (i.e. hunting pressure, domestic dogs, and 

fires). However, a comparison could be made among silvopasture plots with and without 

cattle presence using the data gathered by the camera traps since a negative association 

between cattle presence and Chaco wildlife has been suggested (Altrichter & Boaglio 2004) 

but remains unknown. 

 

Economic revenues, levels of agricultural production and changes in biodiversity 

 

Strong differences in the economic revenue arising from alternative production systems in 

the semiarid Chaco posed a compromise between biodiversity and profit (Green et al. 2005; 

Phalan, Malvika, et al. 2011). We linked biodiversity estimates of bird and mammal 

communities to a management indicator (i.e. profit) on a large number of agricultural fields, 

agroforestry systems and natural forests, thereby covering the full range from very 

extensive to highly intensive land uses. In extensive cattle ranching, producers keep their 

livestock using the resources from the forest, in this case, the economic revenue is 

extremely low in comparison with the lowest level of income for silvopasture plots, and is 

mainly developed as livelihood. Disturbance is kept at a minimum, and therefore, the 

associated diversity of birds and mammals and the community integrity for both taxa was 

not affected. Development of silvopasture systems requires some level of financial 

investment (i.e. selective forest clearance, sowing of grasses) and this translates into a 

significant increment in productivity. Low-intensity silvopasture production reaches 

intermediate profits approximately 82 times higher (i.e. from an averaged  3.5 US$ ha.-1 

year-1 to c.292 US$ ha.-1year-1) than traditional livestock husbandry. Changes made to the 

environment include delimiting the paddocks, selectively clearing the forest inside the 

paddock, mechanically removing the understorey and implantating exotic grasses. Further 

intensification involve increasing the number of paddocks and supplementing the diet of the 

cattle. Low-intensity silvopasture maintain high diversity of both taxa, indicating that profit 

can be significantly increased whilst keeping bird and mammal diversity and community 
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integrity practically unchanged, with the exception of mammal community integrity that 

decreased almost linearly even at low levels of intensification. The last step between low-to-

intermediate intensity levels and high intensification practices leads to higher profitability 

and the consequences on the bird and mammal community varied in different ways for both 

taxa, although always resulting in low diversity values. 

 

Combining conservation efforts for bird and mammal communities inhabiting agricultural 

landscapes in the semiarid Chaco 

 

We found that logistic (sigmoid) functions more accurately described bird diversity than 

linear or exponential functions (Koh et al. 2009). This implies that effects of land-use change 

are small for low- and intermediate-intensity systems and most pronounced after a 

threshold of habitat modification and human intervention is reached. A quadratic declining 

function gave the best fit for mammal abundance along the intensification gradient. This 

suggests that intermediate intensification can maintain a high number of mammals in 

agricultural landscapes. Whereas community integrity declined almost linearly with 

increasing economic output indicating that mammal assemblages outside protected and 

well preserved forest patches could be equally favoured by land sparing or wildlife-friendly 

farming (Green et al. 2005; Phalan, Balmford, et al. 2011; Phalan, Malvika, et al. 2011). 

Therefore, what are the most important implications of the observed relationships between 

biodiversity and profit? First, we suggest that high biodiversity of both taxa are largely 

restricted to protected forest patches or to areas where wildlife-friendly practices are 

developed. Second, very low levels of bird and mammal diversity are associated with high-

intensive and profitable managements, whereas community integrity in those land uses is 

seriously compromised. Third, strategies incorporating conservation into the agricultural 

landscape are cost-effective when production outcomes are below the maximum profit for 

both taxa. Intermediate levels of intensification can support bird communities with up to 

90% of the total species, abundance and community integrity; whereas approximately 70% 

of species richness and abundance, and only 50% of the community integrity, are 

maintained for mammals. 
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In summary, bird and mammal communities in the semiarid Chaco can benefit from wildlife-

friendly farming to maintain highly diverse assemblages favoured by the provision of habitat 

and resources at a local scale, and a heterogeneous matrix that facilitates movements and 

dispersion of individuals at landscape scale. At the same time, the exclusion of some areas 

from modification and production activities must be maintained in order to ensure the 

preservation of a wider range of forest-dependent and threatened species. 
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