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Abstract

Transgenic domestic animals represent an alternative to bioreactors for large-scale produc-

tion of biopharmaceuticals and could also provide more accurate biomedical models than

rodents. However, their generation remains inefficient. Recently, DNA transposons allowed

improved transgenesis efficiencies in mice and pigs. In this work, Tn5 and Sleeping Beauty

(SB) transposon systems were evaluated for transgenesis by simple cytoplasmic injection in

livestock zygotes. In the case of Tn5, the transposome complex of transposon nucleic acid

and Tn5 protein was injected. In the case of SB, the supercoiled plasmids encoding a trans-

poson and the SB transposase were co-injected. In vitro produced bovine zygotes were

used to establish the cytoplasmic injection conditions. The in vitro cultured blastocysts were

evaluated for reporter gene expression and genotyped. Subsequently, both transposon

systems were injected in seasonally available ovine zygotes, employing transposons carry-

ing the recombinant human factor IX driven by the beta-lactoglobulin promoter. The Tn5

approach did not result in transgenic lambs. In contrast, the Sleeping Beauty injection re-

sulted in 2 lambs (29%) carrying the transgene. Both animals exhibited cellular mosaicism

of the transgene. The extraembryonic tissues (placenta or umbilical cord) of three additional

animals were also transgenic. These results show that transpositional transgenesis by cyto-

plasmic injection of SB transposon components can be applied for the production of trans-

genic lambs of pharmaceutical interest.

Introduction

Transgenic animals constitute an important tool for basic and applied research. In particular,

transgenic farm animals could provide more accurate biomedical models than rodents [1,2]

and also represent an alternative to current bioreactors for large-scale production of
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biopharmaceuticals [3,4]. The feasibility of using domestic species for the generation of highly

complex proteins, which cannot be efficiently manufactured by conventional microorganisms

or animal cell bioreactors, has been demonstrated for the past two decades [4–9]. However,

the techniques available for transgenic animals production remain inefficient.

Pronuclear microinjection and blastocyst injection with embryonic stem cells (ES) are the

techniques most commonly used to produce transgenic mice [10,11]. However, their applica-

tion to domestic species requires proper pronuclei visualization and species-specific ES cells

maintenance, respectively, which up to date are not efficiently achieved in livestock [12,13].

For these reasons, somatic cell nuclear transfer (SCNT) soon turned into the technique of

choice for the production of transgenic domestic species, and it has allowed the production of

transgenic cattle [4;14], sheep [3] and pigs [15]. Nevertheless, the efficiency of SCNT remains

low [16,17], and only a fraction of the transgenic offspring produced by any of these methods

shows the desired transgene expression. This is mainly consequence of the random transgene

integration as concatamers that can lead to epigenetic silencing of the transgene [18–20].

In recent years, active transgenesis approaches were introduced, based on the use of

enzymes that actively promote the integration of the transgene, in opposition to traditional

transgenesis techniques that rely on the introduction of transgenes into existing double

stranded breaks in the genome. One of the first active transgenesis techniques introduced was

lentivirus-mediated transgenesis [21]. Despite its high efficiency, this technique shows many

drawbacks including high embryo lethality rates, relatively small cargo capacity of the vector

(9.5 kb) and biosafety concerns related to virus. A more promising alternative for transgenic

animals production is transpositional transgenesis [22–25]. The ability of DNA transposons to

move from one genomic location to another by a cut-and-paste mechanism was soon adapted

as a molecular biology tool. Several transposition systems were identified and hyperactive

transposase versions were isolated [26,27].

Tn5 is one of the best-characterized bacterial transposon systems; however, only one report

has been published using hyperactive Tn5 mutant transposase (�Tn5) in combination with

intracytoplasmatic sperm injection (ICSI) for transgenesis in mice [26]. The �Tn5 hyperactive

transposase protein is commercially available (Epicentre TNP10622). This protein forms

DNA:transposase complexes, called transposomes, in the absence of Mg+2, by specific binding

to 19-bp recognition Mosaic End (ME) sequences of the transposon [28,29]. Once inside of

the cell, the transposase becomes activated by the cellular Mg+2 levels and integrates the trans-

poson DNA into a random position favoring GATC(A/T)GATC in bacterial chromosomes

[30–33].

Almost twenty years ago, the molecular reconstruction of Sleeping Beauty (SB) transposon

from salmonid genomes [34] expanded the utility of transposon-based technologies to verte-

brates. In 2009, Mátés et al. [27] reported the efficient production of transgenic mice by pronu-

clear injection of the hyperactive version of the SB transposase (SB100X). More recently,

transgenic pigs and cattle were produced by simple cytoplasmic injection of the hyperactive

SB100X system with reporter transposons [25,35] and also by cloning using somatic cells mod-

ified with SB100X [23,24].

In previous reports, we showed that it was possible to produce transgene-expressing

embryos by simple cytoplasmic injection of transgenes into IVF presumptive zygotes [36,37].

In addition, we observed that cytoplasmic injection with I-SceI meganuclease digestion reac-

tion into bovine IVF zygotes resulted in increased number of transgene signals in embryos,

detected through fluorescence in situ hybridization [38]. In this work, we evaluated Tn5� and

SB100X active transgenesis mediated by direct cytoplasmic injection. As genome activation in

bovine embryos takes place at day 4 [39], we speculated that injection with the Tn5 transpo-

some complex would favor earlier transgene integration. However, the high activity levels

Tn5 and Sleeping Beauty transposition in bovine and ovine zygotes
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reported for hyperactive SB100X also seemed promising for direct cytoplasmic plasmid injec-

tion. For that reason, both systems were evaluated in vitro in bovine zygotes with a reporter

gene and in vivo in ovine zygotes with recombinant human coagulation factor IX (rhFIX)

driven by a beta-lactoglobulin promoter.

Currently, therapies for hemophilia B are based on protein infusion treatments using

recombinant proteins, or components derived from human blood plasma. The production of

recombinant human factor IX in sheep milk would provide an alternative source of factor IX

at a lower cost, but also free from potential infectious risks associated with products derived

from human blood. Transgenic sheep [3] and goats [40] capable of producing recombinant

human factor IX in milk were previously produced by somatic cell nuclear transfer. In this

work, we demonstrate that transgenic farm animals of pharmaceutical interest can also be pro-

duced by simple cytoplasmic injection of plasmids coding for both components of SB transpo-

sition system into zygotes with a high efficiency.

Materials and methods

Chemicals

Except where otherwise indicated, all chemicals were obtained from Sigma Chemical Com-

pany (St. Louis, MO, USA).

Animal welfare

The in vivo experiments in sheep were in accordance with the recommendations of the guide-

lines stated in the Guide for the Care and Use of Agricultural Animals in Agricultural Research

and Teaching. The study design was approved by the Institutional Committee of Use and

Welfare of Experimental Animals, under number 6/13. Sheep were housed at Maimonides

University animal facilities, and transgenesis experimentation was done after approval of the

Agricultural Biotechnology Assessor National Committee (CONABIA), resolution 533168–13.

Sheep were provided daily care and feeding, with permanent ad-libitum access to water.

Generation of plasmid vectors

The plasmid pCX-EGFP, expressing EGFP under the control of the CAG promoter, was a kind

gift from Dr. Masaru Okabe [41]. For Tn5 in vitro experiments in bovine, pMOD-2/CX-EGFP

plasmid was created by cloning a 2994 bp pCX-EGFP SalI/HindIII fragment containing the egfp
gene, the CAG promoter and the Rabbit beta-globin polyA into the SalI/HindIII sites present in

the MCS of EZ-Tn5™pMOD™-2 (Cat. No. TNP10622; Epicentre). Then, the transposon flanked

by its ME sequences, was excised from pMOD-2/CX-EGFP by digestion with PvuII, and the 3.6

Kb fragment containing the transposon was separated in a 1% agarose gel, purified with a Gel

extraction kit (Cat. No. 28704; Promega) and used for transposome assembly (Fig 1). For SB

bovine in vitro experiments, pT2/Venus (6.3 kB) and pCMV-SB100X (4.75 kB) were used, as

previously described [27]. For ovine in vivo experiments, a 3435 bp DNA sequence containing

B-lactoglobulin minimal promoter, bovine beta casein signal peptide, human factor IX cDNA

and rabbit beta globin polyA was in vitro synthesized and cloned into pUC57 (pUC57-rhFIX)

by Genscript (NJ, USA). For Tn5 transposon, the pUC57-rhFIX EcoRI-HindIII fragment

was cloned into the MCS of EZ-Tn5™pMOD™-2. The 4.0 kB rhFIX-Tn5 transposon was PCR

amplified and used for transposome complex formation according to the manufacturer

recommendations.

For the rhFIX SB transposon, the pUC57-rhFIX XbaI/BamHI fragment was cloned into the

pT2 vector, which was obtained as a 3953 bp NheI/AatII fragment from pT2/Venus [27].

Tn5 and Sleeping Beauty transposition in bovine and ovine zygotes
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Previous to ligation, both fragments were treated with T4 polymerase to obtain blunt ends.

The correct sequence of the plasmid was confirmed by Sanger sequencing with optimized fluo-

rescent terminator protocols (Genomic Unit, Biotechnology Institute, INTA Castelar). The

resulting transposon plasmid (7.4 kB) was named pT2/rhFIX. A schematic depiction of the

plasmids employed is included in Fig 1.

In vitro production of bovine zygotes

Bovine ovaries were collected from slaughterhouses and transported to the laboratory at 25–

30˚C. Oocytes covered with at least 3 layers of granulosa cells were selected for in vitro matura-

tion (IVM), as previously reported [42]. Briefly, the maturation medium was bicarbonate-buff-

ered TCM-199 (31100–035; Gibco, Grand Island, NY, USA), containing 10% fetal bovine

serum (FBS, 013/07; Internegocios, Buenos Aires, Argentina), 10 μg/ml follicle stimulating

hormone (NIH-FSH-P1, Folltropin1, Bioniche, Caufield Junction Caufield North, Victoria,

Australia), 0.3 mM sodium pyruvate (P2256), 100 μM cysteamine (M9768), and 2% antibiotic-

antimycotic (ATB, 15240–096; Gibco). The oocytes were incubated for 22 h under mineral oil

Fig 1. Tn5 and Sleeping Beauty Transpositional Transgenesis in bovine and ovine. A) Schematic depiction of the plasmids used for in vitro

transposition with reporter transposons in bovine zygotes. B) Schematic depiction of the plasmids used for in vivo transposition with rhFIX transposons in

ovine zygotes. The Tn5 protein was complexed to the transposon in vitro, in Mg+2 free medium. The resulting transposome was used for injection into

presumptive zygotes. The mixture of SB plasmids was deposited directly into the cytoplasm of the zygotes.

https://doi.org/10.1371/journal.pone.0174025.g001

Tn5 and Sleeping Beauty transposition in bovine and ovine zygotes
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(M8410) in 100 μL droplets, under 6.5% CO2 in humidified air at 39˚C. For IVF, frozen semen

was thawed in a 37˚C water bath for 30 s. Spermatozoa were then centrifuged twice (490g x 5

min) in Brackett-Oliphant medium (BO) [43] and resuspended in BO supplemented with 5

mM caffeine (C4144) and 20 IU/ml heparin (H3149). Spermatozoa were adjusted to 30 x106/

ml and diluted to half concentration (15 x106/ml) with BO containing 10 mg/ml fatty acid-free

bovine serum albumin (A6003). COCs were washed twice with BO medium plus 5 mg/ml

FAF-BSA and subsequently exposed to the sperm suspension for 5 h in a 100μl droplet at 39˚C

under 5% CO2 in humidified air. After IVF, cumulus cells were removed from presumptive

zygotes by vortex for 2 min in hyaluronidase (H-4272) (1 mg/ml in Dulbecco´s phosphate

buffered saline- PBS). Then, presumptive zygotes were washed in Hepes-TALP, selected by

visualization of at least one polar body, and immediately used for microinjection.

Preparation of Tn5 transposome complex, ccc-SB plasmids and

cytoplasmic injection

For Tn5 transposition, the 8 μl reaction solution was prepared by mixing together 2 μl of 200

ng/ul egfp or rhFIX transposon (Tnsp) in TE buffer (10 mMTris-HCl, pH 7.5, 1 mM EDTA),

4 μl Tn5 (1U/ll; Cat. No TNP10622; Epicentre) and 2 μl glycerol. The reaction was mixed by

vortexing and incubated for 30 min at room temperature. The transposon fragment at 16 ng/

μl was injected either as transposome, (ME)egfp:Tn5 or (ME)rhFIX:Tn5 Tnsp:Tn5 complex, or

as transposon alone, (ME)egfp or (ME)rhFIX, as control. For SB transposition, a transgene

mixture consisting of 10 ng/μl pT2/Venus or 10 ng/μl pT2/hFIX and 5 ng/μl pCMV-SB100X

was prepared. As controls, transposon or transposase alone were injected. In vitro fertilized

bovine oocytes or ovine presumptive zygotes recovered from superovulated ewes were trans-

ferred to 20 μl droplets of Hepes-TALP and cytoplasmically injected, using a 9 μm pipette,

with the transposon mixtures in 10% PVP in a volume <10 pl. The PVP used for microinjec-

tion was Mg+2-free to prevent the premature activation of the Tn5 transposase. Presumptive

zygotes were subsequently cultured or transferred to surrogate animals as described below.

In vitro embryo culture

Presumptive zygotes were cultured in 50 μl droplets of synthetic oviduct fluid (SOF) medium

[44] supplemented with 2.5% FBS at 39˚C in 6.5% CO2 in humidified air. The embryos were

transferred to a new droplet every 48 h. Cleavage was evaluated at day 2 and the number of

blastocysts at day 7.

Evaluation of EGFP/ Venus fluorescence in embryos

All the in vitro produced embryos were briefly exposed to blue light using an excitation-filter

at 488 nm and an emission-filter at 530 nm to determine egfp and Venus gene expression.

Injected embryos were evaluated at days 5 and 7 post-IVF.

Southern blotting

For embryo Southern blot, whole genome amplification (WGA) was performed on individual

embryos using the REPLI-g Midi Kit (Qiagen, Valencia, CA) according to the ‘‘Amplification

of Blood or Cells” protocol detailed within the product manual. Approximately 10 μg of result-

ing DNA was digested with BamHI, ClaI and SalI in BamHI buffer with two-fold excess of

ClaI and SalI at 37˚C overnight, and afterwards it was resolved in 1% agarose gel and trans-

ferred to positively charged nylon membranes using standard methods. Membranes were pre-

hybridized and then hybridized at 65˚C in Church buffer [45]. As a probe, a PvuII-PvuII egfp

Tn5 and Sleeping Beauty transposition in bovine and ovine zygotes

PLOS ONE | https://doi.org/10.1371/journal.pone.0174025 March 16, 2017 5 / 16

https://doi.org/10.1371/journal.pone.0174025


fragment from Tn5 transposon was labeled by nick translation with α-32P CTP (Prime-a-

Gene Labeling System Promega, U1100). As positive controls, 10 pg and 1 ng SalI-XbaI

pCX-EGFP 1.6 Kb fragment were included.

Animal Southern blot was performed under similar conditions than embryo Southern blot.

In this case, the DNA was extracted from blood and tissues using NucleoSpin1 Blood L or

Tissue kit (Macherey Nagel 740954.20 and 740952.50). Afterwards, DNA was digested with

PvuII at 37˚C overnight. As a probe, a 354 bp PCR fragment obtained from pT2/rhFIX (for-

ward primer: atatgctggctgccatgaac; reverse primer: gcttctcgagataacttcgta
taatg) was labeled as before. The membranes were cross-linked and exposed overnight.

They were resolved using a Typhoon FLA 9000 (GE Healthcare Life Sciences).

Superovulation and laparoscopic artificial insemination of donor ewes

Sixteen multiparous Hampshire Down sheep, 4 years old, in good body condition (>3 out of

5; scale from 0, emaciated, to 5, obese) and moderate body weight (55.8 ± 2.2 kg) were used

during the breeding season. The estrous cycle was synchronized by the insertion of an impreg-

nated intravaginal progestagen pessary (60 mg of medroxyprogesterone acetate, Progespon1,

Syntex, Argentina) for 14 days. The superovulatory treatment consisted of i.m. injection of a

total of 200 mg of pFSH (Folltropin-V1, Bioniche, Canada) in six decreasing doses (50 mg x 2,

30 mg x 2, 20 mg x 2) applied twice daily, from the morning of day 12, 48 h before pessary

removal, to 12 h after sponge withdrawal. A single i.m. dose of eCG (200 IU, Novormon

50001, Syntex, Buenos Aires, Argentina) was administered at the time of progestagen

removal at day 14 [46]. Laparoscopic insemination was performed 60 h later under general

anesthesia, consisting of a pre-treatment with 20 mg/ml xilacina (Xilacina 20, Richmond Vet

Pharma, Argentina), followed by 100 mg propofol (PropoVet, Richmond Vet Pharma, Argen-

tina), 15 mg midazolam (Midazolam, Richmond Vet Pharma, Argentina), 15 mg isoflurano

(Isoflurano Baxter, Baxter Healthcare, USA) and 20 mg tramadol hydrochloride (Algen 20,

Richmond Vet Pharma, Argentina). Ewes were artificially inseminated with 100 million fro-

zen-thawed spermatozoa doses, from the same batch and ram, by the laparoscopic method

described by Maxwell and Butler [47].

Recovery, microinjection and transference of presumptive zygotes

Donor females were deprived of food and water for 12 h prior to surgical recovery. Sixteen

hours after the laparoscopic insemination, presumptive zygotes were recovered by laparotomy

under general anesthesia, as described for laparoscopic insemination. Briefly, oocytes and

zygotes were flushed through the oviducts using 38˚C pre-warmed phosphate-buffered saline

(PBS) supplemented with 1% FBS in a retrograde fashion. This involved injection with 5 ml of

stocking medium (Syngro1, Bioniche, USA) (per each oviduct) with a sterile syringe fitted

with a needle (18 g), from the utero tubal junction towards the fimbria, and liquid collection in

a sterile plastic tube. Immediately after recovery, the presumptive zygotes were cytoplasmically

microinjected with Tn5 or SB transposition systems. In both cases, recombinant human Factor

IX under beta-lactoglobulin promoter cDNA transposon was employed. The injected pre-

sumptive zygotes were placed in stocking medium until transfer (3 h post-recovery).

Approximately 3 h after microinjection, the zygotes were transferred into the oviduct of

synchronized estrous recipients (2 to 4 zygotes per ewe). Briefly, 22 adult Hampshire Down

recipients were synchronized using impregnated intravaginal progestagen pessary (60 mg

medroxyprogesterone acetate, Progespon1, Syntex, Buenos Aires, Argentina) for 14 days. On

day 14, sponges were removed and a single i.m. dose of 200 IU of eCG (Novormon 50001,

Syntex, Buenos Aires, Argentina) was administered. Progestagen pessary removal took place

Tn5 and Sleeping Beauty transposition in bovine and ovine zygotes
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48 h earlier in recipient ewes than in donors. The recipient females were deprived of food and

water for 12 h prior to surgical transfer. The presumptive zygotes were transferred under general

anesthesia (as previously described), in 0.2 ml of stocking medium and using a Tomcat catheter

(plastic device). The microinjected zygotes were expelled with the aid of a 1-ml syringe. The

zygotes were deposited in the upper third of the ipsilateral oviduct of the ovary showing a normal

corpus luteum. Pregnancy and embryo survival rates were recorded 28 days after transfer, using

trans rectal ultrasonography, with a 5MHz linear array transducer (Mylab 30, Esaote SpA).

Transgene detection in animal tissues by PCR

DNA was extracted from blood using NucleoSpin1 Blood L kit (Macherey Nagel 740954.20)

and from skin of newborns using NucleoSpin1 tissue kit (Macherey Nagel, 740952.50). Post

mortem, DNA was extracted from additional tissues: lung, muscle, kidney and liver. The PCR

and nested PCR were performed with GoTaq1 DNA polymerase (Promega, M8291). Both

PCRs had the same cycling conditions: 1 cycle at 95˚C for 2 minutes, followed by 95˚C for 20

seconds, 58˚C for 20 seconds and 72˚C for 45 seconds, during 40 cycles, and a final extension

at 72˚C for 5 minutes. The first PCR product size (oFIXter3F, GGGTGAAGAGTGTGCAATGA—

oFIXter4R, GGCTTCATGATGTCCCCATA) was 222 bp and the nested one (oFIXter1F, TCCCG
GTATGTCAACTGGAT -oFIXter2R, TTTTGGCAGAGGGAAAAAGA)was 151 bp. To assess possi-

ble integration of pCMV-SB100X, a second PCR was performed on the transgenic animal tis-

sues using the PCR conditions previously described and primers oSB100-1F (aagaagccac
tgctccaaaa) and oSB100-2R (ttcctcctgacagagctggt). As positive control, 10 fg of

pCMV-SB100X plasmid were used. The expected amplicon was 567 bp.

Identification of integration sites by splinkerette PCR

Transposon-genomic DNA junctions were determined using splinkerette PCR as described

previously [48]. The purified PCR product was cloned into the pGEM-Teasy vector (Promega,

Madison, USA), and the DNA sequence was determined by standard sequencing technology

(ABI3730XL Applied Biosystems, Foster City, California). Sequences were analyzed with

BLAST software (www.ensembl.org) [49]. The integration site was confirmed by PCR and

nested PCR, performed with GoTaq1 DNA polymerase (Promega, M8291) and the same

cycling conditions for both PCRs: 1 cycle at 95˚C for 2 minutes, followed by 95˚C for 10 sec-

onds, 58˚C for 10 seconds and 72˚C for 20 seconds, during 40 cycles, and a final extension at

72˚C for 5 minutes. The first PCR was performed with primers ointtransp1F (AAGCAGGTTC
CCTGTGAAAA) and ointtransp1R (CCAAGCTGTTTAAAGGCACA), resulting in a 475 bp prod-

uct. For the nested PCR, primers ointtransp2F (CAAGCACCAACACAGAAAGG) and oint-

transp2R (TCTGACCCACTGGAATTGTG) were employed, resulting in a 282 pb amplicon.

Statistical analysis

For statistical analyses, the SAS program [50] was used. In vitro embryo development and fluo-

rescent expression were compared by Fisher’s exact test analysis. Differences were considered

to be significant at P< 0.05.

Results

Evaluation of Tn5 and Sleeping Beauty transpositional transgenesis in

vitro in bovine embryos

Both Tn5 and Sleeping Beauty system were evaluated for their suitability to mediate transgen-

esis after cytoplasmic injection into bovine preimplantatation embryos. A schematic depiction

Tn5 and Sleeping Beauty transposition in bovine and ovine zygotes
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of the procedure is included in Fig 1A. Results for Tn5 transgenesis are summarized in

Table 1. No statistical differences were detected among injection with the transposon alone or

complexed with Tn5 in terms of egfp expression (Fig 2A and 2D). The injection with the trans-

poson alone or with the transposome complex resulted in lower blastocyst rates than observed

for the IVF control (p<0.05).

Results for Sleeping Beauty transgenesis are summarized in Table 2. No statistical differ-

ences were detected among groups in terms of development or percentage of embryos express-

ing Venus. However, Venus intensity in embryos co-injected with pCMV-SB100X and pT2/

Venus was markedly higher respect to those injected with pT2/Venus alone (Fig 2B, 2C, 2E

and 2F).

Embryo Southern blot was performed in order to obtain integration evidences. To this aim,

whole embryo genome was amplified, because DNA from a single blastocyst is below the

Southern blot detection limit. The use of Phi29 (F29) polymerase allowed the isothermal gen-

eration of DNA fragments up to 100 kb without sequence bias. Blastocysts derived from three

treatments were analyzed: non-injected control, non-transposase control (injected with Tn5

transposon fragment alone) and transposon/transposase groups. No signal was detected in the

non-injected embryo control and in three out of four blastocysts of the non-transposase con-

trol. In the forth blastocyst of this group, a strong band was detected (3.1 kb), that correlates to

the digestion of many transposons re-circularized in an episomal structure, probably as conca-

tamers. For the blastocysts injected with (ME)egfp:Tn5 transposome, discrete bands compati-

ble with integrations were detected. Bands of higher molecular weight than the transposon

(3.1 kb) were detected in all analyzed embryos in this group. Moreover, smaller bands were

also found. These bands could correspond to hybridization with 29 nt at the 5’ end of the

probe, opposite to the ClaI restriction site. The Southern blot analysis suggests that in Tn5

injected embryos one to three insertions occurred.

The Southern blot analysis of SB-injected embryos produced much higher signal intensities,

probably due to persistence of high amounts of episomal (circular) plasmid at the blastocyst

stage. In contrast, the halve-life of (ME)egfp:Tn5 transposome appeared to be much shorter

(Fig 2G).

Evaluation of Tn5 and Sleeping Beauty transpositional transgenesis in

vivo in ovine

In a subsequent step, both transposition systems were assessed in vivo for the production of

transgenic lambs. In this case, a functional transposon coding for rhFIX driven by the minimal

beta-lactoglobulin promoter was employed. A schematic depiction of the plasmids is included

in Fig 1B. In total, 16 donor ewes were employed and 171 presumptive zygotes were recovered.

Table 1. In vitro embryo development and egfp expression rates for Tn5 transpositional transgenesis in bovine.

Treatment n Cleavage (%) Blastocysts (%) Egfp+D5 (%) Egfp+ blastocysts (%)*

(ME)egfp:Tn5 1145 131 (90) 73 (50)a 86 (59) 65 (89)

(ME)egfp 129 117 (90) 65 (50)a 87 (67) 57 (78)

Control 171 163 (95) 107 (63)b n.a. n.a.

a different superscripts in the same column indicate significant differences among treatments (Fisher test; p<0.05).
b different superscripts in the same column indicate significant differences among treatments (Fisher test; p<0.05).

n.a. non-applicable. (ME)egfp: egfp transposon. Egfp +D5: egfp expressing embryos at day 5. The cleavage, blastocyst and egfp+ D5 rates were calculated

over the total n.

* The percentage of egfp blastocysts was calculated over total number of blastocysts.

https://doi.org/10.1371/journal.pone.0174025.t001
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Fig 2. Tn5 and Sleeping Beauty transpositional transgenesis by direct cytoplasmic injection in bovine zygotes. A,D) Blastocysts

produced by injection with (ME)egfp:Tn5 transposome. B,E) Blastocysts produced by injection with pT2/Venus and pCMV-SB100X. C,F)

Tn5 and Sleeping Beauty transposition in bovine and ovine zygotes
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In average, 10.5±7.1 presumptive zygotes were recovered from 14.3±7.2 corpuses luteal in each

donor ewe (74.1% recovery efficiency). A total of 72 presumptive zygotes were finally trans-

ferred to 22 recipient animals. As a result, eight pregnancies were established and a transgenic

lamb was obtained, showing transgene presence in almost all tissues analyzed. This animal was

obtained by Sleeping Beauty transgenesis. Results are summarized on Table 3.

For Tn5 transgenesis, 21 presumptive zygotes were transferred to 5 recipient sheep, and 2

of them became pregnant. Although one of these sheep was pregnant of siblings, only one of

the fetuses proceeded to term. Genomic DNA from skin, placenta and blood from this lamb

was genotyped by PCR, but the rhFIX gene was not detected. One of the three surrogates that

did not get pregnant was transferred with six 2 cell-embryos, cleaved by the time of recovery

and therefore, injected on both blastomeres.

For SB transgenesis, 12 donor sheep were employed. Only one-cell embryos were trans-

ferred into 17 surrogate ewes, and seven lambs were born. Genomic DNA from the lambs was

genotyped by PCR, and the transgene could be detected in extra embryonic tissues from five

animals. Three of them carried the transgene only in extra embryonic tissues (two of them in

placenta and one in umbilical cord). In a forth animal, the transgene could be detected only in

liver and placenta. Molecular analysis of the fifth animal revealed transgene presence in almost

all evaluated tissues (skin, kidney, muscle, placenta, testis and umbilical cord) (Fig 3A and 3B).

However, after primary cell culture of some of the confirmed transgenic tissues (derived from

muscle, kidney, lung and placenta), the transgene was only detected in cells derived from

umbilical cord.

Southern blotting with a transgene-specific probe was performed on DNA from this animal

and showed three bands compatible with integration of the transgene (Fig 3C). In addition,

the plasmid coding for Sleeping Beauty 100X transposase could not be detected by PCR, rein-

forcing the transposase-mediated integration of the transposon (Fig 3D). By cloning and

sequencing by splinkerette PCR of one integration site, it was confirmed a specific SB-cata-

lyzed transposition event at the expected TA target dinucleotide site (Fig 3E). The integration

site could be mapped to ovine chromosome 23, at the 3’ of olfactory receptor 5D18-like. This

Blastocysts produced by injection with pT2/Venus alone. A-C) Under bright light. D-F) Under blue light (488 nm). G) Embryo Southern blot

performed on DNA amplified from Tn5 and Sleeping Beauty system injected blastocysts. WGA was performed to obtain enough DNA for

Southern blot. Lane 1: 10 pg SalI-XbaI pCX-EGFP 1.6 Kb positive control. Lane 2: 1 ng SalI-XbaI pCX-EGFP 1.6 Kb positive control.

Lane 3,5: Empty lanes. Lane 4: IVF blastocyst (negative control). Lane 6–9: Tn5 transposon control. Lane 10–13: Tn5 transpositional

transgenesis blastocysts. Lane 14–17: Sleeping Beauty transpositional transgenesis blastocysts. MW: NEB 1 kB Ladder of molecular

weight.

https://doi.org/10.1371/journal.pone.0174025.g002

Table 2. In vitro development and Venus expression rates for Sleeping Beauty transpositional transgenesis in bovine.

Treatment n Cleavage (%) Blastocysts (%) Venus+ D5 (%) Venus+ blastocysts (%)*

pT2/Venus-pCMV-SB100X 136 113 (83.0) 58 (42.6) 86 (63.2)a 42 (72.4)a

pT2/Venus 152 126 (82.9) 54 (35.5) 95 (62.5)a 39 (72.2)a

pCMV-SB100X 107 98 (91.6) 44 (41.1) 0 (0.0)b 0 (0.0)b

Control 139 120 (86.3) 62 (44.6) n.a. n.a.

a different superscripts in the same column indicate significant differences among treatments (Fisher test; p<0.05).
b different superscripts in the same column indicate significant differences among treatments (Fisher test; p<0.05).

pT2/Venus: Venus transposon; pCMV-SB100X: Sleeping Beauty transposase. Egfp +D5: egfp expressing embryos at day 5. n.a. non-applicable. The

cleavage, blastocyst and Venus+ D5 rates were calculated over the total n.

* The percentage of Venus blastocysts was calculated over total number of blastocysts.

https://doi.org/10.1371/journal.pone.0174025.t002
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Table 3. Summary of Tn5 and Sleeping Beauty transpositional transgenesis in vivo in ovine.

Treatment Rep. N˚ injected

zygotes

N˚ transferred

zygotes

N˚ pregnant/

recipients

N˚ fetuses (tz)

[r]

N˚ born sheep

(tz) [r]

N˚ tg born sheep (tz)

[r] {b}

ME(rhFIX):Tn5 1 15 12 2/3 2 (16) [66.6] 1 (8.3)[33.3] 0 (0) [0] {0}

2 9 9 0/2 0 (0) 0 (0) 0 (0) [0] {0}

Total 24 21a 2/5 2 (9.5) [40] 1 (4.7) [20] 0 (0) [0] {0}

pT2/rhFIX-

pCMV-SB100X

1 62 21 3/7 4 (19) [57] 4 (19) [57] 1*(4.7)[14.2]{25}

2 45 12 1/4 1 (8.3)[25] 1 (8.3)[25] 1 (8.3)[25]{100}

3 34 18 2/6 2 (11.1)[33.3] 2 (11.1)[33.3] 0 (0) [0] {0}

Total 141 51b 6/17 7 (13.7)[41.1] 7 (13.7)[41.1] 2 (3.9)[11.7]{28.6}

a different superscripts in the same column indicate significant differences among treatments (Fisher test; p<0.05).
b different superscripts in the same column indicate significant differences among treatments (Fisher test; p<0.05).

ME(rhFIX):Tn5: rhFIX Tn5 transposome. pT2/rhFIX-pCMV-SB100X: rhFIX transposon/ Sleeping Beauty transposase plasmids. Rep.: repetition. Tg:

transgenic. The rate of fetuses, born sheep and transgenic born sheep were calculated over number of transferred zygotes (tz), and over number of

recipient ewes [r]. The rate of transgenic born sheep was also calculated over the total number of born animals{b}.

*the transgene was only detected in liver and placenta.

https://doi.org/10.1371/journal.pone.0174025.t003

Fig 3. Molecular analysis of transgenic lamb obtained by Sleeping Beauty transpositional transgenesis. A) Transgenic lamb produced by

Sleeping Beauty transgenesis. B) Nested PCR specific amplification of the transgene: 1: 1 Kb MW, 2–18: DNA extracted from: 2–7: different skin samples,

8: cryopreserved testis cells, 9: cryopreserved cultured cells derived from umbilical cord, 10–13: cells cultured from different tissues (10: muscle, 11:

kidney, 12: lung, 13: placenta), 14: kidney, 15: lung, 16: muscle, 17: placenta, 18: wild type sheep, 19: negative control mix, 20: positive equimolar control,

21: positive control diluted 1/10, 22: positive control diluted 1/100, 23: 100 bp MW. C) Southern blot performed on DNA extracted from different tissues of

the transgenic animal: 1: 3889 bp positive control signal, 2: empty lane, 3: DNA from wild type sheep, 4–7: DNA extracted from tissues of transgenic lamb,

4: kidney, 5: lung, 6: muscle, 7: placenta. D) PCR specific amplification of pCMV-SB100X. 1:1 Kb MW, 2–5: 10 ng DNA from kidney, lung, muscle and

placenta of transgenic lamb respectively, 6: wild type sheep DNA, 7: negative control mix, 8: positive control diluted 1/10, 9: positive equimolar control. E)

The transposon-genomic DNA junctions were determined using splinkerette PCR and standard sequencing technology. The integration site was mapped

to ovine chromosome 23, at the 3’ of olfactory receptor 5D18-like by ensemble and BLAST. F) Nested PCR confirmation of the integration site detected by

splinkerette PCR, using forward primers on the 5D18-like receptor region and reverse primers on the transposon. Lane 1: MW, lanes 2–4: different skin

samples, lane 5: cryopreserved testis cells, lane 6: placenta, lane 7: wild type and lane 8: negative control mix.

https://doi.org/10.1371/journal.pone.0174025.g003
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genomic integration site was confirmed by PCR on different tissues of the animal, including

skin, cryopreserved testis cells and placenta (Fig 3F).

The transgenic lamb obtained by Sleeping Beauty transgenesis died two days after its birth,

of a cardiopulmonary arrest. Cells derived from its testis and umbilical cord were

cryopreserved.

Discussion

To our knowledge, this is the first report on the production of transgenic sheep by direct cyto-

plasmic injection of transposon plasmids into zygotes. The in vitro experiments in bovine

showed that both Tn5 and Sleeping Beauty transposition systems are capable of resulting in

high reporter expression rates in embryos. When both transposition techniques were used for

the production of lambs, only Sleeping Beauty transposition resulted in transgenic lambs, with

a transgenesis frequency of 29% per born animals.

The limited number of ovine slaughterhouses, in addition to the difficulties to obtain adult

sheep ovaries, turned it necessary to make the initial in vitro experiments in cattle. Our in vitro
results in bovine embryos showed no differences in reporter gene expression rates among

injection with the transposon alone or in combination with the transposase, for both transpo-

sition systems. However, embryo Southern blotting revealed bands compatible with in blasto-

cysts injected with Tn5 transposome complex but not in rette PCR to detect insertion loci in a

couple of embryos.ned aintegration of the transposon for the group injected with the Tn5

transposome complex but not in blastocysts injected only with the transposon fragment. In the

latest group, only one embryo showed a band, corresponding to transposon concatamers at

the blastocyst stage. These results for Tn5 transposon mediated transgenesis in bovine strongly

suggest that Tn5 transposase is active in bovine embryos and is responsible for the transposon

integration into the genome. In blastocysts injected with plasmids coding for the Sleeping

Beauty transposition system, it was not possible to distinguish discrete bands compatible with

transgene integration. A strong signal was detected in the analyzed blastocysts and this appears

to be related to the episomal presence of the plasmids at the blastocyst stage. It was previously

reported Southern blot of embryos injected with SB mRNA and the linear transposon [23,51].

However, to our knowledge, no previous reports exist on the use of embryo Southern blotting

on blastocysts injected with plasmids. Our observations here are clear proof of the episomal

persistence of plasmid at least, up to the blastocyst stage, when they are injected covalently

closed circular (ccc) into the cytoplasm of zygotes. This agrees with previous reports showing

that plasmid injection into the cytoplasm of fertilized bovine and murine eggs is a highly effi-

cient and simple alternative for ectopic expression of foreign DNA in embryos [38,52]. There-

fore, only the production of live animals could help to address the integration status of the

transgene for this technique.

For that reason, we compared Tn5 and Sleeping Beauty systems in vivo in ovine. Although

embryo Southern blotting showed bands compatible with integration for Tn5 transgenesis in

bovine, we could not produce transgenic lambs with this technique. We had speculated that

cytoplasmic injection with Tn5 transposome would allow immediate availability of the com-

plex, increasing transposition events early in the embryo and, thus, reducing mosaicism. How-

ever, the only born animal produced with this technique showed no transgene signals in the

analyzed tissues. In addition, the low pregnancy rates obtained might indicate that the transpo-

son jumps to essential gene coding regions. In any case, it should be necessary to produce

more animals in order to determine Tn5 efficiency. Previously, Suganuma et al. [26] reported

the production of transgenic mice by Tn5 transposition in combination with ICSI, with 21%

efficiency respect to born animals. Although some lambs were obtained by ICSI [53,54], the

Tn5 and Sleeping Beauty transposition in bovine and ovine zygotes

PLOS ONE | https://doi.org/10.1371/journal.pone.0174025 March 16, 2017 12 / 16

https://doi.org/10.1371/journal.pone.0174025


ICSI technique remains highly inefficient in domestic species, mainly due to improper sperm

decondensation [42,55]. Therefore, we decided to adapt the technique to cytoplasmic injection

of in vivo produced zygotes.

For Sleeping Beauty transgenesis, we were able to produce two transgenic sheep, with effi-

ciencies comparable to previous reports in pigs [23,25]. Regarding the integration status of the

transgene, one of the transgenic lambs showed signals of the transposon in almost every ana-

lyzed tissue, including cells derived from testis. Southern blot of different tissues of this animal

revealed signals compatible with three independent integration sites of the transposon. One of

these integration sites could be characterized by splinkerette PCR and confirmed by nested-

PCR. The expected TA dinucleotide was found at this site of integration, in agreement with

the occurrence of SB-catalyzed transposition. It was previously reported that the majority of

SB insertions occur outside of genes [56,57], and the integration site detected in this transgenic

lamb agrees with those previous observations. Unfortunately, the transgenic animal died two

days after its birth. The second animal obtained was mosaic and the transgene could only be

detected in liver and extra-embryonic tissues. An interesting observation for SB transposi-

tional transgenesis was that three additional animals harbored the transgene in extra embry-

onic tissues (two of them in placenta and one in umbilical cord). It is likely that the higher

number of cells allocated to the extra embryonic tissues in early embryo development could be

the reason for this observation.

The many advantages that Sleeping Beauty transgenesis encompasses, including its simplic-

ity, high cargo capacity [58], lack of the biosafety concerns observed for lentiviruses, preferen-

tial integration of the transgenes into euchromatin and the avoidance of transcriptional

silencing [59], turn this technique into a powerful method for transgenic livestock production.

The results presented here provide another advantage: its high species adaptability. This report

demonstrates the easy and highly efficient production of transgenic bovine embryos and

lambs by transposon cytoplasmic injection. In particular, Sleeping Beauty transgenesis medi-

ated by simple cytoplasmic injection of plasmid proved to be efficient for the production of

transgenic sheep for pharmaceutical approaches.
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