Calidad de lana Merino de esquila preparto: Una aproximación a su variabilidad en la provincia de Río Negro

Ezequiel Gonzalez

TESIS PARA OPTAR AL TÍTULO DE MAGISTER EN PRODUCCIÓN DE RUMIANTES MENORES

DIRECTOR: Ing. Zoot. MSc. Diego Sacchero
CO-DIRECTOR: Ing. Agr. Dr. Marcos Easdale

AÑO 2019
Calidad de lana Merino de esquila preparto: Una aproximación a su variabilidad en la provincia de Río Negro

Ezequiel Gonzalez
Ingeniero Agrónomo – Universidad Nacional del Sur

Esta Tesis es presentada como parte de los requisitos para optar al grado académico de Magister en Producción de Rumiantes Menores, maestría interinstitucional de la Universidad Nacional del Comahue, Universidad Nacional de Rosario y del Instituto Nacional de Tecnología Agropecuaria, y no ha sido previamente presentada para la obtención de otro título en éstas u otras Universidades. La misma contiene los resultados obtenidos en investigaciones llevadas a cabo en el ámbito del Laboratorio de Fibras Textiles del INTA EEA Bariloche, durante el período comprendido entre los años 2015 y 2017, bajo la dirección de Diego Sacchero.

Nombre y firma del Maestrando:

Nombre y firma del Director:

Nombre y firma del Co – Director:

Defendida: de 20......
DEDICATORIAS:
Este trabajo está dedicado a mi familia, pareja y amigos.

AGRADECIMIENTOS:
En primer término quisiera agradecer al Instituto Nacional de Tecnología Agropecuaria por invertir en mi formación y brindarme los medios para realizar esta tesis.
A Diego Sacchero y Marcos Easdale por su calidad humana, actitud crítica e incondicional apoyo durante el desarrollo de esta tesis.
A Priscila Willems, por su apoyo y compromiso para enseñarme y acompañarme en todo lo referente a los análisis estadísticos.
Al personal del Laboratorio de Fibras Textiles del INTA Bariloche por su apoyo y acompañamiento en todas las tareas de laboratorio.
A muchos de mis compañeros de diversas áreas de la Estación Experimental Agropecuaria Bariloche con los cuales y gracias a charlas e intercambios de ideas que me aportaron nuevos y valiosos puntos de vista.
PUBLICACIONES Y PRESENTACIONES EN CONGRESOS:

- Variabilidad de la producción y calidad de lanas en el Norte de la Patagonia
 González Ezequiel; Sacchero Diego; Easdale Marcos
 40º Congreso de la Asociación Argentina de Producción Animal (2017)
ÍNDICE GENERAL

ÍNDICE DE TABLAS .. iv
ÍNDICE DE FIGURAS ... iv
ABREVIATURAS Y SÍMBOLOS ... vii
RESUMEN ... ix
ABSTRACT ... x

CAPITULO 1: Introducción general .. 1
 I.I Producción mundial de lana .. 1
 I.II Producción de lanas finas en Argentina ... 3
 I.III Sistemas extensivos en regiones áridas ... 4
 I.IV Factores que afectan la calidad de lana ... 6
 I.V Área de estudio .. 11
 I.VI Objetivos de la tesis .. 16

CAPITULO 2: Variabilidad de la calidad de lana en la provincia de Río Negro y su dinámica en el tiempo ... 17
 II.I Introducción .. 17
 II.II Materiales y métodos .. 19
 II.II.I Área de estudio .. 19
 II.II.II Fuente de datos .. 20
 II.II.III Análisis de datos ... 21
 II.III Resultados .. 22
 II.III.I Análisis correspondiente al periodo global estudiado 22
 II.III.II Análisis de la dinámica temporal de los parámetros de calidad de lana 29
 II.IV. Discusión .. 34

CAPITULO 3: Características de los perfiles de diámetro de fibras en la provincia de Río Negro ... 38
 III.I Introducción .. 38
 III.II Materiales y métodos .. 40
 III.II.I Área de estudio .. 40
 III.II.II Período de estudio ... 41
 III.II.III Fuente de datos ... 42
 III.II.IV Análisis de datos ... 46
 III.III Resultados .. 47
 III.IV Discusión .. 54
Figura 2.3. Índice de silueta para los grupos formados del análisis de Conglomerados. Número de establecimientos asignados y promedio de silueta (entre paréntesis) para cada grupo. Valores cercanos a 1 indican mejor calidad de representación del establecimiento dentro del grupo asignado.

Figura 2.4. Primer plano factorial del Análisis de Componentes Principales de la información correspondiente al período global estudiado. Establecimientos identificados por su región natural. Entre paréntesis se muestran los porcentajes de variancia explicada por cada uno de los ejes.

Figura 2.5. Primer plano factorial del Análisis de Componentes Principales de la información correspondiente al período global estudiado. Establecimientos identificados por su Área Ecológica. Entre paréntesis se muestran los porcentajes de variancia explicada por cada uno de los ejes.

Figura 2.6. Representación geográfica del análisis de Componentes Principales. Establecimientos identificados en colores por sus coordenadas en el Eje 1 y por símbolos según su escala productiva: grande (estrellas), intermedia (círculos) y pequeña (triángulos).

Figura 2.7. Representación geográfica del análisis de Componentes Principales. Establecimientos identificados en colores por sus coordenadas en el Eje 2 y por símbolos según su escala productiva: grande (estrellas), intermedia (círculos) y pequeña (triángulos).

Figura 2.8. Primer plano factorial del Análisis de Componentes Principales de la información correspondiente al período global estudiado. Establecimientos identificados por su escala productiva. Entre paréntesis se muestran los porcentajes de variancia explicada por cada uno de los ejes.

Figura 2.9. Primer plano factorial del análisis de Interestruistructura del Statis Dual de la información de los parámetros de producción y calidad de lana de la provincia de Río Negro para el periodo 2002-2015. Triángulos indican las tablas de datos correspondientes a los 14 años contemplados en el estudio. Entre paréntesis se muestran los porcentajes de variancia explicada por cada uno de los ejes.

Figura 2.10. Primer plano factorial del análisis de Intraestructura. Espacio compromiso para cada uno de los parámetros de lana estudiados. Entre paréntesis se muestran los porcentajes de variancia explicada por cada uno de los ejes.

Figura 3.1. Figura 3.1. Área de estudio. La Región Natural Patagonia Oriental comprendida por las áreas ecológicas de Monte Austral (verde) y Monte Oriental (amarillo). La Región Natural Patagonia Occidental abarca las áreas ecológicas de Precordillera (rojo), Sierras y Mesetas Occidentales (gris) y Meseta Central (marrón). Puntos negros indican los...
Figura 3.2. Esquema de crecimiento anual de lana y meses tradicionales de esquila preparto...42
Figura 3.3. Ejemplo de un perfil de diámetro de fibras (PDF)...43
Figura 3.4. Transformación del eje X en los PDF...45
Figura 3.5. PDF promedio para cada establecimiento..47
Figura 3.6. Primer plano factorial del Análisis de Componentes Principales de la información correspondiente a los PDF. Representación de los parámetros de lana RT, LM, PRB, PRM, PRP y variables calculadas en los PDF en el primer plano factorial. Puntos negros indican los establecimientos utilizados en el análisis. Entre paréntesis se muestran los porcentajes de variancia explicada por cada uno de los ejes...48
Figura 3.7. Primer plano factorial del Análisis de Componentes Principales de la información correspondiente a los PDF. Establecimientos identificados por su Área Ecológica. Entre paréntesis se muestran los porcentajes de variancia explicada por cada uno de los ejes..49
Figura 3.8. Representación geográfica del análisis de Componentes Principales. Establecimientos identificados en colores por sus coordenadas en el Eje 1 (determinado mayormente por FDMin, FDMax y Rango; Fig. 3.6)..49
Figura 3.9. Representación geográfica del análisis de Componentes Principales. Establecimientos identificados en colores por sus coordenadas en el Eje 2 (determinado mayormente por DMax y DMin; Fig. 3.6)..50
Figura 3.10. Dendrograma del análisis de Conglomerados. Grupos formados en función del método de Ward (distancia euclidia promedio) en base a los parámetros de lana y variables calculadas en los PDF..51
Figura 3.11. Índice de silueta para los grupos formados del análisis de Conglomerados. Número de establecimientos asignados a los grupos formados y entre paréntesis el promedio de silueta de cada grupo. A valores cercanos a 1 indica mejor calidad de representación del establecimiento dentro del grupo asignado..51
Figura 3.12. Distribución geográfica del análisis de Conglomerados. Puntos violetas, azules, y verdes indican los establecimientos pertenecientes a los grupos 1, 2 y 3 respectivamente..52
Figura 3.13. Altimetría del área de estudio. Puntos violetas, azules y verdes indican los establecimientos pertenecientes al grupo 1, 2 y 3 respectivamente..52
Figura 3.14. PDF promedio para cada uno de los 3 grupos obtenidos..54
Figura 4.1. Zonas bio-laneras. Líneas punteadas y en gris el Río Negro indican los límites de las zonas bio-laneras Atlántica, Continental y Andina...61
<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP</td>
<td>análisis de componentes principales</td>
</tr>
<tr>
<td>Amplitud</td>
<td>amplitud de tiempo</td>
</tr>
<tr>
<td>CLV</td>
<td>cantidad de lana vellón</td>
</tr>
<tr>
<td>CVAlong</td>
<td>coeficiente de variación del diámetro a lo largo de la mecha</td>
</tr>
<tr>
<td>CVDMF</td>
<td>coeficiente de variación del diámetro medio</td>
</tr>
<tr>
<td>DMax</td>
<td>diámetro de fibras máximo</td>
</tr>
<tr>
<td>DMF</td>
<td>diámetro medio de fibras</td>
</tr>
<tr>
<td>DMin</td>
<td>diámetro de fibras mínimo</td>
</tr>
<tr>
<td>FDMax</td>
<td>fecha de máximo diámetro de fibras</td>
</tr>
<tr>
<td>FDMin</td>
<td>fecha de mínimo diámetro de fibras</td>
</tr>
<tr>
<td>Kg</td>
<td>kilogramo</td>
</tr>
<tr>
<td>LM</td>
<td>largo de mecha</td>
</tr>
<tr>
<td>m.s.n.m.</td>
<td>metros sobre el nivel del mar</td>
</tr>
<tr>
<td>MA</td>
<td>monte austral</td>
</tr>
<tr>
<td>MC</td>
<td>meseta central</td>
</tr>
<tr>
<td>mm</td>
<td>milímetro</td>
</tr>
<tr>
<td>MO</td>
<td>monte oriental</td>
</tr>
<tr>
<td>MV</td>
<td>contenido de materia vegetal</td>
</tr>
<tr>
<td>N/ktex</td>
<td>newton por kilotex</td>
</tr>
<tr>
<td>°C</td>
<td>grado centígrado</td>
</tr>
<tr>
<td>PBI</td>
<td>producto bruto interno</td>
</tr>
<tr>
<td>PR</td>
<td>punto de rotura</td>
</tr>
<tr>
<td>PRB</td>
<td>punto de rotura en la base de la mecha</td>
</tr>
<tr>
<td>PRM</td>
<td>punto de rotura en el medio de la mecha</td>
</tr>
<tr>
<td>PRP</td>
<td>punto de rotura en la punta de la mecha</td>
</tr>
<tr>
<td>PDF</td>
<td>perfil de diámetro de fibra</td>
</tr>
<tr>
<td>PRE</td>
<td>precordillera</td>
</tr>
<tr>
<td>Rango</td>
<td>rango de diámetro de fibras</td>
</tr>
<tr>
<td>Acronym</td>
<td>Spanish Term</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>RP</td>
<td>rinde al peine Schlumberger seco</td>
</tr>
<tr>
<td>RT</td>
<td>resistencia a la tracción</td>
</tr>
<tr>
<td>SYM</td>
<td>sierras y mesetas</td>
</tr>
<tr>
<td>TC</td>
<td>tasa de crecimiento</td>
</tr>
<tr>
<td>tn</td>
<td>tonelada</td>
</tr>
<tr>
<td>μm</td>
<td>micrones</td>
</tr>
</tbody>
</table>
RESUMEN

La cría de ovinos Merino para lana y carne es la principal actividad ganadera en las regiones áridas y semiáridas de la provincia de Río Negro. La producción de lana Merino es uno de los principales productos de esta actividad y una fuente relevante de ingresos económicos de las poblaciones del interior de la provincia. Esta actividad se realiza en diversas condiciones ambientales, y en sistemas productivos extensivos que son fuertemente afectados por las fluctuaciones ambientales debido a una dependencia casi exclusiva sobre la oferta forrajera de los pastizales naturales, y un bajo nivel de infraestructura y uso de insumos para afrontar las variaciones climáticas. A pesar de esta realidad productiva se desconoce la variabilidad de la calidad de lana a escala regional. El objetivo general de esta tesis fue estudiar la variabilidad en la calidad de lana en la provincia de Río Negro y su dinámica en el tiempo. Para ello, se analizaron muestras de lana comercial representativas de la producción anual del (periodo 2014-2015) de 68 establecimientos, y registros de análisis comerciales de 113 establecimientos (periodo 2002-2015) realizados por el Laboratorio de Fibras Textiles INTA Bariloche de lana Merino de esquila preparto mediante técnicas de estadística multivariada. Los resultados sugieren la existencia de un gradiente de variación en la calidad de lana Merino de esquila preparto con orientación Oeste-Este en el área de estudio. Esta variabilidad reflejaría posibles asociaciones entre algunos parámetros de calidad de lana y la heterogeneidad del ambiente, expresándose mayormente en los establecimientos ubicados en los extremos longitudinales del área de estudio. Por otro lado, la calidad de lana reflejó una sensibilidad frente a las perturbaciones ambientales ocurridas durante el periodo estudiado, registrando también una capacidad de recuperación luego de estos impactos. Esta tesis aporta nuevos desafíos en la búsqueda por entender la variabilidad en la calidad de lanas a escala regional, y remarca la necesidad de avanzar en una mayor comprensión de la influencia ambiental sobre parámetros de calidad de lana.

Palabras claves: regiones áridas y semiáridas, producción ganadera extensiva, calidad de fibras, ovinos merino, diámetro medio de fibras, análisis multivariados.
The breeding of Merino sheep for wool and meat is the main livestock activity in the arid and semi-arid regions of the province of Río Negro. The production of Merino wool is one of the main products of this activity and a relevant source of economic income of the populations of the interior of the province. This activity is carried out in diverse environmental conditions, and in extensive productive systems that are strongly affected by environmental fluctuations due to an almost exclusive dependence on the forage supply of natural pastures, and a low level of infrastructure and use of inputs to face the climatic variations. In spite of this productive reality, the variability of wool production and quality at provincial regional scale is unknown. The general objective of this thesis was to study the variability in wool quality in the province of Río Negro and its dynamics over time. We used wool samples of Merino sheep representative of the annual production of (period 2014-2015) of 68 farms, and data from commercial analysis records of 113 farms (period 2002-2015) processed by the Laboratorio de Fibras Textiles from the Instituto Nacional de Tecnología Agropecuaria (INTA) Bariloche. This data set was analysed with multivariate techniques (Cluster and Principal Components). We found a gradient of variation in wool quality with West-East orientation in the study area. This variability would reflect possible associations between some parameters of wool quality and the heterogeneity of the environment. We record that the wool quality was sensitivity to environmental disturbances that occurred during the period studied, and also a capacity for recovery after these impacts. The results of this thesis encourage the need to advance in a greater understanding of the environmental influence on wool quality. This thesis is a first approach to understand and describe the regional variation of wool quality during an extensive period of study and in a wide area of the province of Río Negro. The information generated contributes to the design and implementation of public policies and differential technological developments, considering the variability of the environment and production.

Key words: arid and semi-arid environments, extensive livestock production, fiber quality, merino sheep, average fiber diameter, multivariate analys
I. Producción mundial de lana

La producción lana es la principal producción de fibra textil de origen animal en el mundo. El principal uso de la lana a nivel mundial es la fabricación de vestimentas, seguido por el uso de interiores (alfombras, tapizados, cortinas) y por último el uso industrial (fieltros, aislamientos) (IWTO, 2016). La producción mundial de lana para la campaña 2015 se sitúa en torno a las 2.128.069 tn base sucia con una tendencia a la suba del orden del 0,5% con respecto al 2014 (IWTO, 2016). Sin embargo, si nos remitimos al año 1990 la producción ha retrocedido en un 37,4% ante un notable avance del algodón y de las fibras sintéticas (IWTO, 2016). En relación a la producción mundial de fibras, la lana representa solo el 1,2% de la producción mundial y ocupa el cuarto lugar después de las fibras sintéticas (65,2%), el algodón (26,8%) y las fibras celulósicas (6,2%) (IWTO, 2016). Los principales productores de lana sucia son Australia, China, Rusia y Nueva Zelanda, aportando más del 50% de la producción mundial (IWTO, 2016). La participación de la Argentina es menor contribuyendo en un 2,2% a la producción mundial. La producción Argentina de lana para la zafra 2016/2017 fue de 42.700 tn sucia, de las cuales solo 2.000 tn se utilizaron en el mercado interno (FLA, 2017). El resto se exporta como lana sucia (35%), lana lavada (6%), lana peinada o tops y subproductos (59%) principalmente a Europa y China, generando divisas por más de 210 millones de dólares (FLA, 2017). De la producción del país, el 60% corresponde a lanas finas (hasta 24,5 μm), 36% a lanas medias (24,5-32,5 μm) y 4% a lanas gruesas (a partir de 32,6 μm) (FLA, 2017). Esta alta proporción de lanas finas le otorga a la Argentina un mejor posicionamiento de mercado debido a que para esta clase de lanas su tendencia está mutando de ser un "commodity" a un "speciality". Esto se debe a que con el paso del tiempo se ha convertido en una fibra escasa y especial, destinada para el uso de prendas de vestir de alta gama y a consumidores con alto poder adquisitivo o que valoran otros aspectos asociados a la relación entre la producción de fibras y el impacto en el medio ambiente.

La lana es un producto demandado principalmente por sus características físicas que influyen directamente en la comodidad del usuario. Una cualidad de la lana es su capacidad de absorber hasta el 35% de su peso en agua (humedad) debido a su propiedad
higroscópica, ofreciendo una respuesta activa frente a fluctuaciones en la temperatura corporal (Johnson et al., 2003; Cottle, 2010). Además, ofrece una mejor protección contra los rayos ultravioletas a comparación de fibras sintéticas y el algodón (Cottle, 2010). Debido a un alto contenido de nitrógeno en su estructura celular de la lana, requiere de altos niveles de oxígeno para su combustión, lo que la convierte en un producto ideal para proteger contra el fuego a los ambientes debido a que evita la propagación de las llamas (Sacchero, 2010; Corscadden et al., 2014). Las fibras de lana pueden extenderse hasta un 30% de su longitud sin dañarse y pueden ser dobladas indefinidamente sin romperse (Johnson et al., 2003; Sacchero, 2010). Por lo tanto, la lana es un material de larga vida, manteniendo sus propiedades en el tiempo, siendo también sus prendas adecuadas para su reutilización y reciclaje. Estas propiedades posicionan a la fibra de lana como un producto versátil y de alta calidad.

Las características naturales únicas de la lana, la convierten en un producto con una creciente demanda en ciertos grupos de consumidores. La condición de producto natural, biodegradable y renovable la posicionan de mejor manera que fibras sintéticas en cuanto a las preferencias actuales del “nuevo” consumidor en términos de producto con un menor impacto ambiental (IWTO, 2016). La lana es una fibra natural constituida por proteínas similares al cabello humano, como por ejemplo la queratina (Johnson et al., 2003; Cottle, 2010). La lana forma parte de un ciclo natural del carbono, ya que el 50% del peso de la lana está constituido de carbono orgánico puro (Cottle, 2010), un porcentaje más alto que el algodón (40%) o que las fibras celulósicas (24%) (IWTO, 2018). Este porcentaje de carbono orgánico se almacena en la lana y se secuestra de la atmósfera. Si su producción se desarrolla de manera sustentable ambientalmente (e.g. evitando degradación de pastizales y suelo), contribuye en mejor medida que las demás fibras textiles a secuestrar carbono de la atmósfera y con ello a mitigar los efectos del calentamiento global. La lana, a diferencia de las fibras sintéticas, es un recurso renovable ya que los ovinos producen un nuevo vellón todos los años en base a la producción de los pastizales sin agotar recursos naturales finitos, en tanto el manejo de su producción sea sustentable. Existe un creciente interés y demanda de información por parte de los consumidores acerca de la trazabilidad del producto. Consumidores demandan lana “ética”, ya que no solo requieren un producto de calidad, sino que también se produzca de forma responsable, considerando la sustentabilidad ambiental de las producciones, el bienestar animal y las condiciones de trabajo en los establecimientos (IWTO, 2018). En este contexto, cobra cada vez más
relevancia realizar estudios que vinculen la calidad de la lana y su relación con el ambiente y los sistemas productivos en donde se produce.

I.II Producción de lanas finas en Argentina

La producción de lanas finas en la Argentina se concentra especialmente en la Patagonia y se basa principalmente en la cría de ovinos Merino. Esta concentración proviene de políticas de desarrollo territorial de fines del siglo XIX que luego de la conquista del desierto impulsaron la producción ovina en la Patagonia. En dicho proceso, la Patagonia fue receptora del ganado ovino, en gran medida proveniente de la llanura pampeana como consecuencia del auge de los cereales y la valoración de la carne vacuna por el desarrollo de tecnologías de conservación de alimentos. Dicha ocupación aconteció junto a un proceso de entrega de tierras fiscales de alta productividad a grandes empresas y en propiedad a latifundistas (Bandieri, 2005; Coronato, 2010). La Patagonia se integraba entonces al sistema económico nacional, cuyo principal objetivo era la unificación del país e inserción en el mercado internacional con un modelo económico agro-exportador (Coronato, 2010), siendo la producción de lana Merino uno de los principales productos de exportación, con un papel fundamental en la ocupación y control territorial.

En la actualidad la actividad ganadera de ovinos Merino sigue siendo la principal actividad ganadera en las regiones áridas y semiáridas de la Patagonia. Las provincias de Chubut, Río Negro y Santa Cruz concentran la producción de lana Merino en dicha región (FLA 2017; Senasa, 2017). Si bien esta actividad en términos macroeconómicos reviste poco interés, debido a su menor contribución al PBI de la región, cumple un papel central en cuanto a la ocupación territorial, el abastecimiento del mercado interno y generación de mano de obra (La Torraca, 2015). En la región existen 8534 establecimientos que se dedican a la actividad, generando una dinámica económica en las poblaciones del interior y centros urbanos (Senasa, 2017). Esta actividad se realiza casi exclusivamente sobre pastizales naturales bajo condiciones extensivas (Golluscio et al., 1998; La Torraca, 2015) y están productivamente marcados por una fuerte dependencia de los recursos naturales y un bajo nivel de aplicación de insumos (Villagra, 2005; Easdale et al., 2009; Villagra y Giraudo, 2010). Por ende, la producción ovina depende fuertemente de las fluctuaciones ambientales (Illius y O’Connor 1999; Hall y Paruelo, 2006; Giraudo y Villar, 2010; Easdale y Aguiar, 2012). A pesar de la importancia que tiene esta actividad, se desconoce la variabilidad de la producción y calidad de lana a escala regional. Comprender la variación de la calidad de lana en distintos ambientes, permitirá contribuir en el diseño e
implementación de políticas públicas y desarrollos tecnológicos diferenciales adaptados a las necesidades de cada región. Por ende, el objetivo general de esta tesis es ampliar nuestro conocimiento sobre la variabilidad en la calidad de lana a escala regional, tomando como caso de estudio una región del norte de la Patagonia. A continuación, se expone el contexto general de la tesis, describiendo las características generales e importancia de los sistemas ganaderos extensivos, las fuentes de variación de la calidad de lana y finalmente se presentará la estructura de la tesis con los objetivos específicos a abordar en cada capítulo.

I.III Sistemas extensivos en regiones áridas

La producción ganadera en condiciones extensivas es una de las principales actividades agropecuarias en las regiones áridas y semiáridas del mundo. La conformación y el funcionamiento de estos sistemas están productivamente marcados por una fuerte dependencia de los recursos naturales y un bajo nivel de aplicación de insumos (Easdale et al., 2009; Reynolds et al., 2007; Villagra y Giraudo, 2010). El clima ejerce una importante influencia en la estructura y funcionamiento en estos sistemas productivos, principalmente a través de la dinámica de las precipitaciones (Illius y O'Connor, 1999; Oesterheld et al., 1999; Paruelo et al., 1998b) y en menor medida por la temperatura. Es por ello que el principal controlador productivo es la energía solar absorbida por los ecosistemas, mediada principalmente por las precipitaciones (Easdale y Domptail, 2014). Los pastizales áridos y semiáridos presentan una dinámica productiva fluctuante interanualmente, y fases con escasas precipitaciones que determinan mermas en los niveles de producción de forraje (Reynolds y Stafford Smith, 2002; Reynolds et al., 2007). Por ende, dado que la producción ganadera es extensiva y con bajos aportes externos de energía, se ve fuertemente afectada por la variabilidad ambiental debido a su dependencia de la producción de forraje de dichos pastizales (Easdale y Aguiar, 2012). Este fuerte control climático determina la proporción de la producción primaria potencialmente apropiada por el ser humano en el ecosistema local a través de la producción secundaria (fibra y carne) (Illius y O'Connor 1999; Hall y Paruelo, 2006; Texeira y Paruelo, 2006; Easdale y Aguiar, 2012). Las zonas con menor producción forrajera o de mayor variabilidad estarían asociadas a una mayor exposición a perturbaciones potencialmente perjudiciales (Easdale y Aguiar, 2012).

Los sistemas ganaderos extensivos de las regiones áridas y semiáridas están expuestos a diferentes factores de perturbación en un contexto de cambio climático. La extensión, intensidad, duración y frecuencia de eventos climáticos extraordinarios en regiones áridas
y semiáridas aumentarán como consecuencia del cambio climático global (Dai, 2012; Hansen et al., 2012). La ocurrencia de sequías en estas regiones tiene significativas consecuencias tanto biofísicas como socio-económicas (Oba, 2001; Díaz Solís et al., 2009; Easdale y Rosso, 2010; Angassa y Oba, 2013). La mortalidad animal es alta durante sequías intensas, particularmente en aquellas cuyo proceso se extiende por más de un año de duración (Oba, 2001). La lenta recuperación del ganado post sequía, ha sido documentado como uno de los principales problemas del manejo ganadero en regiones áridas y semiáridas (Angassa y Oba, 2007; Oba, 2001). En un contexto de cambio climático, los procesos de degradación se pueden acelerar, generando profundos cambios en la cobertura, proporción de grupos funcionales y composición florística de la vegetación (Perelman et al., 1997; Bisigato y Bertiller, 1997; Bisigato et al., 2005; Tadey, 2009) y por ende afectando directa e indirectamente la producción y calidad de lana (Harle et al., 2007).

Por otro lado, las erupciones volcánicas son un factor de perturbación que se repite con cierta frecuencia en las regiones áridas y semiáridas de la Patagonia, afectando extensas áreas de pastoreo a través de los depósitos y acumulación de cenizas volcánicas (Wilson et al., 2012). Estos cambios repentinos en el medio ambiente provocan un fuerte estrés animal al afectar su estado nutricional, que repercuten en la productividad y sobrevivencia de los animales y por ende afectan directa e indirectamente la producción y calidad de las fibras (Easdale et al., 2014). Por ende, comprender la variabilidad de la calidad de lana a escala regional, nos permitiría conocer un estado de referencia para analizar posibles cambios relacionados con procesos ambientales (e.g. sequías, años de excesivas precipitaciones o caída de ceniza volcánica).

La producción ganadera constituye uno de los vínculos socio-ecológicos más extendidos en el mundo. Una manera de conceptualizar este vínculo es a través de la perspectiva de Sistemas Socio-Ecológicos (SSE) (Berkes y Folke, 1998; Gunderson y Holling, 2002; Berkes et al., 2003; Ostrom, 2007). El enfoque de los SSE apunta a generar conocimiento sobre los procesos y funciones que permiten entender el comportamiento ecosistémico, y aproximaciones a sistemas sociales y ecológicos interpretados como un único sistema complejo, dinámico e interconectado (Gunderson y Holling, 2002; Berkes y Folke, 1998; Colding et al., 2003). Por ejemplo, la producción de lana puede ser interpretada como un indicador de un SSE, la cual esta modulada por aspectos ambientales y socio-productivos. Existe un creciente interés por el estudio de propiedades emergentes de SSE como una manera de entender su dinámica y adaptación a los cambios (Walker et al., 2004). La resiliencia se define como la capacidad de un sistema socio-ecológico de absorber
disturios, aprender a reorganizarse (o transformarse), sin perder su estructura y funciones clave y evitando cruzar umbrales hacia estados alternativos no deseables o potencialmente irreversibles tanto en términos ecológicos como sociales (Folke, 2006). Por ejemplo, factores de perturbación que se repiten con cierta frecuencia en la Patagonia repercuten en los sistemas de ganadería ovina, influyendo en la dinámica de la producción de lana (Easdale y Rosso, 2010; Easdale et al., 2014). En algunos casos, los cambios son reversibles, pero el camino de retorno al estado previo a la perturbación puede ser diferente respecto del camino tomado en el cambio de estado original (vía de reversibilidad o histéresis) (Groffman, 2006). Por lo tanto, la posibilidad de comprender esta dinámica adquiere gran relevancia en la evaluación de la sustentabilidad de sistemas agropecuarios (Easdale y Domptail, 2014), y por ende en la producción y calidad de lana.

I.IV Factores que afectan la calidad de lana

La calidad de lana comprende todas aquellas propiedades de las fibras que son importantes en el procesamiento industrial y producto final. Estas propiedades incluyen el Diámetro Medio de Fibras (DMF), el Rinde al Peine Schlumberger seco (RP), la Resistencia a la Tracción (RT), el Punto de Rotura (PR), el Largo de Mecha (LM) y el Contenido de Materia Vegetal (MV). El DMF es el promedio de los diámetros expresado en micrones (µm) y es determinante de la calidad y del precio de la lana, ya que establece el tipo de producto final a obtener en la industria (Sacchero, 2005). Otro parámetro influyente del precio y calidad de lana es el RP, parámetro que nos permite conocer la cantidad de lana peinada a obtener (i.e. cantidad de lana expresada como porcentaje de lana sucia) luego del proceso industrial. El RP es afectado por el Contenido de Materia Vegetal (MV), el cual representa la masa seca de fracciones de núcleos duros, ramitas, semillas y hojas, expresada como un porcentaje de la masa de la muestra, producto de la contaminación de la lana con el tipo de vegetación presente en el ambiente. El LM representa el promedio de longitud (en milímetros, mm) de las mechas en un lote de lana y es utilizado en las apreciaciones comerciales para pronosticar la longitud promedio de fibras en lanas peinadas (Sacchero, 2005). La RT es el promedio de la fuerza necesaria para romper una mecha de lana y se mide en Newton por Kilotex (N/ktex) (Elvira, 2005). El PR es información que se desprende de la determinación de la RT y representa la posición donde quebran las mechas (Punta, Medio y Base) cuando son sometidas a un esfuerzo de tracción. Mediciones objetivas de estos parámetros permiten establecer el valor económico de la lana y precisar un destino y uso industrial. Esta calidad de lana depende de una combinación de una serie de factores...
como: el ambiente, la genética animal, el estado fisiológico y sanitario de los animales, y también cuestiones de manejo predial.

Las condiciones climáticas influyen en la producción y calidad de la lana al generar cambios fisiológicos y de comportamiento en los animales. El fotoperiodo regula el ritmo endógeno el cual repercute en la actividad reproductiva (Forsberg, 2002) y en la tasa de crecimiento de lana (Nagorcka, 1979), siendo las lanas Merino menos afectadas por las variaciones fotoperiodicas (Nagorcka, 1979). Las fluctuaciones en las temperaturas generan estrés térmico en los animales provocándoles cambios en los requerimientos nutricionales, principalmente de energía y agua, al alejarse de la zona termo-neutral (Bottomley, 1979; Conrad, 1985). El grado de estrés térmico atribuido a las ovejas por su entorno depende de factores climáticos, como la temperatura del aire, la velocidad del viento, la humedad relativa, la radiación, la salud general del animal y el aislamiento proporcionado por la lana (Bottomley, 1979). El estrés térmico por calor puede afectar la producción de lana al suprimir el consumo de alimento reduciendo la disponibilidad de nutrientes a nivel folicular, la tasa de crecimiento de lana (Hopkins y Richards, 1979; Cottle, 2010) y reduciendo el DM (Bottomley, 1979; Hopkins y Richards, 1979). La exposición al frío moderado generalmente estimula el apetito e incremenata indirectamente la tasa de crecimiento de la lana (Bottomley, 1979). Sin embargo, el estrés térmico por frío modifica los patrones de pastoreo y reduce el consumo disminuyendo la tasa de crecimiento de la lana (Hopkins y Richards, 1979). El efecto de la intemperie sobre la lana produce un desgaste de las puntas de las fibras, volviéndose más frágiles y quebradizas, reduciendo su DMF y derivando en pérdidas durante el procesamiento en etapas tempranas (Ryder y Stephenson, 1968). Otro factor de la intemperie que afecta la calidad de lana es el tipo de estrato herbáceo donde los animales pastorean (Cottle, 2010). Por ejemplo, la influencia del viento en años secos y en regiones con vegetación arbustiva y xerófita, el contenido de materia vegetal (MV), impurezas y tierra en los vellones de los animales aumenta, disminuyendo el rendimiento al peine (RP) (Villagra y Giraudo, 2010). Además de los efectos directos, los factores climáticos pueden alterar indirectamente la producción y calidad de la lana a través de su influencia sobre la producción forrajera de los pastizales y por ende la condición nutricional de los animales.

El crecimiento de lana es sensible a la disponibilidad de nutrientes a nivel folicular. Fluctuaciones anuales y estacionales en la disponibilidad y calidad forrajera de los pastizales producen variaciones en el estado nutricional afectando el crecimiento y calidad de lana (Hynd et al., 1997; Thompson et al., 1994). Una mayor disponibilidad de forraje
produce un aumento en el peso vivo, crecimiento en longitud y diámetro de fibra (Thompson et al., 1994, Doyle y Thompson, 1994, Cottle, 2010). Incrementos en el DMF y en la longitud de las fibras producen un mayor volumen de lana limpia (Schlink, 1999). Por otro lado, bajo condiciones de estrés nutricional se producen disminuciones en la tasa de crecimiento de lana y DMF (Adams y Briegel, 1998; Sacchero et al., 2011). Disminuciones en el DMF generan regiones débiles en la mecha afectando a la RT (Hansford, 1989; Schlink et al., 2000), ya que dichas zonas constituyen un punto de rotura potencial durante el procesamiento industrial de la lana (Elvira, 2005). Restricciones severas del consumo producen un proceso conocido como “apagado folicular”, en el cual los foliculos experimentan una regresión (Schlink et al., 2002). Cuando esto ocurre se pueden encontrar fibras sueltas en el vellón. La nutrición deficiente antes y después del nacimiento reduce el número de foliculos que maduran y producen fibras (Ferguson et al., 2004; Kelly et al., 2006). Si bien está determinado genéticamente el máximo número de foliculos que un cordero puede formar, hay evidencias de que un plano nutricional bajo antes del nacimiento puede impedir la iniciación de los esbozos de foliculos secundarios (Schlink et al., 2002) afectando la producción futura de lana de manera permanente. Por lo tanto el plano nutricional es el principal determinante del crecimiento y calidad de lana.

Por otro lado, otros factores como la genética, la edad y el estado sanitario, determinan también el crecimiento y calidad de la lana. Caracteres productivos de lana para la raza Merino como el DMF, peso de vellón limpio y rinde al lavado poseen un mediano a alto determinismo genético con heredabilidades medianas a altas (Mueller, 2010) por lo que son criterios de selección utilizados en programas de mejoramiento genético (Adams y Briegel, 2002; Brown et al., 1999; Mueller et al., 2005; Mueller et al., 2016) debido a que son de alto valor económico. Por ejemplo, productores que crían la raza Merino en la Patagonia están incentivados por producir lanas finas (menor DMF) (Mueller et al., 2001; Mueller et al., 2005; Sacchero et al., 2011). Variaciones del DMF en el periodo de crecimiento de la lana fueron ampliamente utilizadas para estudiar diferencias genéticas en ovinos (Hansford, 1994; Adams et al., 1996 y 1998; Brown et al., 1999 y 2002; Sacchero et al., 2011). También se ha demostrado que el peso de vellón y LM disminuyen con la edad de los animales, a diferencia del DMF el cual aumenta (Hatcher et al., 2005; Mueller et al., 2016a). Los efectos del estado sanitario en la producción de lana pueden variar desde el desprendimiento total del vellón hasta una escasa reducción en el volumen, y son cualitativamente similares a los cambios nutricionales, reflejando reducciones en la tasa de crecimiento y del DMF de severidad variable dependiendo del grado de infestación o severidad del problema. Por
ejemplo infestaciones con endoparásitos producen mermas en el peso del vellón, DMF, LM y RT (Butler, 1994). A su vez, infestaciones con ectoparásitos son comunes en la Patagonia afectando la productividad de los animales (Robles y Olaechea, 2001; Olaechea et al., 2006; Larroza et al., 2018).

El crecimiento de la lana está influenciado por factores fisiológicos que varían a lo largo del año. Si bien el principal factor que controla el crecimiento de la lana es la disponibilidad de nutrientes a nivel folicular (Reis, 1991), el aporte de tales nutrientes está influenciado por los cambios en la partición de nutrientes en funciones de mantenimiento, producción y reproducción (Doyle y Thompson, 1994). La reproducción hace que los nutrientes se dirijan hacia el crecimiento del feto o la alimentación del cordero y la eficiencia con la que la materia seca se convierte en lana disminuye (Doyle y Thompson, 1994). El proceso de gestar y criar un cordero resulta en la disminución de la producción de lana a través de menores pesos de vellón, DMF y LM (Corbett, 1979; Masters y Stewart, 1990). Las disminuciones dependen de la cantidad y calidad de forraje disponible (Corbett y Furnival, 1976), las cuales varían entre 7 y 26%, y son mayores cuando se gestan mellizos (Turner et al., 1968). La RT generalmente es afectada durante el proceso de gestación (Reis, 1991), aunque algunos estudios indican lo contrario (Robertson et al., 2000). Por ejemplo, en animales preñados que mantuvieron el peso vivo no se obtuvieron reducciones en RT (Robertson et al., 2000) y el crecimiento de la lana no se vio afectado (Williams y Butt, 1989) a pesar de la gestación. Por ende, el estado nutricional de las hembras durante el último tercio de gestación resulta de suma importancia para la calidad de lana (Kelly et al., 1996).

Las prácticas de manejo modulan la interacción entre los animales y el ambiente e influyen sobre la producción y calidad de lana. Una de las decisiones más importantes en un sistema de cría de ovinos es la elección del momento de parición, el cual está determinado por la fecha de servicio. La elección de la fecha de servicio está relacionada principalmente con la necesidad de sincronizar la época de mayores requerimientos nutricionales de los animales con las fluctuaciones estacionales en la disponibilidad y calidad de los pastizales (Cottle, 2010). Otras cuestiones influyen en la elección de la fecha de servicio, como por ejemplo la estacionalidad reproductiva de los animales (Forsberg, 2002) y cuestiones de mercado (Cottle, 2010). La carga animal es una de las variables de manejo que permite optimizar la utilización de los pastizales influyendo directamente en la condición nutricional de los animales y por ende en la producción y calidad de lana (McGregor et al., 2016). Una herramienta de manejo útil para mejorar la calidad de lana cuando el estado nutricional de
los animales es fluctuante es la determinación de la fecha de esquila (Polanco, 2005; Mueller, 2015). Por ejemplo en la Patagonia, lanas de esquilas preparto (durate el último tercio de gestación), obtienen mayores RP (7 %), igual finura, menores LM (4,5 mm) y mayores RT (7 N/ktex) en comparación a lanas de esquila postparto (Mueller et al., 2015). Otros estudios también han demostrado el efecto directo de la fecha de esquila sobre la RT y el punto de rotura de la mecha de lana, cambiando la posición del DMF mínimo en la mecha de lana (Hansford, 1997). Además la fecha de esquila puede influir en el peso de vellón (Arnold et al., 1984) y en el rendimiento (Warr et al., 1979; Arnold et al., 1984). La contaminación con MV puede ser controlada con la fecha de esquila, como por ejemplo evitando esquilar en los momentos donde se producen las mayores contaminaciones de los vellones, generalmente durante la fructificación de los pastizales (Warr et al., 1979; Arnold et al., 1984; Cottle, 2010). En este sentido, la esquila preparto en el NO de la Patagonia permite evitar el efecto de los habituales vientos de primavera que arrastran materiales (tierra y vegetales) que se depositan en los vellones reduciendo el RP (Mueller et al., 2005; Mueller, 2015). Debido la influencia ambiental en el desarrollo de la lana, la elección de la fecha de esquila es una herramienta de manejo con múltiples consecuencias productivas y económicas (Mueller, 2015).

La variación del diámetro a lo largo de las fibras de lana es el resultado de factores climáticos, genéticos, nutricionales, fisiológicos, sanitarios y de manejo mencionados anteriormente, que afectan de manera directa e indirecta la actividad folicular. El perfil de diámetro de fibras (PDF) es un conjunto de mediciones repetidas de diámetros, medidos secuencialmente a lo largo de la mecha, que permite examinar la manera en la cual los diámetros de fibras varían durante el periodo anual de crecimiento (Hansford et al., 1985; Brown et al., 1999 y 2002). Las características de los PDF están mayormente determinadas por las fluctuaciones estacionales de los pastizales (Doyle y Thompson, 1994; Brown et al., 1999 y 2002; Smith, 2006). A su vez, líneas genéticas e individuos (Brown et al., 1999 y 2002; Brown y Crook, 2005, Sacchero et al., 2010), estados fisiológicos (Corbett, 1979; Masters y Stewart, 1990, Sacchero et al., 2011), cargas animales asociadas a métodos de pastoreo (Doyle y Thompson, 1994; Cottle et al., 2013) y fechas de esquila (Sacchero et al., 2011; Campbell et al., 2011) repercuten también en las características de los PDF. El estudio de los PDF ofrece gran cantidad de información que permite describir el crecimiento de la lana y su comportamiento durante el procesamiento textil. Las características de los PDF están asociadas a las roturas de fibras durante el procesamiento industrial (Brown et al., 1999 y 2002, Brown y Crook, 2005). Una reducción en la RT afecta la calidad de la fibra
ya que genera un punto de rotura potencial durante el procesamiento industrial (Hansford y Kennedy, 1998). Generalmente el punto de rotura está asociado con la ubicación del diámetro mínimo en el PDF (Hansford y Kennedy, 1998). Por lo tanto, la manera en la cual el diámetro de fibras cambia a lo largo del perfil puede tener consecuencias en la calidad de lana. El estudio de los PDF permite avanzar en la comprensión de la variación del diámetro a lo largo de las fibras y su relación con el ambiente en donde se produce.

I.V Área de estudio

El área de estudio está ubicada en Patagonia norte e involucra dos regiones naturales de la provincia de Río Negro: la Patagonia Extra Andina Occidental y la Patagonia Extra Andina Oriental (Godagnone y Bran, 2009). Estas regiones abarcan el 92,6% de la superficie provincial (Godagnone y Bran, 2009).

![Figura 1.1. Área de estudio en la provincia de Río Negro, Argentina. Líneas diagonales indican la Región Natural Patagonia Oriental comprendida por las áreas ecológicas de Monte Austral (verde) y Monte Oriental (amarillo). La Región Natural Patagonia Occidental abarca las áreas ecológicas de Precordillera (rojo), Sierras y Mesetas Occidentales (gris) y Meseta Central (marrón). Puntos negros indican los establecimientos utilizados en el trabajo de tesis.](image-url)
La Patagonia Occidental comprende el 37,4% de la superficie provincial, y según la clasificación realizada por Bran et al., (2000 y 2005), esta región natural abarca las áreas ecológicas de Precordillera, Sierras y Mesetas Occidentales y Meseta Central:

- En Precordillera (PRE) el clima presenta un marcado gradiente de precipitaciones pasando en pocos kilómetros de 800 mm a 300 mm anuales, concentradas en otoño e invierno. La temperatura media anual ronda los 8ºC. Y su paisaje está caracterizado por relieves montañosos y sierras por lo general por encima de los 1000 m.s.n.m. Predominan los suelos franco arenosos (Molisoles Xéricos). La vegetación es de estepas graminosas con *Pappostipa speciosa* var. *major* “coirón amargo” y *Festuca pallescens* “coirón dulce”, con ingresos del bosque y se caracteriza por presentar mallines (alrededor del 5-10% de la superficie), que son áreas con vegetación azonal que se ubican en relieves plano-cóncavos, ocupando posiciones bajas del paisaje y que recibe aportes de agua superficial o subsuperficial, con anegamiento permanente o temporalño (León et al., 1998). Esta acumulación permite una alta producción de forraje (Lopez et al., 2005; Bonvissuto et al., 2008; Siffredi, 2011; Cremona, 2009), principalmente en primavera y verano de *Juncos balticus, Poa pratensis, Taraxacum officinale y Distichlis spp* (Godagnone y Bran, 2009).

- En la zona de Sierras y Mesetas (SYM) el clima es árido y frío con una temperatura anual media de 8 a 10ºC y precipitaciones que van de 300 mm a 150 mm concentradas en otoño e invierno. El relieve es de sierras, pedimentos mesetiformes y mesetas basálticas, por lo general por encima de los 900 m.s.n.m. Los suelos son poco desarrollados y baja materia orgánica (Aridisoles y Entisoles). Su vegetación principal es una estepa de arbustos bajos (*Mulinum spinosum* “neneo”, *Senecio spp.* “charcaos”) y coirones (principalmente *P. speciosa* var. *major* “coirón amargo” y *F. pallescens* “coirón dulce”). Presenta mallines en menor porcentaje que Precordillera (alrededor del 3% de la superficie) (Bran et al., 2000 y 2005).

- El área de Meseta Central (MC) se corresponde con los sectores más áridos del área de estudio con precipitaciones por debajo de los 200 mm. Su temperatura media anual se encuentra entre 8 y 12ºC. El relieve está compuesto por sierras, pedimentos mesetiformes y grandes bajos endorreícos, comprendidos entre 400 y 900 m.s.n.m., con suelos areno arcillosos pobres (Aridisoles y Entisoles). La
vegetación está caracterizada principalmente por estepas arbustivas bajas con arbustos como *Nassauvia glomerulosa* “colapiche”, *Nassauvia axillaris* “uña de gato” y *Chuquiraga avellaneda* “quilembay”, y estepas arbustivo-graminosas medias con arbustos como *Prosopis denudans* “algarrobillo patagónico” y *Lycium spp.* “yaoyin”. En el estrato graminoso la especie más común es *Jarava humilis* “coirón llama” y los mallines son escasos y salinos (Bran et al., 2000 y 2005). En las zonas más bajas se desarrollan estepas arbustivas halófitas de *Atriplex lampa* “zampa” y presenta características ecotonales con el área ecológica de Monte Austral.

A su vez la Patagonia Oriental ocupa un 55,2% de la extensión provincial (Godagnone y Bran, 2009), y abarca las áreas ecológicas del Monte Austral, y el Monte de Transición (Bran et al., 2000 y 2005).

- El Monte Austral (MA), presenta un clima árido con una temperatura anual media superior a los 13°C y precipitaciones que no alcanzan los 200 mm anuales. Su relieve está compuesto por peneplanicies y mesetas sedimentarias bajas con una altimetría inferior a 500 m.s.n.m. y con suelos dominantes de características pobres (Aridisoles y Entisoles). La vegetación es una estepa arbustiva media. La fisonomía predominante es la de una estepa arbustiva media (arbustos de 1 a 2 m de altura), con una cobertura vegetal total del 20 al 40%. Los arbustos principales son la *Larrea nitida* “jarilla crespa”, *Larrea divaricata* “jarilla hembra” y *Larrea cuneifolia* “jarilla macho” (otros géneros arbustivos son *Prosopis, Atriplex, Chuquiraga*). La *Stipa tenuis* “flechilla” es la principal constituyente del estrato graminoso (Bran et al., 2000 y 2005).

- El Monte Oriental (MO) corresponde a un clima semiárido, con precipitaciones de 200 a 400 mm anuales y una temperatura media de aproximadamente 15 o C. Su relieve está compuesto por planicies sedimentarias bajas con suelos arenoso-limosos, moderadamente alcalinos y de escasa cantidad de materia orgánica (Aridisoles). Predominan las estepas arbustivas con elementos arbóreos bajos, ya sea aislados (*Prosopis flexuosa* “algarrobillo”) o en pequeños bosquecillos (*Geoffraea decorticans* “chañar”) (Giogetti et al., 1997; Giogetti et al., 2000; Bran et al., 2000 y 2005). Presenta un estrato graminoso más rico con presencia de *Sporobolus cryptandrus* “esporobolo”, *Papostipa longiglumis* “flechilla grande”, *Papostipa papposa* “flechilla mansa”, *Pappophorum spp*
“papoforo” y *Trichloris crinita* “tricloris” (Giogetti *et al*., 1997; Godagnone y Bran, 2009). La cobertura vegetal total varía del 60 al 70% (Bran *et al*., 2000 y 2005).

Los sistemas producción en la región Patagónica Extra Andina son preponderantemente de ganadería ovina en todas las tipologías de productores asociados a la actividad. La región Patagónica Extra Andina Occidental, se caracteriza por poseer un alto porcentaje de pequeños productores y prácticamente el doble de explotaciones, respecto de la región Oriental (Easdale *et al*., 2009). El tipo minifundista es el que presenta la mayor proporción relativa en ambas regiones, aunque es comparativamente mayor en la Patagonia Extra Andina Occidental, aglomerando también la mayor proporción de existencias ganaderas con un predominio de sistemas ovinos, mixtos y caprinos (Easdale *et al*., 2009). Por otro lado, el tipo familiar capitalizado adquiere mayor relevancia en la región Oriental y es el que presenta la mayor proporción de existencias ganaderas en dicha región (Easdale *et al*., 2009). En esta región a medida que la escala productiva aumenta (de minifundistas a familiares capitalizados) aumenta también la proporción de existencias en sistemas dedicados a la producción bovina. En los tipos minifundistas con menores escalas productivas, la producción se distribuye entre sistemas bovinos y ovinos (Easdale *et al*., 2009).

La principal actividad ganadera en la región patagónica extra-andina es la cría de ovinos Merino para lana y carne. Esta actividad se realiza casi exclusivamente sobre pastizales naturales bajo condiciones extensivas (Golluscio *et al*., 1998) y con escasas inversiones en infraestructura (Easdale *et al*., 2009). La conformación y el funcionamiento de estos sistemas están productivamente marcados por una fuerte dependencia de los recursos naturales y un bajo nivel de aplicación de insumos (Easdale *et al*., 2009; Villagra y Giraudo, 2010). Las pariciones se producen generalmente en primavera y la señalada se produce tres meses después durante el verano, sin embargo la temporada de pariciones puede diferir en hasta tres meses entre los extremos longitudinales de la región (Coronato, 1999). Fluctuaciones ambientales influyen fuertemente afectando índices demográficos de las poblaciones de ovinos, como la tasa de señalada (cordero logrado por madres en servicio) (Irazoqui, 1981; Coronato, 1999) y la sobrevivencia de animales (Hall y Paruelo, 2006). Factores tales como la depredación, la nutrición y el estrés por frío determinan pérdidas de corderos del 20 al 50% en la región (Mueller, 1980; Giraudo, 2002; Villagra, 2002), por lo tanto la producción de carne es fluctuante (Barrera, 1991). En este contexto, una de las principales características de la producción ovina en la Patagonia es que la producción de
lana es menos variable que la de carne, y aun frente a condiciones ambientales extremas, brinda una fuente más estable de ingresos económicos al productor (Villagra, 2005, Easdale y Rosso, 2010). Los animales son esquilados una vez al año generalmente al preparto debido principalmente a los beneficios en términos de mayor sobrevivencia y peso de los corderos, y a las mejores que produce en la calidad de lana (Mueller, 2015). Lanas Merino patagónicas abarcan un rango de 17 a 23 (μm) (Saccher et al., 2011; Villagra 2005; Mueller et al., 2005; Mueller et al., 2010; Mueller et al., 2016a), caracterizándose las lanas Merino patagónicas, en general, por su buen color y baja contaminación con vegetales (Mueller et al., 2005).

La conformación y el funcionamiento de los sistemas ganaderos extensivos dedicados a la cría ovina en la Patagonia Extra Andina están expuestos al impacto de factores de disturbio ambientales como sequías prolongadas y erupciones volcánicas. La región Patagónica Extra Andina atravesó un proceso de sequía durante el periodo 2007-2012, produciéndose de manera espacialmente heterogénea y presentando una merma de precipitaciones de entre un 30% y un 60% en comparación con medias históricas para diferentes localidades de la provincia de Río Negro (Villagra et al., 2011). Este evento coincidió con la erupción volcánica del Cordón Caulle-Puyehue ocurrida en el año 2011 formando un gradiente oeste-este de depósitos de ceniza (Gaitán et al., 2011). Los depósitos de cenizas tuvieron un impacto directo sobre el ganado, tales como la acumulación de cenizas sobre el cuerpo, problemas de visión, modificaciones del comportamiento nutricional y desgaste dentario, además de impactos indirectos mediante la reducción de la disponibilidad de agua y forraje (Wilson et al., 2010; Robles et al., 2012). Estos sucesos generaron diferentes impactos en los sistemas ganaderos, registrándose niveles de mortandad de hacienda a nivel predial y de parajes de hasta el 80% (Easdale y Villagra, 2012), afectando también la producción y calidad de las fibras (Easdale et al., 2014).

En la actualidad la actividad ganadera de ovinos Merino sigue siendo la principal actividad ganadera en las regiones áridas y semiáridas de la provincia de Río Negro. La producción de lana es uno de los principales productos de esta actividad y una fuente relevante de ingresos económicos de más de 2300 familias que viven en las regiones más despobladas e inhóspitas de la provincia (DGECyC, 2010). Sumado a esto, es la actividad económica motora para los 6 departamentos menos habitados de la provincia (Pilcaniyeu, Ñorquinco, El Cuy, 9 de Julio, 25 de Mayo y Valcheta). Por lo tanto, la ganadería ovina es de fundamental importancia en el 56% del territorio de la provincia (DGECyC, 2010). Esta
producción se lleva a cabo en una amplia superficie caracterizada por una marcada heterogeneidad biofísica (León et al., 1998; Paruelo et al., 1998a; Bran et al., 2000 y 2005; Jobaggy, 2002; Godagnone y Bran, 2009) donde existen diversas tipologías de productores asociados a la actividad (Easdale et al., 2009). A su vez, estos sistemas ganaderos ovinos extensivos son fuertemente afectados por fluctuaciones ambientales, y en muchos casos son expuestos a factores de perturbación como sequías prolongadas y depósitos de cenizas provenientes de erupciones volcánicas. A pesar de esta realidad productiva y de la importancia que tiene esta actividad para la región, se desconoce la variabilidad de la calidad de lana a escala regional. Realizar un estudio exploratorio a escala regional de la producción y calidad de lana desde una perspectiva espacial y temporal aportará información para tener un conocimiento más acabado sobre su variabilidad. Esto permitiría contextualizar diferencialmente el diseño e implementación de políticas públicas, innovaciones tecnológicas y estrategias de manejo adaptadas a las necesidades de cada región. De acuerdo a lo expuesto, las características ambientales y productivas de la provincia de Río Negro constituyen una excelente área de estudio en este sentido.

I.VI Objetivos de la tesis

El objetivo general de esta tesis es estudiar la variabilidad en la calidad de lana en la provincia de Río Negro y su dinámica en el tiempo. Los objetivos específicos son los siguientes:

Objetivo específico 1: i) Determinar los parámetros que mejor describan la variabilidad de la calidad de lana de establecimientos ubicados en la provincia de Río Negro; y ii) determinar la dinámica temporal de los parámetros de calidad de lana en dichos establecimientos durante el periodo 2002-2015.

Objetivo específico 2: Analizar la variación del Perfil de Diámetro de Fibras durante el periodo de crecimiento 2014-2015 en establecimientos de la provincia de Río Negro.

La tesis está organizada en cuatro capítulos. En los capítulos dos y tres se abordan los objetivos específicos uno y dos, respectivamente, mientras que en el capítulo cuatro se discuten en términos generales los principales resultados obtenidos en el marco de esta tesis, se evalúan las futuras aplicaciones que de ellos se derivan y se sintetizan las principales conclusiones.
CAPÍTULO 2
VARIABILIDAD DE LA CALIDAD DE LANA EN LA PROVINCIA DE RÍO NEGRO Y SU DINÁMICA EN EL TIEMPO

II.I Introducción

En la región árida y semiárida de la Patagonia, la principal actividad ganadera es la cría de ovinos Merino para lana y carne. La producción de lana sigue siendo uno de los principales productos y una fuente relevante de ingresos económicos de los productores de la región (Villagra, 2005; Villagra y Giraudo, 2010; Villagra et al., 2015). En Río Negro, la mayor proporción de los sistemas ganaderos son de tipo familiar minifundista, el resto se conforma por un estrato familiar capitalizado y un pequeño porcentaje de explotaciones de tipo empresarial (Easdale et al., 2009, Villagra et al., 2015). Esta actividad se desarrolla en diferentes condiciones biofísicas determinadas principalmente por aspectos climáticos y por un complejo geomorfológico que dan lugar a diferentes suelos y tipos de vegetación (León et al., 1998; Bran et al., 2000 y 2005, Jobbagy et al., 2002). La estacionalidad del crecimiento de la vegetación y la variabilidad interanual de su productividad influye sobre la dinámica productiva de la actividad ganadera ya que se realiza casi exclusivamente sobre pastizales naturales bajo condiciones extensivas (Golluscio et al., 1998; Mueller, 2010; La Torraca, 2015). Estas condiciones ambientales influyen sobre los sistemas de producción afectando índices demográficos de las poblaciones de ovinos, como la tasa de señalada (cordero logrado por madres en servicio) (Irazoqui, 1981; Coronato, 1999) y la sobrevivencia de animales (Hall y Paruelo, 2006). En este contexto, una de las principales características de la producción ovina en la Patagonia es que la producción de lana es menos variable que la de carne, y aun frente a condiciones ambientales extremas, brinda una fuente más estable de ingresos económicos al productor (Villagra, 2005; Easdale y Rosso, 2010). Sin embargo, la calidad de lana es sensible a la variabilidad ambiental, afectando al precio final de la lana.

El ambiente puede condicionar el crecimiento de la lana y sus características de calidad. Las fluctuaciones en la disponibilidad forrajera producen una variación significativa en el crecimiento de la lana (Schlink et al., 1999), en la morfología folicular (Hynd et al., 1997) y en el diámetro medio de fibras (DMF) (Thompson et al., 1994; Adams y Briegel, 1998). El DMF puede disminuir significativamente bajo condiciones de estrés nutricional como producto de condiciones ambientales adversas (Adams y Briegel, 1998; Sacchero et al.,
Esta reducción en el DMF puede estar acompañada por una reducción de la resistencia a la tracción (RT) (Adams y Briegel, 1998; Thompson y Hynd, 1998), que afecta la calidad de la fibra ya que genera un punto de rotura potencial durante el procesamiento industrial de la lana (Elvira, 2005). Por otro lado, el ambiente donde se desenvuelve la cría de ovinos termina repercutiendo en los contenidos de impurezas y contenidos de materia vegetal (MV) en los vellones (Atkinson, 1989; Couchman et al., 1992; Rogan, 1995; Lance, 2000). Por ejemplo, en años secos y ventosos y en regiones con vegetación arbustiva y xerófita, el MV, impurezas y tierra en los vellones de los animales aumenta (Villagra y Giraudo, 2010). A su vez en regiones con mayor presencia de especies anuales, que en determinados años fructifican y se adhieren al vellón podrían estar aumentando los contenidos de semillas en la composición de MV (Lance, 2000; Campbell, 2006). En regiones con precipitaciones abundantes, Rogan (1995) observó que los lotes de lana contenían menores contenidos de MV en comparación a regiones semiáridas. Altos contenidos de MV, impurezas y tierra en los vellones disminuyen el rendimiento al peine (RP) (Lance, 2000; Elvira, 2005). Por otra parte, las erupciones volcánicas son un factor de perturbación en la región, que se repite con cierta frecuencia afectando extensas áreas de pastoreo a través de los depósitos y acumulación de cenizas volcánicas. Estos disturbios generan impactos sobre los animales (Wilson et al., 2010; Robles et al., 2012), y afectaron de manera directa o indirecta la producción y calidad de la lana, especialmente el DMF, RT y RP (Easdale et al., 2014). Por lo tanto el ambiente constituye una fuente de variación importante de la calidad de lana de regiones con alta heterogeneidad biofísica.

A pesar de la importancia que tiene la producción ovina para las regiones áridas y semiáridas de la Patagonia, siendo la producción de lana una de las principales fuentes de ingreso predial, se desconoce la variabilidad espacial de la calidad de lana a escala regional. Teniendo en cuenta la influencia ambiental sobre los parámetros de lana, la heterogeneidad biofísica de la provincia de Río Negro constituye una excelente área de estudio en este sentido. Este capítulo parte de la premisa que la heterogeneidad biofísica, la dinámica temporal de los disturbios ambientales que han acontecido recientemente en la región (e.g. sequías, caída de cenizas volcánicas), como así también la diversidad socio-productiva, determinan diferentes condiciones para la producción ovina y constituyen una fuente de variación espacial y temporal que incide en la calidad de lana. Este capítulo contiene los objetivos: i) determinar los parámetros que mejor describan la variabilidad de la calidad de lana de establecimientos ubicados en la provincia de Río Negro; y ii) analizar
la dinámica de los parámetros de calidad de lana en dichos establecimientos durante el periodo 2002-2015.

II.II Materiales y métodos

II.II.I Área de estudio

El área de estudio está ubicada en Patagonia norte e involucra dos regiones naturales de la provincia de Río Negro: i) la Patagonia Extra Andina Occidental (Patagonia Occidental) y ii) Patagonia Extra Andina Oriental (Patagonia Oriental) (Fig. 2.1). Ambas regiones abarcan el 92,6% de la superficie provincial (Godagnone y Bran, 2009). Estas regiones difieren en sus características biofísicas y socio-productivas (Capítulo 1, sección I.V).

Figura 2.1. Área de estudio en la provincia de Río Negro, Argentina. Líneas diagonales indican la Región Natural Patagonia Oriental comprendida por las áreas ecológicas de Monte Austral (verde) y Monte Oriental (amarillo). La Región Natural Patagonia Occidental abarca las áreas ecológicas de Precordillera (rojo), Sierras y Mesetas Occidentales (gris) y Meseta Central (marrón). Puntos negros indican los establecimientos utilizados en el análisis.
II.II.II Fuente de datos

Se utilizaron registros anuales de análisis de muestras comerciales de lana realizados por el Laboratorio de Fibras Textiles INTA Bariloche de ovinos Merino y de esquila preparto bajo metodología del Programa Nacional de Calidad de Lana (PROLANA). Estas muestras provienen del calado de fardos correspondientes a esquilas realizadas entre los meses de Agosto y Octubre de cada año, y a la categoría lana “vellón” (no incluye lana de barriga, garras, teñidas por orina y heces, barrido de playa de esquila, recortes, bajo mesa). Esta categoría representa entre el 80 al 85% del total de la producción de cada establecimiento. Cada muestra PROLANA está acompañada de una planilla de romaneo que se utilizó como fuente de datos para el presente estudio. En dicha planilla, los productores declaran información detallada de la fecha de esquila, raza animal, cantidad de animales esquilados, categoría de animales esquilados, cantidad total de lana (Kg) discriminada en lana vellón y no vellón, y cantidad de fardos obtenidos.

Estos análisis se realizaron aplicando métodos de ensayo regulados por la Federación Lanera Internacional (IWTO). En este estudio, los parámetros de calidad de lana evaluados son: Diámetro Medio de Fibras (DMF), Rinde al Peine (RP), Materia Vegetal (MV), Resistencia a la Tracción (RT) y Largo de Mecha (LM). El DMF es el promedio de los diámetros expresado en micrones (µm). La determinación del DMF se realizó en base a las normas técnicas IWTO 47 o IWTO 12. El RP (%) es la cantidad de lana peinada a obtener (i.e. cantidad de lana expresada como porcentaje de lana sucia) luego del proceso industrial. La determinación del RP (%), requiere primero la cuantificación de la base lana (masa seca de fibras, libre de toda materia vegetal, cenizas y de impurezas insolubles en álcali, expresada como un porcentaje de la masa de la muestra) y el MV (%) (masa seca de fracciones de abrojos, núcleos duros, ramitas, semillas y hojas, expresada como un porcentaje de la masa de la muestra), ambos se calcularon como los demás parámetros siguiendo la norma técnica IWTO 19. La RT es el promedio de la fuerza necesaria para romper una mecha de lana y se mide en Newton por Kilotex (N/ktex). Las mediciones de LM (mm) y RT (N/ktex) se realizaron de acuerdo a la norma técnica IWTO 30, utilizando mechas de lana a partir de muestras comerciales. Además de los parámetros de calidad de lana se utilizó la cantidad total de lana vellón en Kg sucio (CLV), determinado a partir de la información declarada en las planillas de romaneo PROLANA. A partir del CLV, se determinó la escala productiva de los establecimientos, utilizando una referencia de 3,75 Kg de Vellón por animal y el criterio de 1200 UGO (Easdale et al., 2009), para discriminar entre establecimientos capitalizados y no capitalizados. Se clasificaron los establecimientos
analizados en tres escalas productivas: pequeña (hasta 4.500 Kg); intermedia (más de 4.500 Kg hasta 15.000 kg) y grande (más de 15.000 Kg).

El periodo de estudio incluye desde el año 2002 hasta el año 2015, y contempla fuentes de variación en las condiciones climáticas. El mismo abarca periodos de sequía (2007-2012), produciéndose de manera no uniforme en la zona de estudio y presentando precipitaciones entre un 30% y un 60% por debajo de medias históricas para diferentes localidades de la provincia de Río Negro (Easdale y Rosso, 2010; Villagra et al., 2011). Este período considera también la erupción volcánica del cordón Caulle-Puyehue ocurrida en el año 2011 formando un gradiente Oeste-Este de depósitos de ceniza (Gaitán et al., 2011).

Los establecimientos evaluados en este estudio (n=113, Fig. 1) fueron considerados en base a los siguientes criterios: a) establecimientos con información georreferenciada ubicados en la provincia de Río Negro, b) ubicados en dos Regiones Naturales (Patagonia Occidental y Oriental) y dentro de las Áreas Ecológicas (PRE, SYM, MC, MA y MO), c) con disponibilidad de datos de al menos 10 años de análisis comerciales, d) que refieran a distintas escalas productivas según CLV y e) que realicen esquila preparto de ovinos Merino bajo metodología PROLANA.

II.II.III Análisis de datos

Para el análisis de la variabilidad de la calidad de lana de establecimientos ubicados en la provincia de Río Negro se utilizaron técnicas de estadística multivariada: Componentes Principales (ACP) y de Conglomerados. Previo a la aplicación de dichas técnicas, se realizaron análisis preliminares de la información, se calcularon estadísticos de resumen, se observó la distribución de los parámetros y se comprobó la presencia de valores atípicos. Teniendo en cuenta que el propósito es realizar un análisis global del periodo estudiado y ante la posibilidad de la presencia de distribuciones marcadamente asimétricas de los parámetros evaluados, se utilizó la mediana como valor representativo para CLV, DMF, MV, RT, LM y RP por cada establecimiento. Estos datos se estandarizaron con promedios igual a cero y varianza igual a uno, para asegurar una igual participación de los parámetros en los análisis sin importar su escala de medición. La región de origen (Región Natural y Área Ecológica) y la escala de productiva de los establecimientos, participaron del análisis en calidad de variables suplementarias como aporte a la interpretación de los resultados. A su vez, para el análisis de Conglomerados se utilizó el método de Ward, y para la validación de los conglomerados formados se utilizó el índice de silueta propuesto por Rousseeuw (1987).
Para estudiar la dinámica temporal de los parámetros de calidad de lana se realizó un análisis multivariado de la información aplicando la metodología Statis Dual, técnica de análisis de múltiples tablas de datos. Cada una de las tablas refiere a un año del período de tiempo estudiado (14 tablas en total) y contienen la información de CLV, DMF, MV, RT, LM y RP de cada año considerado (2002 a 2015), correspondiente a los establecimientos. Debido a que dicho análisis se centra en las variables, estas mismas son fijas en cada una de las tablas de datos analizadas a diferencia de los establecimientos los cuales pueden variar entre las mismas. Este análisis consta de las siguientes etapas sucesivas: i) *Estudio de la interestructura*: estudia la similitud global entre las diferentes tablas de datos, en adelante denominadas “años”, realizando una comparación general de la estructura de los 14 años, y ii) *Estudio de la intraestructura*: consiste en la búsqueda de un espacio compromiso que contiene la información común o consenso de todas las tablas de datos, permitiendo resumir la relación entre las variables durante el período estudiado. Además del análisis de la información consenso, se representan las trayectorias de las variables sobre dicho espacio compromiso. Todos los análisis se realizaron con software R versión 3.3.3 (R Development Core Team, 2017).

II.III Resultados

II.III.I Análisis correspondiente al periodo global estudiado

En esta primera parte se muestran los resultados del análisis correspondiente al período global estudiado, los cuales provienen del análisis de la información que se presenta en el Anexo II.I (Tabla 2.1.1). Respecto al análisis de Componentes Principales, los primeros dos ejes explicaron el 60,66% de la variabilidad (Fig. 2.2.). Cada punto representa a un establecimiento y su distribución en el plano factorial se grafica en la figura mencionada. Los parámetros más influyentes en la formación de este primer plano factorial que determinaron la ubicación de cada establecimiento en ese plano fueron el RP, RT, MV y DMF. El primer eje explicó un 36,52% de la variabilidad y se encuentra relacionado principalmente con (entre paréntesis se indica la correlación con el respectivo eje): RP (0,84) y RT (0,78). Esto significa que a medida que nos movemos de izquierda a derecha del gráfico, los establecimientos van presentando mayores valores en RP y RT. Mientras que el segundo eje explicó el 26,34% de la variabilidad y se encuentra relacionado fundamentalmente con (entre paréntesis se indica la correlación con el respectivo eje): MV (0,83) y DMF (0,74). Al igual que lo explicado para el eje 1, los valores de MV y DMF van en aumento a medida que nos movemos hacia la parte superior del gráfico.
Figura 2.2. Primer plano factorial del Análisis de Componentes Principales de la información correspondiente al periodo global estudiado. Representación de los parámetros de lana y de los establecimientos (puntos negros) en el primer plano factorial. Entre paréntesis se muestran los porcentajes de variancia explicada por cada uno de los ejes.

En el primer plano factorial del análisis de Componentes Principales no se destacó un agrupamiento claro de los establecimientos que permita caracterizarlos en función de sus parámetros de lana (Fig. 2.2.). Al explorar los ejes factoriales sucesivos tampoco permitió distinguir agrupaciones de establecimientos, no aportando información relevante. Esta distribución de los establecimientos en el primer plano factorial se corroboró con el resultado de Conglomerados (resultados presentados en la Fig. 2.1.1 del Anexo II.I). En dicho análisis se conformaron tres grupos con un coeficiente de correlación cofenetica de 0,42, y un promedio de silueta de 0,23 (Fig. 2.3.). Este promedio indicó una estructura de grupos débil (Rousseeuw, 1987), lo cual implica que no existen límites netos entre los mismos. A su vez, el índice de silueta de cada grupo formado fue similar al promedio general, lo que destaca que ninguno de ellos tuvo una estructura de grupo definida que se diferencie de los demás.
Figura 2.3. Índice de silueta para los grupos formados del análisis de Conglomerados. Número de establecimientos asignados y promedio de silueta (entre paréntesis) para cada grupo. Valores cercanos a 1 indican mejor calidad de representación del establecimiento dentro del grupo asignado.

La distribución en el plano factorial de los establecimientos identificados según la variable suplementaria Región Natural se puede observar en la Fig. 2.4. En dicha Figura, la mayoría de los establecimientos ubicados en la Patagonia Oriental tomaron valores negativos con respecto al Eje 1, lo que indicó medianos a bajos porcentajes de RP y RT en sus lotes de lanas. Por otro lado, los establecimientos de la Patagonia Occidental tomaron valores positivos y negativos con respecto al Eje 1, registrando una mayor variabilidad en los parámetros de RP y RT en estos establecimientos. A su vez, los establecimientos manifestaron una organización según el Eje 2, principalmente relacionado con los parámetros MV y DMF. Los establecimientos ubicados en la Patagonia Oriental solo tomaron valores positivos con respecto al segundo eje mientras que la mayoría de los pertenecientes a la Patagonia Occidental solo tomaron valores negativos. Esta distribución mostró que los establecimientos de la Patagonia Oriental poseen lotes de lana de mayor DMF y MV, respecto de aquellos ubicados en la Patagonia Occidental (información adicional presentada en la Tabla 2.1.2 del Anexo II.I).
Figura 2.4. Primer plano factorial del Análisis de Componentes Principales de la información correspondiente al periodo global estudiado. Establecimientos identificados por su región natural. Entre paréntesis se muestran los porcentajes de variancia explicada por cada uno de los ejes.

La distribución de los establecimientos en el plano factorial identificados según la variable suplementaria Áreas Ecológicas se puede observar en la Fig. 2.5. En dicha Figura, el Eje 1 separa los establecimientos de PRE en el cuadrante inferior derecho, y los de MA en el cuadrante superior izquierdo. Esta distribución, indicó que los establecimientos de PRE registraron lotes de lana con mayores porcentajes de RP y RT que aquellos ubicados en MA (información adicional presentada en la Tabla 2.1.3 del Anexo II.I). Por otro lado, los establecimientos ubicados en SYM y MC demostraron un alto grado de solapamiento y dispersión en el plano factorial, especialmente sobre el Eje 1, indicando una alta variabilidad en los porcentajes de RP y RT en sus lotes de lana.
Figura 2.5. Primer plano factorial del Análisis de Componentes Principales de la información correspondiente al período global estudiado. establecimientos identificados por su Área Ecológica. Entre paréntesis se muestran los porcentajes de variancia explicada por cada uno de los ejes.

En las Figuras 2.6 y 2.7 se presentan la ubicaciones geográficas de los establecimientos, los cuales se encuentran representados según sea su magnitud en los primeros dos ejes del análisis de Componentes Principales. En la Figura 2.6 se destaca que los establecimientos ubicados en el extremo Oeste del área de estudio registraron lotes de lana con mayores porcentajes de RP y RT. Por otro lado, en la Figura 2.7 se observa que los establecimientos ubicados en el extremo Este del área de estudio registraron lotes de lana con mayores valores de MV y DMF. La zona central del área de estudio manifestó una mayor variabilidad en los parámetros de calidad de lana a diferencia de los extremos longitudinales.
Figura 2.6. Representación geográfica del análisis de Componentes Principales. Establecimientos identificados en colores por sus coordenadas en el Eje 1 y por símbolos según su escala productiva: grande (estrellas), intermedia (círculos) y pequeña (triángulos).
Figura 2.7. Representación geográfica del análisis de Componentes Principales. Establecimientos identificados en colores por sus coordenadas en el Eje 2 y por símbolos según su escala productiva: grande (estrellas), intermedia (círculos) y pequeña (triángulos).

En cuanto a la escala de productiva de los establecimientos, se observó una predominancia de las escalas intermedias y pequeñas con un alto grado de solapamiento y dispersión en el plano factorial (Fig. 2.8). Esta distribución indicó una alta variabilidad en la calidad de lana en estos establecimientos. Solo los establecimientos de mayor escala se destacaron por presentar lotes de menor variabilidad, ya que solo se ubicaron en el cuadrante inferior derecho. Dichos establecimientos se diferenciaron del resto con lotes de lana con mayor RP, RT y menor DMF y MV (información adicional presentada en la Tabla 2.1.4 del Anexo II.1).

Figura 2.8. Primer plano factorial del Análisis de Componentes Principales de la información correspondiente al periodo global estudiado. Establecimientos identificados por su escala productiva. Entre paréntesis se muestran los porcentajes de variancia explicada por cada uno de los ejes.
II.III.II Análisis de la dinámica temporal de los parámetros de calidad de lana

Respecto al análisis del Statis Dual, el estudio de la interestructura registró una fuerte estructura común entre los años estudiados, evidenciada en los elevados coeficientes de correlación vectorial (coeficientes RV) (Robert y Escoufier, 1976), entre los mismos. La matriz completa de estos coeficientes, de dimensión 14x14, se encuentra en el Anexo II.I (Tabla 2.1.2). En la Tabla 2.1, se presenta para cada año, el promedio de los coeficientes RV correspondientes a ese año con cada uno de los demás años contemplados en el estudio. En dicha tabla se evidenció una alta correlación entre los años, esto es, una fuerte similitud a nivel temporal en la asociación entre las variables estudiadas.

<table>
<thead>
<tr>
<th>Año</th>
<th>Promedio del Coeficiente RV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>0,91 (0,018)</td>
</tr>
<tr>
<td>2003</td>
<td>0,95 (0,011)</td>
</tr>
<tr>
<td>2004</td>
<td>0,93 (0,012)</td>
</tr>
<tr>
<td>2005</td>
<td>0,92 (0,014)</td>
</tr>
<tr>
<td>2006</td>
<td>0,94 (0,011)</td>
</tr>
<tr>
<td>2007</td>
<td>0,94 (0,011)</td>
</tr>
<tr>
<td>2008</td>
<td>0,95 (0,011)</td>
</tr>
<tr>
<td>2009</td>
<td>0,92 (0,015)</td>
</tr>
<tr>
<td>2010</td>
<td>0,94 (0,007)</td>
</tr>
<tr>
<td>2011</td>
<td>0,84 (0,015)</td>
</tr>
<tr>
<td>2012</td>
<td>0,90 (0,011)</td>
</tr>
<tr>
<td>2013</td>
<td>0,93 (0,007)</td>
</tr>
<tr>
<td>2014</td>
<td>0,92 (0,008)</td>
</tr>
<tr>
<td>2015</td>
<td>0,93 (0,009)</td>
</tr>
</tbody>
</table>
La representación gráfica de la estructura de los 14 años estudiados se explicó por los primeros dos ejes del análisis de la interestructura (Fig. 2.9), que juntos acumularon el 96,26% de la variabilidad total. En dicha figura la distribución de los años en el plano factorial registró una fuerte correlación con el primer eje y un marcado solapamiento general. Este comportamiento indicó que en la mayor parte del periodo estudiado, la relación entre los parámetros de lana se mantuvo relativamente estable. Sin embargo, el año 2011 manifestó un alejamiento de la estructura común, evidenciado en la separación con respecto a los restantes años (Fig. 2.9), obteniendo el menor de los promedios de los coeficientes RV (0,84). Este comportamiento demostró que durante el año 2011 se produjeron las mayores alteraciones en las relaciones entre los parámetros estudiados. Luego en orden cronológico, los siguientes años (2012 y 2013) se acercaron progresivamente hacia la estructura común, indicando un proceso de estabilización en los parámetros de lana estudiados.

![Diagrama](image)

Figura 2.9. Primer plano factorial del análisis de Interestructura del Statis Dual de la información de los parámetros de producción y calidad de lana de la provincia de Río Negro para el periodo 2002-2015. Triángulos indican las tablas de datos correspondientes a los 14 años contemplados en el estudio. Entre paréntesis se muestran los porcentajes de variancia explicada por cada uno de los ejes.
Respecto de la intraestructura, el primer plano factorial explicó el 52,37% de la variabilidad total de la información consenso (Fig. 2.10). Los parámetros de lana más influyentes en la formación del espacio compromiso representativo de los 14 años contemplados fueron: RP, RT, DMF y MV. El Eje 1 del espacio compromiso explicó el 28,19% de la varianza total de los datos, y la forma en la cual se distribuyó esta varianza estuvo determinada principalmente por los parámetros (entre paréntesis se indica la correlación con el Eje 1): RP (0,95) y RT (0,76), registrándose una correlación positiva entre ambos. El parámetro CLV se correlacionó de forma negativa con el Eje 1, teniendo una contribución menor en la determinación del mismo. El eje 2 explicó el 24,18% de la varianza total de los datos y estuvo determinado fundamentalmente por los parámetros (entre paréntesis se indica la correlación con el Eje 2): DMF (0,92) y MV (0,76). Por último, LM estuvo pobremente correlacionado con ambos ejes.

Figura 2.10. Primer plano factorial del análisis de Intraestructura. Espacio compromiso para cada uno de los parámetros de lana estudiados. Entre paréntesis se muestran los porcentajes de variancia explicada por cada uno de los ejes.
La representación de las trayectorias de los parámetros de lana en el espacio compromiso se presentan en la Fig. 2.11.

a) MV y RP

b) DMF y RT
c) LM y CLV

Las mayores amplitudes en las trayectorias se observaron generalmente en los años 2011 y 2012, siendo estos años los que se alejaron más notoriamente de la información consenso. En estos años se produjeron los mayores cambios en la correlación de los parámetros analizados, los cuales difirieron de la evolución media (consenso). Por ejemplo, en las trayectorias de los parámetros MV y RP el alejamiento del año 2011 se manifiesta más claramente (Fig. 2.10 a). Luego en orden cronológico, los siguientes años (2012, 2013) se acercaron hacia el espacio consenso, indicando un proceso de estabilización en la relación de estos parámetros con respecto a los demás. Trayectorias similares en su recorrido pero de menor amplitud mostraron los parámetros DMF y RT (Fig. 2.10 b). Los parámetros LM y CLV demostraron trayectorias de menor amplitud (Fig. 2.10 c), lo que está relacionado con su menor influencia en la determinación del espacio compromiso.
II.IV. Discusión

La calidad de lana registró una relativa homogeneidad entre los establecimientos evaluados al no exhibir agrupamientos específicos entre los mismos. Esta particularidad regional podría estar relacionada con una capacidad de amortiguación de la producción de lana frente a la variabilidad ambiental de la región (Villagra, 2005; Easdale y Rosso, 2010). Esto estaría indicando que a pesar del fuerte control climático sobre la producción lanera, la expresión fenotípica en los parámetros estudiados estaría siendo amortiguada por diversas características propias del sistema productivo. Por ejemplo, la capacidad de la raza Merino de tolerar un amplio rango de condiciones climáticas (Bottomley, 1979) y producir en ambientes áridos y semiáridos (Cottle, 2010, Villano et al., 2012), mediante adaptaciones fisiológicas (Cottle 2010), como así también producto de una selección animal para adaptarse a dichos ambientes (Taylor, 2006; Mueller, 2016b). También es importante resaltar que dicha relativa homogeneidad estaría influenciada en este estudio por decisiones metodológicas asociadas a que solo se incluyó en el análisis lana de ovinos Merino y esquila preparto. Estas decisiones se sustentan debido a una predominancia de la cría de ovinos Merino en la región (Villagra y Giraudo, 2010; La Torraca, 2015), relacionada con cuestiones culturales y de mercado (Bandieri, 2005; Coronato, 2010). Por otro lado, la implementación de tecnologías de producción, como la esquila preparto (Mueller, 2015) podrían estar influyendo positivamente en la capacidad de producir lanas de mejor calidad en la región. Por lo tanto, los resultados de esta tesis estarían reflejando muchas de las características en común que poseen los establecimientos analizados, las cuales se estarían reflejando en los parámetros de calidad de lana.

Los parámetros de calidad de lana fueron más sensibles en describir la variabilidad entre los establecimientos, a diferencia del parámetro de producción (CLV). Que la producción de lana haya sido menos sensible se relaciona con que aun en años climáticamente adversos la producción de fibras es más estable que la producción de carne, en sistemas extensivos (Villagra 2005, Easdale y Rosso 2010, Villano et al., 2012). En el mismo sentido, Mueller et al., en el año 2001 indicaron que el efecto de años climáticamente adversos sobre la calidad de lana puede ser más que proporcional al efecto sobre la producción. En este contexto, una de las principales características de la producción de lana es que brinda una fuente más estable de ingresos económicos al productor (Villagra 2005; Easdale y Rosso, 2010; Villagra et al., 2015), demostrando la importancia que tiene esta actividad en regiones
áridas y semiáridas. Sin embargo la calidad de lana es sensible a la variabilidad ambiental alterando sus cualidades y por lo tanto, el precio final.

La variabilidad de ciertos parámetros de calidad de lana estaría asociada a la ubicación geográfica de los establecimientos. Dentro de la relativa homogeneidad regional entre los establecimientos analizados, el RP, RT, DMF y MV manifestaron una distribución en forma de gradiente de cambio con orientación Oeste-Este (Fig. 2.4, 2.5, 2.6 y 2.7). Dichas asociaciones sugerirían que las diferencias biofísicas dentro del área de estudio (León et al., 1998; Bran et al., 2005; Godagnone y Bran, 2009) podrían explicar en parte la variabilidad en la calidad de lana observada. Por ejemplo, la mayor presencia de vegetación arbustiva de estrato medio a alto y la mayor presencia de especies anuales en la Patagonia Oriental (León et al., 1998; Godagnone y Bran, 2009) aumentaría los contenidos de MV (Lance, 2000; Campbell, 2006) disminuyendo el RP (Elvira, 2005). A su vez, un estrato graminoso con mayor cobertura vegetal característico de PRE (León et al., 1998; Bran et al., 2000; Godagnone y Bran, 2009) podría estar influyendo en menores contaminaciones por impurezas en los vellones y mayores RP con respecto a los establecimientos del MA. En este sentido, en ambientes contrastantes de Australia también se registran diferencias en el RP, las cuales se producen principalmente por diferencias en los contenidos de impurezas y MV (Couchman et al., 1992; Lance, 2000). El DMF y RT han demostrado ser sensibles a variaciones en la disponibilidad y calidad de los pastizales (Hynd et al., 1997; Adams y Briegel, 1998; Thompson y Hynd, 1998), como así también frente a factores de disturbio ambientales (Easdale et al., 2014). Por ejemplo, las mayores fluctuaciones en la productividad de los pastizales del MA (Easdale y Aguiar, 2012) promoverían mayores variaciones en el DMF (Adams y Briegel, 1998) provocando reducciones en la RT (Brown et al., 1999 y 2002; Brown y Crook, 2005) en comparación a los establecimientos de PRE. Esta mayor sensibilidad se relaciona con la mayor influencia que tuvieron los parámetros de calidad (RP, RT, MV y DMF) en la diferenciación de los establecimientos. Estos resultados sugieren que a pesar de la alta heredabilidad de algunos caracteres productivos para la raza Merino como por ejemplo el DMF (Mueller, 2010), existiría también una influencia significativa del ambiente sobre la variabilidad en las características de la lana que debieran estudiarse con mayor detalle a futuro.

La variabilidad de la calidad de lana estaría vinculada con la escala productiva de los establecimientos estudiados. Las escalas productivas que predominaron fueron las intermedias y pequeñas, demostrando una alta variabilidad en los parámetros de calidad
de lana (Fig. 2.8). Esta predominancia se podría relacionar con el importante porcentaje de producciones de tipo familiar en el área de estudio (Villagra, 2005; Easdale et al., 2009; Villagra et al., 2015). La alta variabilidad observada en estos estratos productivos estaría asociada a su gran dispersión en el área de estudio. Los establecimientos de mayor escala se destacaron por presentar lotes de lana de menor variabilidad y de alto valor comercial, producto de mayores RP, RT y menores DMF y MV. Ciertas condiciones estarían homogenizando la calidad de lana en este estrato productivo, por ejemplo, su ubicación geográfica en las zonas más productivas de la región Patagonia Occidental producto de políticas de ocupación territorial durante el siglo XIX (Bandieri, 2005; Coronato, 2010). En general en los establecimientos de mayor escala y capitalización las opciones de manejo son mayores que en campos pequeños y descapitalizados por lo que es de esperar que también apliquen más tecnologías. Por ejemplo, estos establecimientos suelen incorporar carneros mejoradores de los pesos de vellón y calidad de lana o pueden estar aprovechando el servicio nacional de evaluación genética de ovinos (Provino) para su mejoramiento genético (Giovannini et al., 2015). Estos resultados indicaron posibles asociaciones entre la escala productiva y los parámetros analizados que se deberían estudiar con mayor detalle a futuro, teniendo en cuenta diversos aspectos socio-productivos, como por ejemplo tenencia de la tierra, el tipo de mano de obra empleada, instalaciones, herramientas/capacidades de para implementar programas de mejora genética, y su incidencia en la producción y calidad de lana.

La dinámica de los parámetros de calidad de lana durante el periodo estudiado registro una relativa estabilidad, siendo alterada durante el año 2011. La fuerte estructura común de correlación entre los parámetros de lana durante la mayoría del periodo estudiado estaría relacionada con los posibles factores que incidieron en la homogeneidad observada entre los establecimientos. Sin embargo en el año 2011 la estructura común y las trayectorias de los parámetros de lana manifestaron una alteración (Fig. 2.8 y 2.10). Este comportamiento estaría relacionado principalmente a un factor de perturbación muy importante ocurrido en la región en el año 2011 como fue la erupción del volcán Cordón Caulle-Puyehue, formando un gradiente oeste-este de depósitos de ceniza (Gaitán et al., 2011). Esta perturbación, sumada a una interacción con sequía previa (Easdale y Rosso, 2010; Easdale et al., 2014), produjeron impactos sobre el ganado, (Robles et al., 2012) y afectando de manera directa o indirecta la producción y calidad de la lana (Easdale et al., 2014). Resultados de esta tesis marcan que el impacto de estos sucesos se mantuvo por un tiempo de dos ciclos productivos (años 2011 y 2012; Fig. 2.8), retornando los siguientes años a valores en los
coeficientes RV similares a una situación previa a la perturbación (Tabla 2.1). Esto refleja que el camino de retorno a la estructura común fue diferente del camino tomado luego de producido el disturbio (vía de reversibilidad o histéresis) (Groffman, 2006), destacando la capacidad del ambiente en generar variabilidad en la calidad de lana por más de un ciclo productivo. Esta dinámica indicaría cierta sensibilidad de los parámetros de calidad de lana frente a las perturbaciones ambientales como la mencionada, y a su vez, una resiliencia en términos de calidad de lana luego de estos impactos.

El estudio propuesto en este capítulo constituye un avance en comprender y describir la variación de la calidad de lana en una amplia área de la provincia de Rio Negro. En este sentido, ciertos parámetros de calidad de lana registraron una mayor variabilidad entre los establecimientos. Esta variabilidad tendría alguna asociación con cuestiones biofísicas y/o socio productivas que merecen ser estudiadas con mayor profundidad. Durante el periodo de estudio, los parámetros de calidad de lana mostraron ser sensibles a determinados factores de perturbación ambiental. Este comportamiento refleja una primera aproximación en comprender su dinámica en el tiempo la cual requiere de mayores estudios, considerando también el impacto sobre la producción de lana (e.g. impacto y recuperación de las existencias ganaderas). Los resultados de este capítulo alientan la necesidad de avanzar en una mayor comprensión de la influencia ambiental sobre parámetros de calidad de lana en la Patagonia.
CAPÍTULO 3
CARACTERÍSTICAS DE LOS PERFILES DE DIÁMETRO DE FIBRAS EN LA PROVINCIA DE RÍO NEGRO

III.1 Introducción

La variación anual del crecimiento y calidad de lana de ovinos Merino en sistemas de producción extensiva depende principalmente de factores ambientales y prácticas de manejo. Las fluctuaciones anuales y estacionales de las condiciones ambientales, y en particular la disponibilidad y calidad forrajera de los pastizales, producen variaciones en el estado nutricional de los ovinos (Adams y Briegel, 1998; Robertson et al., 2000). Este afecta la disponibilidad de nutrientes a nivel folicular y se refleja en el crecimiento de su lana (Masters y Stewart, 1990; Reis, 1991; Hynd et al., 1997; Adams y Briegel, 1998; Robertson et al., 2000). Esta disponibilidad de nutrientes a nivel folicular depende del balance energético del animal, es decir la diferencia entre el consumo y los requerimientos de energía para cumplir con las funciones de mantenimiento, producción y reproducción (Doyle y Thompson, 1994; Hyder et al., 2002; Cottle, 2010). Por ejemplo, durante la época de mayor disponibilidad de forraje se producen incrementos en los pesos vivos, crecimientos en longitud de fibras y aumentos en el diámetro de fibras (Thompson et al., 1994, Doyle y Thompson, 1994, Cottle, 2010). Por otro lado, el diámetro de fibras puede disminuir significativamente bajo condiciones de estrés nutricional producto de condiciones ambientales adversas (Adams y Briegel, 1998; Saccher et al., 2011). A su vez, las condiciones climáticas influyen en el crecimiento de la lana al generar cambios fisiológicos y de comportamiento en los animales (Bottomley, 1979). Por ejemplo, las fluctuaciones extremas en las temperaturas generan estrés térmico en los animales provocándoles cambios en los requerimientos nutricionales (Bottomley, 1979; Conrad, 1985). El estrés térmico tanto por frío o por calor produce modificaciones en los patrones de pastoreo y de consumo, generando fluctuaciones en la disponibilidad de nutrientes a nivel folicular y por ende en el diámetro de fibras (Hopkins y Richards, 1979; Bottomley, 1979). Debido la influencia ambiental en el desarrollo de la lana, la elección de la fecha de esquila es una herramienta de manejo con múltiples consecuencias productivas y económicas (Mueller, 2015). Por ejemplo, en el NO de la Patagonia, lanas de esquila preparto tienen mayor rinde al peine (7 puntos porcentuales), igual finura, menor largo de mecha (4,5 mm) y mayor resistencia a la tracción (7 N/ktex) con respecto a lanas postparto (Mueller, 2015). Esto
evidencia que las condiciones estacionales que prevalecen durante el ciclo productivo, como así también decisiones de manejo determinan la variación anual del diámetro de fibras a lo largo de la mecha.

La variación del diámetro de fibras durante el período anual de crecimiento se puede observar a través de los Perfiles de Diámetro de Fibras (PDF). El PDF es un conjunto de mediciones repetidas de diámetros, tomadas secuencialmente a lo largo de la mecha. Esto permite examinar la manera en la cual los diámetros de fibras varían durante el período anual de crecimiento, en respuesta a cambios en el aporte y demanda de nutrientes (Hansford et al., 1985; Brown et al., 1999 y 2002; Schlink et al., 1999). Las características de los PDF varían entre ambientes (Brown et al., 1999; Smith, 2006), líneas genéticas e individuos (Brown y Crook 2005, Sacchero et al., 2010), estados fisiológicos (Corbett, 1979; Masters y Stewart, 1990, Sacchero et al., 2011), cargas animales asociadas a métodos de pastoreo (Doyle y Thompson, 1994; Cottle et al., 2013) y fechas de esquila (Hansford, 1997; Sacchero y Mueller, 2007; Campbell et al., 2011). Independientemente de estos factores, existen evidencias que indican que el patrón general de los PDF es relativamente estable y se repite a través de los años dentro de una región (Smith et al., 2006). Por ejemplo, en New England Australia, el diámetro de fibras tiende a incrementarse en primavera cuando comienza el período de crecimiento de la vegetación, seguido de una reducción en verano producto de una caída en la calidad de los pastizales (Smith et al., 2006). En el área ecológica de sierras y mesetas de la provincia de Río Negro, los PDF de lanas de esquila preparto adquieren forma de huso, cuyos puntos de diámetro mínimo se ubican cercanos a los extremos de la mecha, concordando con el momento de menor oferta forrajera y requerimientos nutricionales en aumento (Sacchero y Mueller, 2007). A su vez, el punto de diámetro máximo coincide con el momento de mayor oferta forrajera y requerimientos nutricionales en disminución (Sacchero y Mueller, 2007). Por lo tanto, los PDF son un reflejo de la respuesta animal a las condiciones ambientales.

El estudio de los PDF ofrece información que permite describir el crecimiento de la lana y su comportamiento durante el procesamiento textil. Las características de los PDF están asociadas a las roturas de fibras durante el procesamiento industrial (Brown et al., 1999 y 2002, Brown y Crook, 2005). Una reducción en la RT afecta la calidad de la fibra ya que genera un punto de rotura potencial durante el procesamiento industrial (Hansford y Kennedy, 1998). Generalmente el punto de rotura está asociado con la ubicación del diámetro mínimo en el PDF (Hansford y Kennedy, 1998). Si esta ubicación se produce en
los extremos de la mecha, y el punto de diámetro máximo se ubica alrededor del centro, los PDF adquieren forma de huso. El comportamiento textil de lanas en forma de huso produce mayor longitud media de fibras en tops y menor coeficiente de variación en su longitud media, producto de menores porcentajes de punto de rotura en el medio de la mecha durante su procesamiento (Hansford 1987; Oldham et al., 1998). Aportes adicionales a favor de lanas de perfil ahusado fueron hechos en base a los descubrimientos respecto al diámetro en los extremos de fibras. Por ejemplo, extremos de fibras de menor diámetro están relacionados con el confort de las prendas debido a un menor estímulo de terminales nerviosas sobre la piel, las cuales producen una sensación de picazón (Hansford, 1994; Naylor y Stanton, 1997; Naylor y Hansford, 1999). Por lo tanto, la manera en la cual el diámetro de fibras cambia a lo largo del perfil puede traer consecuencias en la calidad de lana.

Estudios preliminares en el área ecológica de sierras y mesetas de la provincia de Río Negro (Sacchero y Mueller, 2007) demostraron una forma ahusada de las fibras de lana esquiladas preparto. Este patrón característico de variabilidad del diámetro a lo largo de las fibras es apreciado por la industria textil y es premiado en el precio al compararse con lanas esquiladas posparto (SIPYM, 2017). Sin embargo, se desconoce si este patrón se produce en distintos ambientes de la provincia. Teniendo en cuenta la heterogeneidad biofísica de la región (León et al., 1998; Bran et al., 2005; Godagnone y Bran, 2009), sumado a la estacionalidad en la productividad de los pastizales naturales (Jobbagy et al., 2002, Paruelo et al., 1998a; Fabricante et al., 2009), es esperable que se produzcan variaciones en el diámetro de fibras durante el período de crecimiento de la lana afectando la forma de los PDF. El objetivo de este capítulo fue analizar la variación del Perfil de Diámetro de Fibras durante el período de crecimiento 2014-2015 en establecimientos de la provincia de Río Negro.

III.II Materiales y métodos

III.II.I Área de estudio

El área de estudio está ubicada en Patagonia norte e involucra dos regiones naturales de la provincia de Río Negro: i) la Patagonia Extra Andina Occidental (Patagonia Occidental) y ii) Patagonia Extra Andina Oriental (Patagonia Oriental) (Fig. 3.1). Ambas regiones abarcan el 92,6% de la superficie provincial (Godagnone y Bran, 2009). Estas regiones difieren en sus características biofísicas y socio-productivas (Capítulo 1, sección I.V).
Figura 3.1. Área de estudio. La Región Natural Patagonia Oriental comprendida por las áreas ecológicas de Monte Austral (verde) y Monte Oriental (amarillo). La Región Natural Patagonia Occidental abarca las áreas ecológicas de Precordillera (rojo), Sierras y Mesetas Occidentales (gris) y Meseta Central (marrón). Puntos negros indican los establecimientos utilizados en el análisis y los números las estaciones meteorológicas.

III.II.II. Período de estudio
El periodo estudiado involucra el periodo de crecimiento de lana 2014-2015 (Figura 3.2). Las circunstancias ambientales durante dicho periodo se muestran en la Tabla 3.1. Durante el año 2014 se registraron precipitaciones por encima de los promedios históricos anuales para toda el área estudiada. Las precipitaciones del año 2015 tuvieron un comportamiento cercano a los promedios históricos, salvo en algunas estaciones las cuales registraron precipitaciones inferiores entre un 30% y un 50% en comparación con medias históricas. De todas maneras, podría considerarse que el período de crecimiento de lana estuvo influenciado por un período con niveles de precipitaciones mayores a los valores promedio y que en términos productivos no generó situaciones estresantes debido a procesos de sequía en curso.
Figura 3.2. Esquema de crecimiento anual de lana y meses tradicionales de esquila preparto.

<table>
<thead>
<tr>
<th>Estaciones meteorológicas</th>
<th>Año 2014</th>
<th>Año 2015</th>
<th>Promedio histórico</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Corralito</td>
<td>+9 %</td>
<td>-1 %</td>
<td>319 mm</td>
</tr>
<tr>
<td>(2) Las bayas</td>
<td>+51 %</td>
<td>-38 %</td>
<td>269 mm</td>
</tr>
<tr>
<td>(3) Ñorquinco</td>
<td>+58 %</td>
<td>-12 %</td>
<td>226 mm</td>
</tr>
<tr>
<td>(4) Rio Chico</td>
<td>+70 %</td>
<td>-7 %</td>
<td>133 mm</td>
</tr>
<tr>
<td>(5) Maquinchao</td>
<td>+90 %</td>
<td>-49 %</td>
<td>201 mm</td>
</tr>
<tr>
<td>(6) Cain</td>
<td>+92 %</td>
<td>-50 %</td>
<td>167 mm</td>
</tr>
<tr>
<td>(7) Valcheta</td>
<td>+68 %</td>
<td>+11 %</td>
<td>230 mm</td>
</tr>
<tr>
<td>(8) SAO</td>
<td>+126 %</td>
<td>-7 %</td>
<td>258 mm</td>
</tr>
<tr>
<td>(9) Viedma</td>
<td>+34 %</td>
<td>+25 %</td>
<td>431 mm</td>
</tr>
</tbody>
</table>

III.II.III Fuente de datos

Se utilizaron muestras de lana comercial de esquila preparto tomadas de acuerdo a la metodología propuesta en el Programa Nacional de Calidad de Lana (PROLANA). Las muestras fueron recolectadas durante la esquila correspondiente a la zafra 2015-2016 y representan el promedio del lote y la producción anual del período productivo 2014-2015 de cada establecimiento. Cada muestra PROLANA está acompañada de una planilla de romaneo que se utilizó como fuente de datos para el presente estudio. En dicha planilla, los productores declaran información detallada de la fecha de esquila, raza, cantidad y categoría de animales esquilados, cantidad total de lana (Kg) discriminada en lana Vellón y no Vellón, y cantidad de fardos obtenidos.
A partir de estas muestras se obtuvieron al azar 10 mechas de lana siguiendo los criterios generales de la norma IWTO 7-00. Luego fueron lavadas en un equipo de baño ultrasonido utilizando una solución compuesta por 80% Hexano y 20 % Isopropilico y se analizaron utilizando el equipo Optical Fibre Diameter Analyser (OFDA 2000). Este equipo realiza mediciones de diámetros sobre 100 a 150 fibras en secciones transversales de mechas de lana cada 5 milímetros hasta recorrer toda su longitud. A partir de estas mediciones se obtuvo un PDF para cada mecha de lana analizada y un PDF promedio por establecimiento calculado a través del método de interpolación de Mata (Sacchero com. pers.) (Fig. 3.3). Además se midieron los parámetros de calidad de lana: Largo de Mecha (LM), Resistencia a la Tracción (RT) y el Punto de Rotura determinados de acuerdo a los criterios generales de las normas técnicas IWTO 7-00 y IWTO 30-07. El Punto de Rotura representa, de forma porcentual, la posición donde quiebran las mechas cuando son sometidas a un esfuerzo de tracción. Se clasifican en porcentaje que rompe en la Punta (PRP), en el Medio (PRM) y en la Base (PRB) de la fibra.

Figura 3.3. Ejemplo de un perfil de diámetro de fibras (PDF).

La unidad de análisis estuvo compuesta por un conjunto de establecimientos (n=68) (Fig. 3.1) en base a los siguientes criterios: a) establecimientos con información georreferenciada ubicados en la provincia de Río Negro; b) ubicados en 5 Áreas Ecológicas: Pre cordillera (PRE), Sierras y Mesetas (SYM), Meseta Central (MC), Monte Austral (MA) y Monte Oriental (MO); y c) que hayan realizado esquila preparto de ovinos Merino bajo metodología PROLANA en el período bajo estudio.
Una característica de las muestras utilizadas es que fueron recolectadas en distintos momentos del año, las esquinas en los establecimientos muestreados se produjeron en agosto (15% de los casos), septiembre (35%) y octubre (50%) del 2015. El periodo total de crecimiento de las muestras utilizadas (teniendo en cuenta la fecha de esquila declarada en las planillas de romaneo PROLANA de las esquinas 2014 y 2015), registraron un rango entre 345 a 378 días. Para poder reflejar esta diversidad y para poder realizar una interpretación biológica y agronómica a los datos, se realizó una transformación en la escala en la cual se representan los valores de los PDF obtenidos. La misma implicó la transformación del eje X de distancia (mm) a tiempo (días) (Fig. 3.4). Dado que no se contó con información que vincule las mediciones con el momento del año, no fue posible relacionar cada uno de los valores de DMF a fechas específicas de tiempo, a excepción del DMF correspondiente a la base (fecha de esquila del año 2015) y la punta (fecha de esquila del año 2014) de la mecha. Por lo tanto, conociendo el periodo total de crecimiento de cada perfil y su Largo Mecha (mm), se calculó una fecha para cada medición de DMF a partir de la fecha de esquila del 2014, tomando como tasa de crecimiento (TC) a la siguiente fórmula:

\[\text{TC} = \frac{\text{LM}}{\text{PC}} \]

Donde,

- TC, es la tasa de crecimiento (mm/días)
- LM, es el largo de mecha (mm)
- PC, es el periodo total de crecimiento (días)

Esta transformación en la escala en la cual se representan los valores de diámetros obtenidos se estimó bajo el supuesto de crecimiento constante a lo largo de la mecha (Whelan et al., 2008; Sacchero et al., 2012; Whelan, 2012). Este supuesto se utilizó debido a que no se dispone de información de cómo varía la tasa de crecimiento a lo largo del periodo de crecimiento de la lana en distintas áreas de la región. Las tasas de crecimiento calculadas arrojaron un promedio de 0,24 mm/día \((2,2 \times 10^{-3} \text{ error estándar})\), con un coeficiente de variación del 7,3%. A modo de ejemplo, la Figura 3.4 sintetiza la transformación del eje X realizada en el PDF de un establecimiento con fecha de esquila (8/10/14). La TC= 85 mm/357 días= 0,24 mm/día. Por lo tanto, para 5 mm se corresponden 21 días entre cada una de las mediciones del perfil a partir de la fecha de esquila del año 2014. Luego para realizar los análisis estadísticos, estas fechas calculadas se transformaron a números con
formato (AAAAAMDD), y para la presentación de los resultados se volvieron a transformar al formato fecha calendario (dd/mm/año).

Figura 3.4. Transformación del eje X en los PDF. En este estudio, la unidad de medida consistió en un conjunto de variables calculadas a partir de los PDF promedio de cada establecimiento (Tabla 3.2), las cuales se utilizaron para caracterizar a los mismos.

Tabla 3.2. Listado de las variables generadas a partir de los PDF, con sus respectivas abreviaturas, definiciones y unidades.
III.II.IV Análisis de datos

Para analizar el conjunto de datos se utilizaron técnicas de estadística multivariada: Componentes Principales (ACP) y de Conglomerados. Dado que se trata de un estudio observacional, previo a la aplicación de dichas técnicas, se realizaron análisis preliminares de la información, se calcularon estadísticos de resumen, se observó la distribución de los parámetros y se comprobó la presencia de valores atípicos. A su vez, se realizó un estudio de colinealidad entre las variables generadas a partir de los PDF para descartar aquellas altamente correlacionadas entre sí. El límite de corte se estableció en correlaciones superiores a 0,90.

La base de datos se estandarizó con promedios igual a cero y varianza igual a uno, para asegurarse una igual participación de las variables en los análisis sin importar su escala de medición. Luego se construyó una matriz con esos valores incluyendo la codificación de Área Ecológica de origen de los establecimientos, la cual no participo de forma activa del análisis, sino sólo como variable suplementaria para la interpretación de los resultados. Para dicha interpretación se consideraron los dos ejes de mayor varianza. A su vez, para el análisis de Conglomerados se utilizó el método de Ward, y para la validación de los conglomerados formados se utilizó el índice de silueta propuesto por Rousseeuw (1987). Todos los análisis se realizaron con software R versión 3.3.3 (R Development Core Team, 2017).
III. Resultados

Los PDF promedio por establecimiento registraron una alta variabilidad en los diámetros de fibras (Fig. 3.5). La matriz de correlaciones de las variables calculadas en los PDF se presenta en el Anexo 3.1 (Tabla 3.1.1). Las variables que fueron descartadas fueron: i) el CVDMF correlacionado con CValong (0,96) y el Rango (0,94); y ii) el CValong correlacionado con el CVDMF (0,96) y el Rango (0,91).

Figura 3.5. PDF promedio para cada establecimiento.

Los primeros ejes del análisis de componentes principales explicaron el 62,24% de la variabilidad total (Fig. 3.6). Los parámetros más influyentes en la formación del plano factorial que determinaron la diferenciación de los establecimientos fueron las siguientes variables: FDMin, FDMax, Rango, DMax y DMin. El primer eje explicó un 35,43% de la variabilidad y estuvo relacionado principalmente con (entre paréntesis se indica la correlación con el respectivo eje): la FDMin (0,89), FDMax (0,79) y el Rango (0,72). Mientras que el segundo eje explicó el 26,82% de la variabilidad y se relacionó fundamentalmente con (entre paréntesis se indica la correlación con el respectivo eje): el DMin (0,89) y DMax (0,85).
Figura 3.6. Primer plano factorial del Análisis de Componentes Principales de la información correspondiente a los PDF. Representación de los parámetros de lana y de variables calculadas en los PDF en el primer plano factorial. Puntos negros indican los establecimientos utilizados en el análisis. Entre paréntesis se muestran los porcentajes de variancia explicada por cada uno de los ejes.

En general se identificó un solapamiento parcial de los establecimientos, especialmente en la zona central del plano factorial (Fig. 3.6). Al utilizar la variable suplementaria de Áreas Ecológicas, se identificó una organización de los establecimientos en forma de gradiente en sentido Oeste-Este, según el Eje 1 (Fig. 3.7, 3.8). Este gradiente estuvo asociado a un adelantamiento en las FDMin y FDMax y un decrecimiento del Rango del Centro-Oeste del área de estudio hacia el Este. En los establecimientos del MO se observaron las FDMin y FDMax más anticipadas y los menores Rangos (cuadrante superior izquierdo) (Fig. 3.7). En contraposición, los establecimientos de PRE registraron las FDMin y FDMax más retrasadas y los mayores valores de Rango (cuadrante inferior derecho). Sobre el segundo eje se observó que los establecimientos de MO tuvieron mayores valores de DMin y DMax que aquellos ubicados en PRE. Los establecimientos de SYM, MC y MA presentaron un alto grado de solapamiento y dispersión en el centro del plano factorial y en el centro del área de estudio (Fig. 3.7, 3.8, 3.9).
Figura 3.7. Primer plano factorial del Análisis de Componentes Principales de la información correspondiente a los PDF. Establecimientos identificados por su Área Ecológica. Entre paréntesis se muestran los porcentajes de variancia explicada por cada uno de los ejes.

Figura 3.8. Representación geográfica del análisis de Componentes Principales. Establecimientos identificados en colores por sus coordenadas en el Eje 1 (determinado mayormente por FDMin, FDMax y Rango; Fig. 3.6).
Figura 3.9. Representación geográfica del análisis de Componentes Principales. Establecimientos identificados en colores por sus coordenadas en el Eje 2 (determinado mayormente por DMax y DMin; Fig. 3.6).

Respecto al análisis de Conglomerados, las variables asociadas a los PDF permitieron distinguir tres grupos, determinados por una mayor distancia euclidiana promedio entre ellos (Fig. 3.10), obteniendo una correlación cofenetica de 0,72. Los grupos formados registraron un promedio general de silueta de 0,33 (Fig. 3.11), indicando una estructura de grupos débil (Rousseeuw, 1987), lo cual implica que no existen límites netos entre los mismos. Si bien el promedio general de silueta fue bajo, el grupo 1 registró una fuerte estructura de grupo (índice de silueta de 0,66), y se conformó por 7 establecimientos ubicados en el Este del área de estudio (Fig. 3.12), pertenecientes a las áreas ecológicas de MO y MA con altimetrías menores a 400 m.s.n.m (Fig. 3.13). El grupo 2, obtuvo una menor estructura de grupos (índice de silueta de 0,28), indicando una mayor variabilidad dentro del mismo comparado con el grupo anterior. Este segundo grupo se conformó por 49 establecimientos ubicados en la zona central del área de estudio, pertenecientes a las áreas ecológicas de SYM, MC y MA, con altimetrías entre los 400 a 1200 m.s.n.m. El grupo 3 obtuvo un índice de silueta de 0,37, y se conformó por 12 establecimientos ubicados en la zona centro-oeste del área de estudio, pertenecientes a las áreas ecológicas de PRE, SYM y MC, con altimetrías entre los 600 y 1200 m.s.n.m.
Figura 3.10. Dendrograma del análisis de Conglomerados. Grupos formados en función del método de Ward (distancia euclidia promedio) en base a los parámetros de lana y variables calculadas en los PDF.

Figura 3.11. Índice de silueta para los grupos formados del análisis de Conglomerados. Número de establecimientos asignados a los grupos formados y entre paréntesis el promedio de silueta de cada grupo. A valores cercanos a 1 indica mejor calidad de representación del establecimiento dentro del grupo asignado.
Figura 3.12. Distribución geográfica del análisis de Conglomerados. Puntos violetas, azules, y verdes indican los establecimientos pertenecientes a los grupos 1, 2 y 3 respectivamente.

Figura 3.13. Altimetría del área de estudio. Puntos violetas, azules y verdes indican los establecimientos pertenecientes al grupo 1, 2 y 3 respectivamente.
En la Tabla 3.3, se presentan los valores promedios, error estándar (entre paréntesis) para las variables calculadas en los PDF para los 3 grupos formados.

Tabla 3.3. Valores promedios, error estándar (entre paréntesis) para las variables calculadas en los PDF para los 3 grupos formados. Variables FDMin y FDMax presentadas en números con formato (AAAAAMMDD) y en fecha calendario (entre paréntesis).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Grupo 1</th>
<th>Grupo 2</th>
<th>Grupo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM</td>
<td>89 (1,7)</td>
<td>86 (1)</td>
<td>88 (1,4)</td>
</tr>
<tr>
<td>FDMin</td>
<td>42071 (9,7)</td>
<td>42252 (4,6)</td>
<td>42268 (5,3)</td>
</tr>
<tr>
<td></td>
<td>(08/03/2015)</td>
<td>(05/09/2015)</td>
<td>(21/09/2015)</td>
</tr>
<tr>
<td>FDMax</td>
<td>41930 (5,6)</td>
<td>41992 (4,2)</td>
<td>42029 (11,7)</td>
</tr>
<tr>
<td></td>
<td>(18/10/2014)</td>
<td>(19/12/2014)</td>
<td>(25/01/2015)</td>
</tr>
<tr>
<td>PRP</td>
<td>37 (4,2)</td>
<td>26 (1,9)</td>
<td>63 (4,04)</td>
</tr>
<tr>
<td>PRM</td>
<td>58 (2,5)</td>
<td>44 (1,5)</td>
<td>24 (2,9)</td>
</tr>
<tr>
<td>PRB</td>
<td>5 (2,3)</td>
<td>30 (1,9)</td>
<td>14 (2,6)</td>
</tr>
<tr>
<td>DMax</td>
<td>22,2 (0,3)</td>
<td>23,5 (0,2)</td>
<td>22,7 (0,4)</td>
</tr>
<tr>
<td>DMin</td>
<td>19,2 (0,2)</td>
<td>17,9 (0,1)</td>
<td>17,8 (0,3)</td>
</tr>
<tr>
<td>DMF</td>
<td>20,6 (0,2)</td>
<td>20,9 (0,1)</td>
<td>20,6 (0,4)</td>
</tr>
<tr>
<td>RT</td>
<td>30 (1,6)</td>
<td>30 (0,4)</td>
<td>30 (1)</td>
</tr>
<tr>
<td>Amplitud</td>
<td>140 (10,5)</td>
<td>261 (3,6)</td>
<td>239 (8)</td>
</tr>
<tr>
<td>Rango</td>
<td>3 (0,3)</td>
<td>5,5 (0,1)</td>
<td>4,9 (0,2)</td>
</tr>
</tbody>
</table>

Al agrupar los PDF según los grupos formados en el análisis de Conglomerados se observaron algunas diferencias en las variables calculadas (Tabla 3.3) y en sus formas (Fig. 3.14). Los PDF del grupo 1 se caracterizaron por FDMax y FDMin más tempranas que con respecto a los demás grupos. Por ejemplo, la FDMin se produjo durante el mes de marzo, alrededor de 180 días antes que los demás grupos, ubicándose el DMin alrededor del centro del perfil. A su vez, la FDMax se produjo aproximadamente 60 y 90 días antes que los grupos 2 y 3 respectivamente, registrándose durante el mes de octubre. Además, se caracterizaron por tener mayores valores de PRM (58%), y comparativamente menores valores de CVDMF (5%), Rango (3 μm) y Amplitud (140 días). La FDMax en los PDF del grupo 2 se produjo alrededor de 60 días después del grupo 1, produciéndose durante el mes de diciembre. En cambio, la FDMin se manifestó durante el mes de septiembre, ubicándose el DMin en uno de los extremos del perfil. El PRM (43%) decreció con respecto al grupo anterior, sin embargo se observaron mayores Rangos (5,5 μm), CVDMF (9,5%) y Amplitud (261 días). En el grupo 3 se registraron las FDMax más tardías de todos los grupos, las cuales se produjeron a fines del mes de enero, ubicándose el DMax alrededor del sector medio del perfil. Las FDMin se registraron durante el mes de septiembre en
coincidencia con el grupo anterior, obteniendo altos valores de PRP (63%) y bajos valores de PRM (24%). Estos PDF obtuvieron un Rango promedio de 4,9 μm, un CVDMF de 8,1% y una Amplitud de 239 días. Las variables LM, PRB, DMF y RT tomaron valores relativamente similares para todos los grupos.

![Gráfico](image)

Figura 3.14. PDF promedio para cada uno de los 3 grupos obtenidos.

III.IV Discusión

La variabilidad observada en los PDF durante el período de crecimiento 2014-2015 en establecimientos de la provincia de Río Negro estuvo principalmente determinada por la FDMax, FDMin y el Rango. La distribución de esta variabilidad reflejó una organización en forma de gradiente de cambio en sentido Oeste-Este, reflejándose mayormente en los establecimientos ubicados en los extremos longitudinales del área de estudio. Dicho gradiente indicó un adelantamiento en la FDMax y FDMin, y un decrecimiento del Rango en el Este del área de estudio. Se lograron identificar tres grupos con PDF de similares características, algunas de las cuales estuvieron relacionadas con el gradiente observado.

Ciertas características de los PDF estuvieron relacionadas con la ubicación geográfica de los establecimientos. La FDMax, FDMin y el Rango fueron las variables más influyentes en describir la variación anual del diámetro de fibras a lo largo del gradiente Oeste-Este
identificado (Fig. 3.7, 3.8, 3.9). Esta distribución espacial estaría asociada a las condiciones biofísicas del área de estudio. Por ejemplo, el atraso en las FDMax hacia el extremo Oeste del área estudiada estaría relacionado con un atraso en la capacidad de los animales para mejorar su condición nutricional, producto de un rebrote primaveral más tardío de los pastizales naturales de esa zona (Jobbagy et al., 2002). Esta particularidad se produciría debido a las menores temperaturas medias anuales del extremo Oeste del área de estudio (Paruelo et al., 1998b; Bran et al., 2000 y 2005; Godagnone y Bran, 2009), y a un incremento en los promedios altitudinales en los establecimientos (Fig. 3.13). A su vez, en esta zona la oferta forrajera está influenciada por una mayor presencia de mallines (3 al 8% de la superficie total) (Bran et al., 2000; Godagnone y Bran, 2009), donde el rebrote de esta comunidad ocurre a mediados de enero, produciendo 10 a 20 veces más forraje que las estepas circundantes (Lopez et al., 2005; Bonvissuto et al., 2008; Siffredi, 2011; Cremona, 2009). Por lo tanto, la ubicación de la FDMax en el PDF estaría reflejando momentos durante el ciclo productivo donde los animales alcanzaron una buena condición corporal producto de una mayor disponibilidad forrajera coincidiendo con estados fisiológicos de bajos requerimientos nutricionales.

Las fluctuaciones anuales en la condición corporal de los animales repercuten en la variación del diámetro de fibras a lo largo de la mecha. La variación del diámetro de fibras durante el ciclo productivo 2014-2015 se produjo con diversos Rangos dentro del área estudiada. Los mayores Rangos se produjeron en el centro-oeste del área de estudio (grupos 2 y 3) siendo mayores a los obtenidos por Sacchero y Mueller (2007) en SYM, y menores a los obtenidos por Yamin et al., (1999) y Cottle et al., (2013) para ovinos Merino en ambientes mediterráneos de Australia. Esta mayor amplitud anual del diámetro de fibras estaría relacionada con el fuerte control que ejercen las características biofísicas sobre la producción ovina en el NO de la Patagonia (Hall y Paruelo, 2006; Texeira y Paruelo, 2006; Villagra y Giraudo, 2010; Easdale y Aguiar, 2012). Por ejemplo, el régimen mediterráneo de precipitaciones concentradas en invierno repercute en una amplia variación estacional del crecimiento vegetativo en primavera (Jobbágy et al., 2002; Paruelo et al., 1998a; Fabricante et al., 2009). Esto sumado a condiciones climáticas generalmente rigurosas para las majadas durante el invierno (Irazoqui, 1981; Coronato, 1999), generan importantes fluctuaciones en la condición nutricional de los animales (Villar y Giraudo, 2010), repercutiendo en el diámetro de fibras. Por otro lado, los establecimientos ubicados hacia el Este del área de estudio (grupo 1), exhibieron menores Rangos en comparación a los demás grupos. Este resultado se relaciona con Rangos obtenidos por Cottle et al., (2013)
para ovinos Merino en ambientes no mediterráneos de Australia. El régimen de precipitaciones isohigro con influencia de masas de aire del Atlántico del extremo Este del área de estudio, sumado a las mayores temperaturas medias anuales con inviernos templados (Paruelo et al., 1998b; Bran et al., 2000; Godagnone y Bran, 2009), permitirían menores fluctuaciones en la productividad de los pastizales (Paruelo et al., 1998a; Fabricante et al., 2009), y por ende en el diámetro de fibras (Cottle et al., 2013). Estos resultados sugieren una posible asociación entre el Rango y las condiciones biofísicas del área de estudio.

La ubicación del DMin en el PDF refleja momentos donde se produjeron disminuciones del diámetro de fibras producto de condiciones de estrés animal (Doyle y Thompson, 1994; Thompson et al., 1994; Adams y Briegel, 1998; Sacchero y Mueller, 2007; Cottle, 2010; Sacchero et al., 2011). La FDMin se produjo en diversos momentos a lo largo del gradiente observado (Tabla 3.3 y Fig. 3.14). Por ejemplo en la zona centro-oeste del área de estudio (grupos 2 y 3), se produjo al finalizar el invierno coincidiendo con los trabajos de Sacchero et al., (2007, 2010 y 2011). En esta época los requerimientos nutricionales de los animales se incrementan por el avance de la gestación, concordando con una escasa productividad forrajera de los pastizales (Villagra y Giraudo, 2010; Villar y Giraudo, 2010) y condiciones climáticas generalmente rigurosas para los animales (Irazoqui, 1981; Coronato, 1999; Mueller et al., 2005), resultando en una menor disponibilidad de nutrientes a nivel folicular. Por otro lado, en el extremo Este de área del estudio coincidente con el grupo 1, la FDMin se registró durante el mes de marzo, ubicándose el DMin en la zona central del perfil (Fig. 3.14). Este resultado, sugiere un momento de estrés animal distinto respecto del resto de los grupos obtenidos. Esta reducción del diámetro de fibras estaría relacionada con una caída abrupta de la calidad y cantidad de forraje disponible de los pastizales del MO producto de una alta evapotranspiración y escasas precipitaciones estivales (Somlo et al., 1997; Giogetti et al., 1997). A su vez, las temperaturas máximas estivales (Giogetti et al., 1997; Godagnone y Bran, 2009), podrían estar causando estrés térmico en los animales afectando al diámetro de fibras (Hopkins y Richards, 1979; Bottomley, 1979). Trabajos realizados por Smith et al., (2006) y Friend y Robards (2005) observaron una reducción similar del diámetro de fibras durante los meses estivales en Australia, producto de la caída abrupta de la oferta forrajera los pastizales en ovinos Merino. Estos resultados corroboran la importancia del ambiente en generar variaciones estacionales en el diámetro de fibras.
Además de las condiciones ambientales, ciertas decisiones de manejo influyen en la variación del diámetro de fibras durante el ciclo productivo. El momento de esquila afecta la forma del PDF, debido a que determina el diámetro de fibras de sus extremos y donde se ubica el punto de DMin a lo largo de la mecha, que suele ser la posición de ruptura durante el procesamiento textil (Hansford y Kennedy, 1998; Hansford 1997; Oldham et al., 1998). En los establecimientos pertenecientes a los grupos 2 y 3 la forma de los PDF se asemejaron a formas de huso de lanas preparto (Sacchero y Mueller, 2007). Esto se produjo debido a que las fechas de esquila de estos grupos coincidieron con la ubicación del DMin cercano a los extremos de la mecha. Esta forma de huso es apreciada por la industria textil y es premiada en el precio al compararse con lanas esquiladas posparto (SIPYM, 2017).

Por otro lado, los PDF del grupo 1 no se correspondieron con formas de PDF típicos de lanas preparto para SYM (Sacchero y Mueller, 2007), debido a que la fecha de esquila se produjo en un momento cercano al DMax. Además, las fechas de esquila preparto realizadas en este grupo, provocaron que los puntos de DMin se ubiquen alrededor del centro del perfil, ubicación relacionada con los altos PRM (57,43%) obtenidos en estos establecimientos. En caso de mermas en la RT, lanas con estas características de perfil tienen una menor performance industrial (Hansford, 1997). Las distintas formas en los PDF obtenidos están reflejando que sus características varían entre ambientes (Brown et al., 1999 y 2002; Smith et al., 2006) e indican que lanas preparto pueden tener variaciones importantes en la forma de sus PDF. Los resultados obtenidos sugieren la necesidad de realizar estudios tendientes a determinar la fecha de esquila óptima en relación a las condiciones ambientales y necesidades del sistema productivo, considerando las múltiples consecuencias productivas y económicas que tiene esta herramienta de manejo.

Las características de los PDF brindan una descripción retrospectiva de la respuesta a las condiciones ambientales reinantes durante el ciclo de crecimiento y varían entre líneas genéticas e individuos (Brown et al., 1999 y 2002; Brown y Crook 2005, Sacchero et al., 2010), estados fisiológicos (Corbett, 1979; Masters y Stewart, 1990, Sacchero et al., 2011) y cargas animales (Doyle y Thompson, 1994; Cottle et al., 2013). Toda esta fuente de variación estuvo implícita en las muestras utilizadas en el estudio, sin embargo ciertas características de los PDF obtenidos indicaron una variabilidad regional que estaría asociada a las condiciones biofísicas del área de estudio. Estudios previos han determinado que el crecimiento y características de la lana están mayormente determinados por las fluctuaciones anuales y estacionales en la disponibilidad y calidad forrajera de los pastizales (Doyle y Thompson, 1994, Smith et al., 2006) y que el patrón general de los PDF es repetible.
a través de los años dentro de una misma región (Smith et al., 2006). Los resultados obtenidos indican la posibilidad de utilizar la información generada en los PDF para estudiar el periodo anual de crecimiento de lana en distintos ambientes. Estudios futuros deberían considerar varios ciclos productivos y replicar el estudio para poder determinar si el patrón de los PDF obtenidos en este estudio se corrobora a través del tiempo, como así también incluir técnicas de teñido de fibras (dye banding) en momentos críticos del ciclo productivo. Esta técnica, permitiría ubicar temporalmente los cambios en los diámetros y calcular tasas de crecimiento y de producción de lana en distintas épocas del año y lugares del área de estudio, como por ejemplo considerando la ubicación geográfica de los grupos de PDF obtenidos.
CAPÍTULO 4
DISCUSIÓN GENERAL

El presente capítulo presenta una síntesis de los principales resultados obtenidos en los capítulos precedentes y se analizará y discutirá su contribución al conocimiento en la temática. Finalmente se discutirán las futuras aplicaciones que de ellas deriven y se sintetizan las principales conclusiones.

En las últimas cuatro décadas, se han realizado importantes avances en comprender las causas que generan variación en los parámetros de calidad de lana. La expresión fenotípica de caracteres productivos para la raza Merino como el diámetro medio de fibras, peso de vellón limpio, rinde al lavado poseen un fuerte componente genético, y por lo tanto son abordados en programas de mejoramiento genético y trabajos de investigación (Adams y Briegel, 2002; Brown et al., 1999; Mueller et al., 2005; Sacchero et al., 2010; Mueller et al., 2016b). Por otro lado, efectos ambientales como la nutrición, el clima, el estado fisiológico y sanitario de los animales, como así también prácticas de manejo influyen en el crecimiento de la lana y su calidad (Thompson et al., 1994; Schlink et al., 1996; Hynd et al., 1997; Adams y Briegel, 1998; Schlink, 1999; Robles y Olavecha, 2001; Ferguson et al., 2004; Cottle, 2010; Sacchero et al., 2011; Cottle et al., 2013; Mueller, 2015). La mayor proporción del conocimiento sobre la variación en los parámetros productivos y de calidad de lana provienen de estudios realizados a escala predial y de manera experimental. A pesar de la importancia que tiene esta actividad para la región patagónica, se desconoce la variabilidad de la calidad de lana a escala regional. Esta tesis propone un avance en este sentido mediante un estudio observacional y exploratorio de datos de calidad de lana durante un periodo de 14 años en establecimientos ubicados a lo largo de un gradiente ambiental, utilizando técnicas de análisis multivariado. Esto permitió evaluar a nivel global la variabilidad en la calidad de lana en la provincia de Río Negro, desde una perspectiva espacial y temporal.

Los resultados aportan indicios que sugieren la existencia de un gradiente de variación en la calidad de lana en el área de estudio. Los parámetros de calidad de lana RP, RT, MV y DMF (Capítulo 1), como así también las variables generadas a partir de los PDF como la fecha de máximo y mínimo diámetro de fibras, y el rango (Capítulo 2), registraron un gradiente de variación en sentido Oeste-Este. Dicha variación se acentuó en los establecimientos ubicados en los extremos longitudinales del área de estudio,
comportándose la parte central como una zona de transición (e.g. Fig. 2.6, 2.7, 3.7 y 3.8). El gradiente observado estaría relacionado con las condiciones biofísicas del área de estudio (León et al., 1998; Paruelo et al., 1998a; Bran et al., 2000; Jobaggy, 2002; Godagnone y Bran, 2009), determinadas por dos gradientes climáticos, uno en sentido Oeste-Este de precipitación decreciente, con influencia de los anticiclones del Pacífico y del Atlántico en los extremos longitudinales, respectivamente; y otro Noreste-Sudoeste de temperaturas decrecientes, fundamentalmente ligado a la latitud y la topografía (Paruelo et al., 1998b). Estas condiciones climáticas repercuten en la estructura y funcionalidad de los ecosistemas de pastizales de la región (Jobbágy et al., 1996; Paruelo et al., 1998a; León et al., 1998, Jobaggy, 2002; Godagnone y Bran, 2009; Fabricante et al., 2009), los cuales a su vez estarían influyendo en la variabilidad de los parámetros de lana analizados. Estos resultados evidencian el fuerte control climático sobre la producción ganadera (Illius y O’Connor, 1999; Oesterheld et al., 1999; Paruelo et al., 1998b) debido a una dependencia casi exclusiva de la productividad de los pastizales naturales producto de un bajo nivel de aplicación de insumos e infraestructura predial para afrontar las variaciones climáticas (Easdale et al., 2009; Reynolds et al., 2007; Villagra y Giraudo, 2010). La variabilidad en la calidad de lana observada, remarca que a pesar del mediano a alto determinismo genético de los caracteres de lana estudiados (Cottle, 2010; Mueller, 2010), existiría también una influencia significativa del ambiente sobre la variabilidad fenotípica.

IV.I Zonas bio-laneras

Considerando el gradiente de variación en la calidad de lana registrado, se podrían identificar zonas de calidad de lana Merino de esquila preparto. En esta tesis se define zona “bio-lanera”, como aquella que reúne características distintivas en cuanto a la calidad de lana, influenciada por condiciones biofísicas y productivas. Se proponen zonas de calidad de lana en base a la síntesis e interpretación de los principales resultados obtenidos, en las cuales los límites entre las mismas no son tácitos pero marcan una clara referencia geográfica acerca de la calidad de lana de los establecimientos analizados. La distribución geográfica de los resultados respalda el enfoque de estudio propuesto, el cual estuvo basado en explorar la calidad de lana de cada uno de los establecimientos considerando su ubicación geográfica y escala productiva, sin condicionar a priori el análisis a determinadas subregiones. En este sentido, los resultados reflejaron que la calidad de lana trasciende límites definidos por cuestiones biofísicas (e.g. Áreas Ecológicas o Distritos Fitogeográficos). Estas zonas constituyen una primera aproximación regional para
comprender y describir la variación regional de la calidad de lana durante el periodo de estudio considerado y en una amplia área de la provincia de Río Negro. La propuesta de clasificación requiere de mayores estudios para entender la variabilidad en la calidad de lana observada, y los factores que podrían estar incidiendo en su expresión. La tesis aporta nuevos desafíos en la búsqueda por generar propuestas de innovación tecnológica que partan de la base de comprender la variabilidad en la calidad de lana en la región, los cuales podrían ser tenidos en cuenta tanto en ámbitos científico-tecnológicos como políticos. A continuación, se sintetizarán los principales resultados obtenidos en algunos ejes de discusión que permitan caracterizar tres zonas de calidad de lana: i) Zona Andina, ii) Zona Continental y iii) Zona Atlántica.

![Figura 4.1. Zonas bio-laneras. Líneas punteadas y en gris el Río Negro indican los límites de las zonas bio-laneras Atlántica, Continental y Andina.](image)

- **Zona Andina**

Esta zona se corresponde con establecimientos pertenecientes al extremo Oeste del gradiente observado, ubicados en la Patagonia Occidental, dentro de las áreas ecológicas
de sierras y mesetas y fundamentalmente de precordillera, con altitudes entre los 600 y 1200 m.s.n.m. (Fig. 4.1). En esta zona el clima es frío, con una temperatura media entre los 7 a 10\degree C. El límite Oeste de esta zona se correspondió en cierta forma con la isolínea de temperatura media anual de 10\degree C (Godagnone y Bran, 2009). A su vez en esta zona, las precipitaciones se concentran en otoño e invierno y presentan un marcado gradiente Oeste-Este, pasando en pocos kilómetros de 800 mm a 150 mm anuales (Bran et al., 2000 y 2005; Godagnone y Bran, 2009).

La representación geográfica del primer plano factorial del ACP (Fig. 2.6, 2.7, 3.8 y 3.9), sumado a la distribución geográfica del grupo 3 formado en el análisis de Conglomerados (Fig. 3.12 y 3.13), sugieren que estos establecimientos comparten ciertas características de calidad de lana. En primer lugar, los establecimientos se caracterizaron por presentar lotes de lana de mayor RP y RT con respecto a los demás, y bajos contenidos de MV y menores DMF. Se registró una correspondencia geográfica entre la distribución de estos establecimientos y las unidades fisonómico-florísticas de estepa graminosa y estepa graminosa-arbustiva descriptas por León et al., (1998). Estas zonas de pastizales naturales, comparativamente con menores proporciones de vegetación arbustiva y de mayor cobertura vegetal del suelo respecto de otras zonas del área de estudio, podrían estar influyendo en que los lotes de lana tengan menores contenidos de MV y mayores RP, debido a que habría menores posibilidades de exposición de los vellones a impurezas (e.g. tierra), ramas, núcleos duros característicos de una vegetación arbustiva (Atkinson, 1989; Couchman et al., 1992; Rogan, 1995; Lance, 2000). Esta calidad de lana se registró en establecimientos de las tres escalas productivas evaluadas. Sin embargo, un aspecto a destacar de esta zona respecto a las demás, es que concentra el 66\% del total de los establecimientos de escala productiva grande en el área de estudio (Fig. 2.6 y 2.7), los cuales se caracterizaron por presentar lotes de calidad de lana de menor variabilidad (Fig. 2.8).

Los PDF de esta zona registraron las fechas de diámetro máximo más tardías (enero) de todos los grupos formados (Tabla 3.3), ubicándose el diámetro máximo alrededor de la parte media del perfil (Fig. 3.14). Esta ubicación estaría relacionada con un atraso en la capacidad de los animales para incrementar su condición corporal, producto de un rebrote primaveral más tardío debido a las menores temperaturas medias anuales y a un incremento en la altitud de esta zona. A su vez, este pico de oferta forrajera estaría coincidiendo con un estado fisiológico de menores requerimientos nutricionales (fin de
lactancia/destete), resultando en una buena condición corporal de los animales (Villar y Giraudo, 2010). Las fechas en las cuales se obtuvieron los diámetros mínimos se registraron durante el mes de septiembre, ubicándolos en los extremos del PDF, reflejando un momento de estrés animal (Adams y Briegel, 1998; Sacchero et al., 2011; Easdale et al., 2014). Generalmente el estado corporal de los ovinos disminuye en el último tercio de gestación, cuando el rebrote primaveral aún no comenzó y las temperaturas son bajas (Villar y Giraudo, 2010). Por otro lado, la forma característica de estos PDF registró una similitud con respecto a curvas estacionales de productividad de pastizales (Paruelo, 1998a; Fabricante et al., 2009). Por ejemplo, las fechas de diámetro máximo y mínimo se asemejan a la marcha estacional de la productividad de los pastizales registrada por Paruelo et al., (1998a). Estas coincidencias también se reflejan en los límites geográficos hallados en los estudios de pastizales mencionados y la zona de calidad de lana propuesta. A su vez, estos PDF correspondientes al periodo de crecimiento 2014-2015 son coincidentes con las formas de huso halladas en lanas de esquila preparto de SYM. Esta forma se produce al posicionar la fecha de esquila en el momento donde se producen los puntos de diámetro mínimo, provocando que los mismos se ubiquen cercanos a los extremos de la mecha (Sacchero y Mueller, 2007; Sacchero et al., 2011). Este patrón característico de variabilidad del diámetro a lo largo de las fibras es apreciado por la industria textil (Hansford y Kennedy, 1998; Hansford, 1987; Oldham et al., 1998) y reciben un sobreprecio al compararse con lanas Merino esquiladas posparto (SIPYM, 2017).

- **Zona Continental**

Esta zona se corresponde con establecimientos ubicados principalmente en las áreas ecológicas de Sierras y Mesetas y Meseta Central, y en menor cantidad del Monte Austral (Fig. 4.1), en altitudes entre los 400 a 1200 m.s.n.m. En esta zona, el clima es predominantemente árido y frío, con una temperatura anual media de entre 10 y 14º C. Los límites Oeste y Este de esta zona, se correspondieron en cierta forma con las isolíneas de temperaturas media anual de 10 y 14º C respectivamente (Godagnone y Bran, 2009). Las precipitaciones rondan entre los 150 a 200 mm anuales y se concentran durante el otoño e invierno (Bran et al., 2000 y 2005; Godagnone y Bran, 2009).

Los establecimientos de esta zona registraron una alta variabilidad en los valores de los parámetros de RP y RT (Fig. 2.5, 2.6). Dicha variabilidad podría deberse a una amplia dispersión espacial de los establecimientos y por ende a una elevada heterogeneidad en las condiciones biofísicas (León et al., 1998; Bran et al., 2000 y 2005; Godagnone y Bran,
Por otro lado, estos establecimientos también se caracterizaron por presentar bajos contenidos de MV y menores DMF (Fig. 2.5, 2.7), coincidiendo con los establecimientos ubicados en la zona bio-lanera Andina. La distribución geográfica de estos establecimientos abarca la zona central del área de estudio, caracterizada por un gran número de establecimientos de escalas productivas pequeñas e intermedias (Fig. 2.6, 2.7).

Los PDF de esta zona reflejaron los mayores Rangos promedios obtenidos (Tabla 3.3). Esta mayor amplitud anual del diámetro de fibras estaría asociada con las importantes fluctuaciones que se producen en la condición corporal de los animales en esta zona (Villar y Giraudo, 2010). La fecha de diámetro máximo se produjo durante el mes de diciembre, un mes antes que en la zona bio-lanera Andina, ubicándose el diámetro máximo entre la punta y la parte media del perfil (Fig. 3.14). Esta ubicación estaría relacionada con el momento de mayor disponibilidad de forraje, el cual se expresa anticipadamente con respecto a la zona Andina, producto de la estacionalidad de la productividad de los pastizales (Jobbágy et al., 2002; Paruelo et al., 1998a; Fabricante et al., 2009), generando una buena condición corporal de los animales durante ese periodo (Villar y Giraudo, 2010). Al igual que en la zona Andina, las fechas en las cuales se obtuvieron los diámetros mínimos se registraron durante el mes de septiembre, ubicándose en los extremos de los PDF. La forma general de estos perfiles son coincidentes con las formas de huso halladas en lanas de esquila preparto del área ecológica de SYM (Sacchero y Mueller, 2007; Sacchero et al., 2011).

- **Zona Atlántica**

 Esta zona se corresponde con establecimientos pertenecientes al extremo Este del gradiente observado, ubicados en la Patagonia Oriental, mayormente dentro del área ecológica de Monte Oriental, y en menor cantidad del Monte Austral (Fig. 4.1) en altitudes por debajo de los 400 m.s.n.m. En esta zona el clima es semiárido con una temperatura media anual de 14 a 15° C. Los límites Oeste y Este de esta zona, se correspondieron en cierta forma con las isolíneas de temperaturas media anual de 14 y 15° C respectivamente (Godagnone y Bran, 2009). En el Oeste de esta zona las precipitaciones rondan los 200 mm anuales y se concentran en otoño e invierno. Luego las precipitaciones se incrementan gradualmente hacia el Este donde se registran 400 mm anuales en el límite con el río Negro, manifestándose un régimen de precipitaciones isohigro producto de la influencia de masas de aire del Atlántico.
La representación geográfica de estos establecimientos en el primer plano factorial del ACP (Fig. 2.6 y 2.7), sumado a la distribución geográfica del grupo 1 formado en el análisis de Conglomerados (Fig. 3.12), identifican una zona con características particulares en los parámetros de calidad de lana estudiados. Esta zona estuvo representada por establecimientos con escalas productivas pequeñas e intermedias que registraron lotes de lana con altos contenidos de MV y mayores DMF. Ciertas condiciones biofísicas dentro del área de estudio podrían explicar en parte la calidad de lana observada en dichos establecimientos. Por ejemplo, la mayor presencia de vegetación arbustiva de estrato medio a alto en esta zona (León et al., 1998; Godagnone y Bran, 2009) aumentaría los contenidos de MV. A su vez la mayor presencia de especies anuales (León et al., 1998; Godagnone y Bran, 2009) que en determinados años fructifican y se adhieren al vellón podrían estar aumentando los contenidos de semillas en la composición de la MV (Lance, 2000; Campbell, 2006). La influencia ambiental sobre la expresión fenotípica del diámetro de fibras (Brown et al., 1999), sería una de las posibles causas de los mayores valores registrados en esta zona, teniendo en cuenta la mayor oferta forrajera que pueden brindar los pastizales del MO en comparación a la de otros pastizales (Giorgetti et al., 1985; Giorgetti et al., 1997).

Los PDF de esta zona se caracterizaron por presentar fechas de diámetro máximo y mínimo más tempranas dentro del gradiente de variación observado. La fecha de diámetro máximo se produjo durante el mes de octubre, y estaría relacionada con un adelantamiento del inicio de la temporada de crecimiento de los pastizales producto de mayores temperaturas medias anuales y menores altitudes (Jobbagy et al., 2002; Bran et al., 2000; Godagnone y Bran, 2009). La fecha de diámetro mínimo se registró durante el mes de marzo, ubicándose los puntos de diámetro mínimo alrededor del centro del perfil (Fig. 3.14). Esta particularidad sugiere un momento de estrés animal distinto respecto del resto de las zonas. Esta reducción del diámetro de fibras estaría relacionada con una caída abrupta de la calidad y oferta de los pastizales del MO producto de una alta evapotranspiración y escasas precipitaciones estivales (Somlo et al., 1997; Giorgetti et al., 1997). Trabajos realizados por Smith (2006) y Friend y Robards (2005) observaron una reducción similar del diámetro de fibras durante los meses estivales en Australia, producto de la caída abrupta de la oferta forrajera los pastizales en ovinos Merino. A su vez, las altas temperaturas estivales (Giogetti et al., 1997; Godagnone y Bran, 2009), podrían estar causando estrés térmico en los animales afectando al diámetro de fibras a través de una reducción del consumo (Hopkins y Richards, 1979; Bottomley, 1979). Estos PDF reflejaron que la fecha de esquila no
coincidió con la ubicación del diámetro mínimo, tal como lo hacen lanas preparto de SYM
(Sacchero y Mueller, 2007; Sacchero et al., 2011). En lanas con menores RT, esta ubicación del diámetro mínimo a lo largo de la mecha estaría repercutiendo en una menor performance industrial (Hansford, 1997).

La forma característica de los PDF para la zona bio-lanera Atlántica, registró una similitud con respecto a las curvas estacionales de productividad de sus pastizales (Paruelo et al., 1998a; Fabricante et al., 2009). Por ejemplo, la productividad de los pastizales registrada por Paruelo et al., (1998a), indicaron dos picos de productividad uno en primavera y otro en otoño, coincidentes con la forma hallada en los PDF. A su vez, los menores Rangos y Amplitudes observadas en los PDF se relacionan con una menor estacionalidad de la productividad de los pastizales (Paruelo et al., 1998a; Fabricante et al., 2009). El régimen de precipitaciones isohigro con influencia de masas de aire del Atlántico, sumado a las mayores temperaturas medias anuales con inviernos templados (Paruelo et al., 1998b; Bran et al., 2000; Godagnone y Bran, 2009), permitirían menores fluctuaciones en la productividad de los pastizales (Paruelo et al., 1998a; Fabricante et al., 2009), y por ende en la variación del diámetro de fibras a lo largo de la mecha (Cottle et al., 2013).

IV.II Aplicaciones y perspectivas futuras

Las zonas bio-laneras propuestas podrían utilizarse como punto de partida para desarrollar un sistema de monitoreo de calidad de lana en el área de estudio, con posibilidades de hacerlo extensivo a otras zonas de producción ovina. Teniendo en cuenta la importancia que tiene la ganadería ovina para el desarrollo territorial de la provincia (DGEyC, 2010), la posibilidad de contar con indicadores de calidad de lana a escala regional permitiría contribuir en el diseño e implementación de políticas públicas y desarrollos tecnológicos diferenciales. Las características de las zonas bio-laneras sirven de referencia de los principales parámetros de calidad de lana de los últimos 14 años y constituyen una forma de representar su distribución geográfica. Implementar un sistema de monitoreo que contemple estas características permitiría contar con indicadores que resuman la producción de una temporada o ciclo productivo. También desde un punto de vista medioambiental, podrían servir para definir un estado de referencia que permita analizar cambios a futuro, relacionados con procesos de perturbación (e.g. sequías, caída de ceniza volcánica). Este sistema permitiría transformar los datos que anualmente se generan en cada zafra lanera, en información para la toma de decisiones a distintos niveles dentro del sector productivo. Por ejemplo, potenciaría los servicios estratégicos que se ofrecen a
escala predial desde los laboratorios textiles de INTA, ya que el productor no solamente podría contar con mediciones objetivas para la comercialización de su lote de lana, sino que además permitiría analizarla en referencia a una zona determinada. En el caso de mermas considerables en la calidad de lana de un lote con respecto al rango de la zona, podría estar indicando la influencia de otros factores de origen no ambiental, como por ejemplo las prácticas de manejo llevadas a cabo. A su vez, en base a un monitoreo de calidad de lana por zonas se podrían definir políticas públicas diferenciadas que contemplan líneas de intervención y programas de promoción según necesidades particulares de cada caso, como así también contribuir al diseño de programas de mitigación, en el caso de cambios o perturbaciones no deseadas (e.g. sequías, caída de cenizas volcánicas). Por ende, estudiar y monitorear las zonas bio-laneras potenciaría la capacidad del sector productivo para promover procesos productivos sostenibles en el tiempo.

Esta tesis realiza un avance en la comprensión de la dinámica de los parámetros de calidad de lana. Los parámetros de calidad de lana registraron una relativa estabilidad, siendo alterada durante el año 2011. Esta relativa estabilidad estaría asociada a una capacidad de amortiguación de la producción de lana frente a la variabilidad ambiental de la región (Villagra, 2005; Easdale y Rosso, 2010). Sin embargo, los parámetros de lana estudiados registraron una alteración producto de un factor de perturbación ocurrido en la región en el año 2011, como consecuencia de la erupción del volcán Cordón Caulle-Puyehue (Gaitán et al., 2011). Esta perturbación, sumado a una interacción con sequía previa (Easdale y Rosso, 2010; Easdale et al., 2014), produjeron impactos sobre el ganado, (Robles et al., 2012) y afectaron de manera directa y/o indirectamente la producción y calidad de la lana (Easdale et al., 2014). Resultados de esta tesis marcan que el impacto de estos sucesos se mantuvo por un lapso de tiempo de dos ciclos productivos (años 2011, 2012; Fig. 2.8), recuperando luego niveles de calidad de lana previa a la perturbación (Sacchero, 2016). Esta dinámica indicaría cierta sensibilidad de los parámetros de calidad de lana frente a las perturbaciones ambientales como la mencionada, y a su vez, una resiliencia en términos de calidad de lana luego de estos impactos. En consecuencia, este tipo de perturbaciones no debieran considerarse aisladas o excepcionales, sino que constituyen parte de la dinámica propia de los ambientes patagónicos (Wilson et al., 2010) y tienen un alto impacto sobre la producción ovina (Robles et al., 2012; Easdale et al., 2014). Esta tesis aporta conocimientos acerca del comportamiento de la calidad de lana frente a estos sucesos. Por ejemplo, una medida de la capacidad de resiliencia, propiedad que tiene gran relevancia en la evaluación de la sustentabilidad de sistemas agropecuarios frente a cambios actuales y
futuros (Darnhofer, 2014). La dinámica observada debería ser tenida en cuenta en el diseño de políticas públicas de mitigación frente a situaciones extraordinarias. Por ejemplo, el diseño de políticas públicas no debiera basarse solamente en medidas de intervención puntuales durante o inmediatamente posterior al impacto de un evento de perturbación como el descripto, sino que tendrían que contemplar planes de trabajos interanuales. Resultados de esta tesis contribuirían al debate de los contextos asociados a la generación y desarrollo de tecnologías y políticas públicas orientadas a promover una mayor adaptación de la producción ovina frente a las fluctuaciones ambientales de la región.

Las condiciones ambientales de la región se verán afectadas por un contexto de cambio climático global, generando escenarios futuros con dinámicas ambientales diferentes a las del pasado, y por ende con impactos potencialmente mayores en la producción agropecuaria. La extensión, intensidad, duración y frecuencia de eventos climáticos extraordinarios en regiones áridas y semiáridas aumentarán como consecuencia del cambio climático global (Dai, 2012; Hansen et al., 2012), conduciendo a una pérdida o disminución de los servicios ecosistémicos y comprometiendo la sostenibilidad de las comunidades que habitan en ellos (D’Odorico et al., 2013). De acuerdo a las proyecciones, para finales del presente siglo las temperaturas medias se incrementarán entre 3,2°C y 3,7°C en las zonas áridas y semiáridas. También se pronostican incrementos en la variabilidad de las precipitaciones medias anuales (IPCC, 2013). Los cambios que se produzcan en el clima repercutirán en la producción y calidad de lana a través de su impacto directo e indirecto, modulado por la dinámica y estado de los pastizales (Harle et al., 2007). Teniendo en cuenta que en la región existen periodos de estrés térmico por calor, especialmente en la zona Atlántica, los posibles impactos del incremento de las temperaturas medias, como los incrementos en la frecuencia de días con temperaturas extremas, podrían afectar la producción animal al provocar una reducción del consumo debido a estrés térmico, causando mermas en el DMF (Hopkins y Richards, 1979; Bottomley, 1979). Contrariamente en las zonas Andina y Continental, un incremento en las temperaturas medias podría disminuir el efecto de las condiciones climáticas rigurosas durante el invierno, las cuales afectan los índices demográficos de las poblaciones de ovinos (Irazoqui, 1981; Coronato, 1999; Hall y Paruelo, 2006) y la sobrevivencia de animales (Mueller, 1980; Giraudo, 2002). Por otro lado, reducciones en las precipitaciones y/o incrementos en su variabilidad interanual repercutirán en la dinámica de los pastizales (Crimp et al., 2003) y en ciertos parámetros de calidad de lana (Harle et al., 2007). Por ejemplo, si se producen mermas y/o aumentos en las variaciones estacionales en la productividad de los pastizales repercutirán...
en menores DMF y en reducciones en la RT debido a que puede aumentar el stress animal (Harle et al., 2007).

En un contexto de cambio climático, los procesos de degradación se pueden acelerar, siendo los ecosistemas de las zonas áridas, semiáridas especialmente sensibles a estos cambios (Millenium Ecosystem Assessment, 2005). El avance de la desertificación es uno de los mayores problemas ambientales que afectan a la Patagonia extra-andina (del Valle et al., 1998), generando profundos cambios en la cobertura, proporción de grupos funcionales y composición florística de la vegetación (Perelman et al., 1997; Bisigato y Bertiller, 1997; Bisigato et al., 2005; Tadey, 2009). Reducciones en los porcentajes de cobertura vegetal podrían repercutir en incrementos de los contenidos de impurezas (e.g. tierra) en los vellones reduciendo el RP (Harle et al., 2007). Cambios en la proporción o composición florística podrían repercutir en el contenido de MV y por ende afectar también al RP. Por ejemplo, en zonas donde se produzcan procesos de arbustización y/o incrementos en la productividad de pastizales con especies anuales debido a pulsos de lluvia muy favorables podrían derivar en mayores contenidos de semillas y abrojos en los vellones produciendo mermas en el RP. En este contexto, cobra aun mayor importancia establecer un sistema de monitoreo de indicadores de calidad de lana a escala regional, ya que además de brindar información productiva esencial para el sector lanero, podrían ser considerados como indicadores de procesos ambientales. Debido a la sensibilidad hallada en este parámetro a las condiciones biofísicas de la región, estudios futuros debieran discriminar sus componentes para entender procesos de este tipo. Por lo tanto, teniendo en cuenta la variabilidad climática propia de las regiones áridas y semiáridas, se vuelve necesario considerar estos posibles escenarios para el diseño de políticas públicas y tecnologías para anteponerse y mitigar posibles impactos en la producción y calidad de lana. En un contexto de cambio climático donde dichas variaciones se acentuarán, tener en cuenta la variabilidad climática para el desarrollo de propuestas tecnológicas va a ser más importante en el presente para manejar los sistemas productivos, donde perspectivas como la resiliencia y la adaptabilidad asumen una mayor importancia (Easdale, 2017).

Las zonas bio-laneras brindan un avance en el conocimiento de la variabilidad productiva y su relación con las características biofísicas de la región. Esto permite poner en diferentes contextos la innovación tecnológica y prácticas de manejo adaptadas a las necesidades de cada zona. En este sentido, la elección de la fecha de esquila es una herramienta con múltiples consecuencias productivas y económicas (Mueller, 2015), al determinar el periodo
de tiempo en el cual el ambiente influye en el crecimiento y calidad de lana. A su vez, el momento de esquila afecta la forma del PDF, debido a que determina donde se ubica el punto de menor diámetro de fibras a lo largo de la mecha, que suele ser la posición de rotura durante el procesamiento textil (Hansford, 1997; Hansford y Kennedy, 1998; Oldham et al., 1998). Los resultados de esta tesis indicaron que a pesar de haber analizado lanas provenientes de esquilas preparto, la forma de los PDF no fue uniforme para toda el área de estudio. Los PDF de la zonas Andina y Continental se asemejaron a formas de huso de lanas preparto (Sacchero y Mueller, 2007), cuyos puntos de diámetro mínimo se ubican cercanos a los extremos de la mecha. Esta forma de huso es apreciada por la industria textil y es premiada en el precio en alrededor de un 7% al compararse con lanas esquiladas posparto (SIPYM, 2017). En cambio, los PDF de la zona Atlántica no se correspondieron con formas típicas de lanas preparto, debido a que la fecha de esquila se produjo en un momento cercano al diámetro máximo, provocando que los puntos de diámetro mínimo se ubiquen alrededor del centro del perfil (Fig. 3.14). La forma de estos PDF coincide con la forma de “cigarrillo” que estaría asociada a una menor performance industrial (Hansford, 1997; Oldham et al., 1998). Esta distinta ubicación del diámetro mínimo en los PDF está indicando diferencias en cuanto al momento de mayor estrés animal entre las zonas bio-laneras identificadas. Este ejemplo denota la importancia de estudiar la manera en que las características biofísicas de la región inciden en la variación de parámetros de calidad de lana, en este caso la variabilidad del diámetro de fibras a lo largo de la mecha. Esto permite proponer innovaciones tecnológicas que tengan como objetivo adoptar prácticas de manejo a las condiciones ambientales de la región. En este caso, considerar tecnologías de procesos que involucren cambios en la fecha de esquila, en pos de mejorar la calidad de lana y adaptarse a las demandas industriales.

El estudio de los PDF permitió analizar cómo se produjo el crecimiento de la lana durante el periodo 2014-2015 en respuesta a las condiciones ambientales del área de estudio. Además de describir el crecimiento de la lana, la información provista por los PDF ha sido utilizada también como indicador ex post del estado nutricional de las majadas, como así también para el desarrollo de estrategias de manejo (Doyle y Thompson, 1994; Gloag y Behrendt, 2002; Mata, 2002; Campbell et al., 2011; Cottle et al., 2013). En este sentido, las características de los PDF de las zonas bio-laneras serían una fuente de información para desarrollar tecnologías diferenciales. Por ejemplo, teniendo en cuenta la restricción estival observada en los PDF en la zona Atlántica, se podrían realizar estudios para determinar el efecto de diversas fechas de esquila (e.g. realizando la esquila en torno al momento donde
ocurre el diámetro mínimo; Fig. 3.14) que permitan producir PDF con forma ahusada. Esta propuesta debería no solo considerar las características de los PDF, sino también las consecuencias productivas y económicas que derivan de esta. En relación a esto, en la zona bio-lanera Atlántica, algunos establecimientos comenzaron a realizar cambios en la frecuencia de esquila (e.g. esquilas cada 8 meses) debido a que el desarrollo de 12 meses de lana ocasiona algunos problemas de manejo de los animales (Abad, 2017). La información aportada en esta tesis, permite debatir si las tecnologías que se utilizan en el sector ovino son apropiadas para todos los ambientes del área de estudio, siendo el PDF un factor más de los múltiples efectos que produce la elección de la fecha de esquila. En este contexto, cobra cada vez más relevancia realizar estudios que vinculen la calidad de la lana y su relación con el ambiente en donde se produce.

Futuros trabajos deberían considerar varios ciclos productivos y replicar el estudio para poder determinar si las características de los PDF obtenidas en este estudio son repetibles a través del tiempo. También se podrían realizar ensayos que incluyan pruebas de transformación industrial en tops de lana de las zonas bio-laneras, de manera de poder corroborar el comportamiento de las distintas formas de PDF obtenidas en el área de estudio. Si hubiera diferencias en la performance industrial, se tendría que evaluar cómo estas características en los perfiles se podrían trasladar en premios económicos en aquellas lanas con mejores rendimientos industriales. A su vez, la información provista por los PDF debiera complementarse con estudios que incluyan técnicas de teñido de fibras (dye banding) en momentos críticos del ciclo productivo y su relación con factores ambientales como la temperatura, precipitación y productividad forrajera, con el objetivo de ubicar temporalmente los cambios en los diámetros y calcular tasas de crecimiento y de producción de lana en distintas épocas del año.

IV.III Conclusiones generales

Esta tesis constituye un avance en comprender y describir la variación de la calidad de lana en la provincia de Río Negro. Un aspecto novedoso de este estudio radica en su escala regional y el gran número de establecimientos analizados a lo largo de una extensa área, que comprende una amplia variación en las condiciones ambientales y productivas. Los resultados sugieren la existencia de un gradiente de variación en la calidad de lana Merino de esquila preparto con orientación Oeste-Este en el área de estudio. Esta variabilidad reflejaría posibles asociaciones entre algunos parámetros de calidad de lana y la heterogeneidad del ambiente, expresándose mayormente en los establecimientos ubicados
en los extremos longitudinales del área de estudio. Por otro lado, esta tesis permitió avanzar en la comprensión de la dinámica en el tiempo de los parámetros de calidad de lana. En primer lugar, algunos parámetros de la calidad de lana fueron sensibles frente a las perturbaciones ambientales ocurridas durante el periodo estudiado, registrando también capacidad de recuperación luego de estos impactos. En segundo lugar, los PDF fueron disímiles entre zonas y sus diferencias estarían asociadas a condiciones biofísicas como la altitud y la estacionalidad productiva de los pastizales, aspectos fisiológicos, como así también decisiones de manejo predial. Esta tesis aporta nuevos desafíos en la búsqueda por entender la variabilidad en la calidad de lanas a escala regional, y remarca la necesidad de avanzar en una mayor comprensión de la influencia ambiental sobre parámetros de calidad de lana. Finalmente, esta tesis enfatiza la necesidad de pensar en el diseño e implementación de políticas públicas y desarrollos tecnológicos diferenciales que consideren la heterogeneidad regional y su influencia en la calidad de la lana.
Tabla 2.1.1. Valores promedios, error estándar (entre paréntesis), mediana y número de observaciones (italica) para los parámetros de lana cantidad de lana vellón (CLV), materia vegetal (MV), rinde al peine (RP), largo de mecha (LM), resistencia a la tracción (RT) y diámetro medio de fibras (DMF).

<table>
<thead>
<tr>
<th>Año</th>
<th>CLV (Kg)</th>
<th>MV (%)</th>
<th>RP (%)</th>
<th>LM (mm)</th>
<th>RT (N/ktex)</th>
<th>DMF (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>8823 (1633)</td>
<td>2,1 (0,2)</td>
<td>58 (0,6)</td>
<td>82 (0,8)</td>
<td>31 (0,6)</td>
<td>19,8 (0,1)</td>
</tr>
<tr>
<td></td>
<td>5894</td>
<td>1,7</td>
<td>59</td>
<td>83</td>
<td>31</td>
<td>19,7</td>
</tr>
<tr>
<td></td>
<td>106</td>
<td></td>
<td></td>
<td>106</td>
<td>106</td>
<td>106</td>
</tr>
<tr>
<td>2003</td>
<td>9053 (1227)</td>
<td>1,5 (0,1)</td>
<td>58 (0,4)</td>
<td>87 (0,8)</td>
<td>31 (0,6)</td>
<td>20 (0,1)</td>
</tr>
<tr>
<td></td>
<td>6004</td>
<td>1,2</td>
<td>59</td>
<td>86</td>
<td>31</td>
<td>19,9</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td></td>
<td></td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>2004</td>
<td>10360 (1361)</td>
<td>1,1 (0,1)</td>
<td>58 (0,4)</td>
<td>90 (0,8)</td>
<td>26 (0,5)</td>
<td>19,9 (0,1)</td>
</tr>
<tr>
<td></td>
<td>7313</td>
<td>0,9</td>
<td>58</td>
<td>90</td>
<td>26</td>
<td>19,9</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td></td>
<td></td>
<td>113</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td>2005</td>
<td>9545 (1084)</td>
<td>1,3 (0,1)</td>
<td>60 (0,5)</td>
<td>88 (0,8)</td>
<td>30 (0,5)</td>
<td>19,8 (0,1)</td>
</tr>
<tr>
<td></td>
<td>6964</td>
<td>1,21</td>
<td>61</td>
<td>88</td>
<td>31</td>
<td>19,7</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td></td>
<td></td>
<td>113</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td>2006</td>
<td>9038 (1105)</td>
<td>1,3 (0,1)</td>
<td>60 (0,4)</td>
<td>92 (0,6)</td>
<td>31 (0,5)</td>
<td>20 (0,1)</td>
</tr>
<tr>
<td></td>
<td>6364</td>
<td>1,1</td>
<td>61</td>
<td>93</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td></td>
<td></td>
<td>113</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td>2007</td>
<td>8255 (1048)</td>
<td>1,4 (0,1)</td>
<td>59 (0,5)</td>
<td>82 (0,7)</td>
<td>31 (0,4)</td>
<td>19,5 (0,1)</td>
</tr>
<tr>
<td></td>
<td>5858</td>
<td>1,1</td>
<td>60</td>
<td>82</td>
<td>32</td>
<td>19,4</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td></td>
<td></td>
<td>113</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td>2008</td>
<td>7211 (1105)</td>
<td>0,9 (0,1)</td>
<td>57 (0,5)</td>
<td>85 (0,5)</td>
<td>29 (0,4)</td>
<td>19,2 (0,1)</td>
</tr>
<tr>
<td></td>
<td>5120</td>
<td>0,7</td>
<td>57</td>
<td>86</td>
<td>29</td>
<td>19,2</td>
</tr>
<tr>
<td></td>
<td>104</td>
<td></td>
<td></td>
<td>104</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>2009</td>
<td>7233 (1062)</td>
<td>1 (0,1)</td>
<td>56 (0,6)</td>
<td>88 (0,6)</td>
<td>32 (0,4)</td>
<td>19,6 (0,1)</td>
</tr>
<tr>
<td></td>
<td>4305</td>
<td>0,9</td>
<td>57</td>
<td>88</td>
<td>34</td>
<td>19,6</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td></td>
<td></td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>2010</td>
<td>7736 (1119)</td>
<td>1,1 (0,1)</td>
<td>58 (0,5)</td>
<td>89 (0,6)</td>
<td>32 (0,4)</td>
<td>20,5 (0,1)</td>
</tr>
<tr>
<td></td>
<td>4622</td>
<td>0,9</td>
<td>58</td>
<td>89</td>
<td>33</td>
<td>20,5</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td></td>
<td></td>
<td>113</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td>2011</td>
<td>6283 (1174)</td>
<td>0,9 (0,1)</td>
<td>47 (0,6)</td>
<td>89 (0,7)</td>
<td>23 (0,4)</td>
<td>19,5 (0,1)</td>
</tr>
<tr>
<td></td>
<td>3576</td>
<td>0,8</td>
<td>48</td>
<td>90</td>
<td>24</td>
<td>19,4</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2012</td>
<td>4859 (1026)</td>
<td>0,7 (0,1)</td>
<td>54 (0,5)</td>
<td>90 (0,6)</td>
<td>28 (0,3)</td>
<td>19,1 (0,1)</td>
</tr>
<tr>
<td></td>
<td>2728</td>
<td>0,5</td>
<td>54</td>
<td>90</td>
<td>29</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td></td>
<td></td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>2013</td>
<td>5153 (1225)</td>
<td>0,7 (0,1)</td>
<td>55 (0,6)</td>
<td>93 (0,6)</td>
<td>32 (0,4)</td>
<td>19,1 (0,1)</td>
</tr>
<tr>
<td></td>
<td>2700</td>
<td>0,6</td>
<td>55</td>
<td>94</td>
<td>32</td>
<td>19,1</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td></td>
<td></td>
<td>84</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>2014</td>
<td>5611 (1443)</td>
<td>1 (0,1)</td>
<td>58 (0,6)</td>
<td>94 (0,6)</td>
<td>28 (0,5)</td>
<td>19,2 (0,1)</td>
</tr>
<tr>
<td></td>
<td>2865</td>
<td>0,7</td>
<td>58</td>
<td>94</td>
<td>29</td>
<td>19,1</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td></td>
<td></td>
<td>86</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>2015</td>
<td>6980 (1590)</td>
<td>2,1 (0,1)</td>
<td>57 (0,7)</td>
<td>93 (0,7)</td>
<td>30 (0,4)</td>
<td>19,7 (0,1)</td>
</tr>
<tr>
<td></td>
<td>4187</td>
<td>1,8</td>
<td>56</td>
<td>93</td>
<td>31</td>
<td>19,7</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td></td>
<td></td>
<td>84</td>
<td>84</td>
<td>84</td>
</tr>
</tbody>
</table>
Tabla 2.1.2. Valores promedios, error estándar (entre paréntesis), mediana y número de observaciones (itálica) para los parámetros de lana evaluados en los establecimientos según su región natural: cantidad de lana vellón (CLV), materia vegetal (MV), rinde al peine (RP), largo de mecha (LM), resistencia a la tracción (RT) y diámetro medio de fibras (DMF).

<table>
<thead>
<tr>
<th>Región Natural</th>
<th>CLV (Kg)</th>
<th>MV (%)</th>
<th>RP (%)</th>
<th>LM (mm)</th>
<th>RT (N/ktext)</th>
<th>DMF (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patagonia Occidental</td>
<td>8674 (464)</td>
<td>0.8 (0,02)</td>
<td>57,7 (0,2)</td>
<td>88,7 (0,2)</td>
<td>30,8 (0,1)</td>
<td>19,5 (0,03)</td>
</tr>
<tr>
<td></td>
<td>5004</td>
<td>0.7</td>
<td>58</td>
<td>876</td>
<td>31</td>
<td>876</td>
</tr>
<tr>
<td></td>
<td>876</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patagonia Oriental</td>
<td>5369 (166)</td>
<td>2 (0,06)</td>
<td>56,3 (0,2)</td>
<td>89,1 (0,4)</td>
<td>28,1 (0,2)</td>
<td>20 (0,06)</td>
</tr>
<tr>
<td></td>
<td>4804</td>
<td>2.1</td>
<td>56</td>
<td>409</td>
<td>28</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>409</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2.1.3. Valores promedios, error estándar (entre paréntesis), mediana y número de observaciones (itálica) para los parámetros de lana evaluados en los establecimientos según su área ecológica: cantidad de lana vellón (CLV), materia vegetal (MV), rinde al peine (RP), largo de mecha (LM), resistencia a la tracción (RT) y diámetro medio de fibras (DMF).

<table>
<thead>
<tr>
<th>Área Ecológica</th>
<th>CLV (Kg)</th>
<th>MV (%)</th>
<th>RP (%)</th>
<th>LM (mm)</th>
<th>RT (N/ktext)</th>
<th>DMF (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monte Oriental</td>
<td>6443 (211)</td>
<td>2 (0,09)</td>
<td>57,5 (0,3)</td>
<td>94,8 (0,5)</td>
<td>28,3 (0,3)</td>
<td>20,4 (0,09)</td>
</tr>
<tr>
<td></td>
<td>5884</td>
<td>1.9</td>
<td>58</td>
<td>180</td>
<td>28</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monte Austral</td>
<td>4524 (232)</td>
<td>2 (0,06)</td>
<td>55,3 (0,2)</td>
<td>85,4 (0,3)</td>
<td>28,4 (0,3)</td>
<td>19,9 (0,06)</td>
</tr>
<tr>
<td></td>
<td>3555</td>
<td>2.1</td>
<td>55</td>
<td>229</td>
<td>29</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>229</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meseta Central</td>
<td>5915 (265)</td>
<td>0,9 (0,03)</td>
<td>56,4 (0,3)</td>
<td>89,3 (0,3)</td>
<td>30,8 (0,2)</td>
<td>19,6 (0,04)</td>
</tr>
<tr>
<td></td>
<td>4204</td>
<td>0.8</td>
<td>57</td>
<td>371</td>
<td>31</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>371</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sierras y Mesetas</td>
<td>7891 (291)</td>
<td>0,7 (0,03)</td>
<td>57,8 (0,2)</td>
<td>88,6 (0,3)</td>
<td>30,5 (0,2)</td>
<td>19,5 (0,05)</td>
</tr>
<tr>
<td></td>
<td>6239</td>
<td>0.7</td>
<td>59</td>
<td>423</td>
<td>30</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>423</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precordillera</td>
<td>25199 (4162)</td>
<td>0,6 (0,04)</td>
<td>64 (0,7)</td>
<td>88,2 (0,3)</td>
<td>32,5 (0,5)</td>
<td>19,4 (0,05)</td>
</tr>
<tr>
<td></td>
<td>8377</td>
<td>0.7</td>
<td>65</td>
<td>82</td>
<td>32</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2.1.4. Valores promedios, error estándar (entre paréntesis), mediana y número de observaciones (itálica) para los parámetros de lana evaluados en los establecimientos según su escala productiva: cantidad de lana vellón (CLV), materia vegetal (MV), rinde al peine (RP), largo de mecha (LM), resistencia a la tracción (RT) y diámetro medio de fibras (DMF).

<table>
<thead>
<tr>
<th>Escala Productiva</th>
<th>CLV (Kg)</th>
<th>MV (%)</th>
<th>RP (%)</th>
<th>LM (mm)</th>
<th>RT (N/ktext)</th>
<th>DMF (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grande</td>
<td>30286 (2483)</td>
<td>0.7 (0,04)</td>
<td>62 (0,5)</td>
<td>90,1 (0,5)</td>
<td>31,5 (0,4)</td>
<td>19,3 (0,07)</td>
</tr>
<tr>
<td></td>
<td>20156</td>
<td>0.8</td>
<td>62.5</td>
<td>122</td>
<td>31</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermedia</td>
<td>7887 (111)</td>
<td>1,3 (0,05)</td>
<td>58,3 (0,2)</td>
<td>89,9 (0,3)</td>
<td>30,1 (0,2)</td>
<td>19,8 (0,06)</td>
</tr>
<tr>
<td></td>
<td>7319</td>
<td>1</td>
<td>59</td>
<td>578</td>
<td>30</td>
<td>578</td>
</tr>
<tr>
<td></td>
<td>578</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pequeña</td>
<td>2634 (45)</td>
<td>1,1 (0,04)</td>
<td>55,2 (0,2)</td>
<td>87,6 (0,3)</td>
<td>28,2 (0,5)</td>
<td>20 (0,05)</td>
</tr>
<tr>
<td></td>
<td>2698</td>
<td>1</td>
<td>56</td>
<td>585</td>
<td>28</td>
<td>585</td>
</tr>
<tr>
<td></td>
<td>585</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figura 2.1.1. Dendrograma del análisis de Conglomerados. Grupos formados en función del método de Ward (distancia euclidia promedio) en base a los parámetros de lana analizados.

Tabla 2.1.2. Matriz completa de los coeficientes de correlación vectorial (coeficientes RV).

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>1.00</td>
<td>0.97</td>
<td>0.94</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>2004</td>
<td>0.97</td>
<td>1.00</td>
<td>0.96</td>
<td>0.98</td>
<td>0.96</td>
<td>0.97</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>2005</td>
<td>0.94</td>
<td>0.96</td>
<td>1.00</td>
<td>0.91</td>
<td>0.97</td>
<td>0.98</td>
<td>0.96</td>
<td>0.91</td>
</tr>
<tr>
<td>2006</td>
<td>0.95</td>
<td>0.98</td>
<td>0.91</td>
<td>1.00</td>
<td>0.95</td>
<td>0.94</td>
<td>0.96</td>
<td>0.98</td>
</tr>
<tr>
<td>2007</td>
<td>0.95</td>
<td>0.96</td>
<td>0.97</td>
<td>0.95</td>
<td>1.00</td>
<td>0.98</td>
<td>0.98</td>
<td>0.93</td>
</tr>
<tr>
<td>2008</td>
<td>0.95</td>
<td>0.97</td>
<td>0.98</td>
<td>0.94</td>
<td>0.98</td>
<td>1.00</td>
<td>0.98</td>
<td>0.93</td>
</tr>
<tr>
<td>2009</td>
<td>0.95</td>
<td>0.98</td>
<td>0.96</td>
<td>0.96</td>
<td>0.98</td>
<td>0.98</td>
<td>1.00</td>
<td>0.97</td>
</tr>
<tr>
<td>2010</td>
<td>0.95</td>
<td>0.98</td>
<td>0.91</td>
<td>0.98</td>
<td>0.93</td>
<td>0.93</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>2011</td>
<td>0.92</td>
<td>0.97</td>
<td>0.95</td>
<td>0.95</td>
<td>0.97</td>
<td>0.95</td>
<td>0.97</td>
<td>0.93</td>
</tr>
<tr>
<td>2012</td>
<td>0.74</td>
<td>0.84</td>
<td>0.82</td>
<td>0.79</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.79</td>
</tr>
<tr>
<td>2013</td>
<td>0.83</td>
<td>0.91</td>
<td>0.89</td>
<td>0.87</td>
<td>0.91</td>
<td>0.90</td>
<td>0.91</td>
<td>0.84</td>
</tr>
<tr>
<td>2014</td>
<td>0.87</td>
<td>0.95</td>
<td>0.93</td>
<td>0.90</td>
<td>0.92</td>
<td>0.94</td>
<td>0.95</td>
<td>0.92</td>
</tr>
<tr>
<td>2015</td>
<td>0.90</td>
<td>0.94</td>
<td>0.96</td>
<td>0.89</td>
<td>0.94</td>
<td>0.95</td>
<td>0.96</td>
<td>0.91</td>
</tr>
<tr>
<td>2016</td>
<td>0.89</td>
<td>0.95</td>
<td>0.93</td>
<td>0.93</td>
<td>0.95</td>
<td>0.95</td>
<td>0.97</td>
<td>0.93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>0.92</td>
<td>0.74</td>
<td>0.83</td>
<td>0.87</td>
<td>0.90</td>
<td>0.89</td>
</tr>
<tr>
<td>2004</td>
<td>0.97</td>
<td>0.84</td>
<td>0.91</td>
<td>0.95</td>
<td>0.94</td>
<td>0.95</td>
</tr>
<tr>
<td>2005</td>
<td>0.95</td>
<td>0.82</td>
<td>0.89</td>
<td>0.93</td>
<td>0.96</td>
<td>0.93</td>
</tr>
<tr>
<td>2006</td>
<td>0.95</td>
<td>0.79</td>
<td>0.87</td>
<td>0.90</td>
<td>0.89</td>
<td>0.93</td>
</tr>
<tr>
<td>2007</td>
<td>0.97</td>
<td>0.83</td>
<td>0.91</td>
<td>0.92</td>
<td>0.94</td>
<td>0.95</td>
</tr>
<tr>
<td>2008</td>
<td>0.95</td>
<td>0.83</td>
<td>0.90</td>
<td>0.94</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>2009</td>
<td>0.97</td>
<td>0.83</td>
<td>0.91</td>
<td>0.95</td>
<td>0.96</td>
<td>0.97</td>
</tr>
<tr>
<td>2010</td>
<td>0.93</td>
<td>0.79</td>
<td>0.84</td>
<td>0.92</td>
<td>0.91</td>
<td>0.93</td>
</tr>
<tr>
<td>2011</td>
<td>1.00</td>
<td>0.87</td>
<td>0.95</td>
<td>0.95</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>2012</td>
<td>0.87</td>
<td>1.00</td>
<td>0.96</td>
<td>0.90</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>2013</td>
<td>0.95</td>
<td>0.96</td>
<td>1.00</td>
<td>0.94</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>2014</td>
<td>0.95</td>
<td>0.90</td>
<td>0.94</td>
<td>1.00</td>
<td>0.95</td>
<td>0.96</td>
</tr>
<tr>
<td>2015</td>
<td>0.93</td>
<td>0.86</td>
<td>0.90</td>
<td>0.95</td>
<td>1.00</td>
<td>0.92</td>
</tr>
<tr>
<td>2016</td>
<td>0.93</td>
<td>0.86</td>
<td>0.90</td>
<td>0.96</td>
<td>0.92</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Anexo III.I

Tabla 3.1.1. Matriz de correlación de los parámetros de lana y de las variables calculadas en los PDF.

<table>
<thead>
<tr>
<th></th>
<th>LM</th>
<th>DMax</th>
<th>DMin</th>
<th>DMF</th>
<th>CVDMF</th>
<th>FDMin</th>
<th>FDMax</th>
<th>RT</th>
<th>PRP</th>
<th>PRM</th>
<th>PRB</th>
<th>Amplitud</th>
<th>Rango</th>
<th>CVAlong</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM</td>
<td>1.00</td>
<td>-0.16</td>
<td>-0.08</td>
<td>-0.19</td>
<td>-0.13</td>
<td>-0.08</td>
<td>-0.09</td>
<td>-0.03</td>
<td>0.02</td>
<td>0.18</td>
<td>-0.19</td>
<td>-0.03</td>
<td>-0.10</td>
<td>-0.21</td>
</tr>
<tr>
<td>DMax</td>
<td>-0.16</td>
<td>1.00</td>
<td>0.41</td>
<td>0.88</td>
<td>0.50</td>
<td>0.23</td>
<td>0.03</td>
<td>0.01</td>
<td>-0.21</td>
<td>-0.06</td>
<td>0.32</td>
<td>0.29</td>
<td>0.68</td>
<td>0.47</td>
</tr>
<tr>
<td>DMin</td>
<td>-0.08</td>
<td>0.41</td>
<td>1.00</td>
<td>0.82</td>
<td>-0.53</td>
<td>-0.35</td>
<td>-0.29</td>
<td>0.19</td>
<td>0.02</td>
<td>0.25</td>
<td>-0.25</td>
<td>-0.39</td>
<td>-0.55</td>
<td></td>
</tr>
<tr>
<td>DMF</td>
<td>-0.19</td>
<td>0.88</td>
<td>0.71</td>
<td>1.00</td>
<td>0.08</td>
<td>0.15</td>
<td>0.07</td>
<td>0.13</td>
<td>-0.03</td>
<td>-0.04</td>
<td>0.07</td>
<td>0.14</td>
<td>0.32</td>
<td>0.06</td>
</tr>
<tr>
<td>CVDMF</td>
<td>-0.13</td>
<td>0.50</td>
<td>-0.53</td>
<td>0.08</td>
<td>1.00</td>
<td>0.45</td>
<td>0.18</td>
<td>-0.18</td>
<td>-0.35</td>
<td>-0.20</td>
<td>0.62</td>
<td>0.48</td>
<td>0.94</td>
<td>0.97</td>
</tr>
<tr>
<td>FDMin</td>
<td>-0.08</td>
<td>0.23</td>
<td>-0.35</td>
<td>0.15</td>
<td>0.45</td>
<td>1.00</td>
<td>0.72</td>
<td>0.06</td>
<td>0.06</td>
<td>-0.44</td>
<td>0.33</td>
<td>0.79</td>
<td>0.51</td>
<td>0.42</td>
</tr>
<tr>
<td>FDMax</td>
<td>-0.09</td>
<td>0.03</td>
<td>-0.29</td>
<td>0.07</td>
<td>0.18</td>
<td>0.72</td>
<td>1.00</td>
<td>0.14</td>
<td>0.28</td>
<td>-0.52</td>
<td>0.12</td>
<td>0.15</td>
<td>0.25</td>
<td>0.19</td>
</tr>
<tr>
<td>RT</td>
<td>-0.03</td>
<td>0.01</td>
<td>0.19</td>
<td>0.13</td>
<td>-0.18</td>
<td>0.06</td>
<td>0.14</td>
<td>1.00</td>
<td>-0.14</td>
<td>0.14</td>
<td>0.05</td>
<td>-0.04</td>
<td>-0.14</td>
<td>-0.20</td>
</tr>
<tr>
<td>PRP</td>
<td>0.02</td>
<td>-0.21</td>
<td>0.02</td>
<td>-0.03</td>
<td>-0.35</td>
<td>0.06</td>
<td>0.28</td>
<td>-0.14</td>
<td>1.00</td>
<td>-0.61</td>
<td>-0.70</td>
<td>-0.16</td>
<td>-0.24</td>
<td>-0.30</td>
</tr>
<tr>
<td>PRM</td>
<td>0.18</td>
<td>-0.06</td>
<td>0.25</td>
<td>-0.04</td>
<td>-0.20</td>
<td>-0.44</td>
<td>-0.52</td>
<td>0.14</td>
<td>-0.61</td>
<td>1.00</td>
<td>-0.14</td>
<td>-0.17</td>
<td>-0.26</td>
<td>-0.26</td>
</tr>
<tr>
<td>PRB</td>
<td>-0.19</td>
<td>0.32</td>
<td>-0.25</td>
<td>0.07</td>
<td>0.62</td>
<td>0.33</td>
<td>0.12</td>
<td>0.05</td>
<td>-0.70</td>
<td>-0.14</td>
<td>1.00</td>
<td>0.36</td>
<td>0.54</td>
<td>0.62</td>
</tr>
<tr>
<td>Amplitud</td>
<td>-0.03</td>
<td>0.29</td>
<td>-0.25</td>
<td>0.14</td>
<td>0.48</td>
<td>0.79</td>
<td>0.15</td>
<td>-0.04</td>
<td>-0.16</td>
<td>-0.17</td>
<td>0.36</td>
<td>1.00</td>
<td>0.51</td>
<td>0.43</td>
</tr>
<tr>
<td>Rango</td>
<td>-0.10</td>
<td>0.68</td>
<td>-0.39</td>
<td>0.32</td>
<td>0.94</td>
<td>0.51</td>
<td>0.25</td>
<td>-0.14</td>
<td>-0.24</td>
<td>-0.26</td>
<td>0.54</td>
<td>0.51</td>
<td>1.00</td>
<td>0.92</td>
</tr>
<tr>
<td>CVAlong</td>
<td>-0.21</td>
<td>0.47</td>
<td>-0.55</td>
<td>0.06</td>
<td>0.97</td>
<td>0.42</td>
<td>0.19</td>
<td>-0.20</td>
<td>-0.30</td>
<td>-0.26</td>
<td>0.62</td>
<td>0.43</td>
<td>0.92</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Abad MI. (2017). Influencia del contenido de materia vegetal y el largo de la mecha en el precio final de la lana de Patagones. Boletín de divulgación No 24 INTA Hilario Ascasubi.

Adams NR; Briegel JR. (2002). Variation in fibre diameter along the wool staple in sire progeny groups. Animal Production Science 24: 5-8

Bran D; Oliva G; Rial P; Escobar J; López C; Umaña F; Ayesa J; Elissalde N. (2005). Regiones Ecológicas Homogéneas de la Patagonia Argentina. Comunicación Técnica No. 132, INTA Bariloche.

Brown DJ; Crook BJ; Purvis IW. (1999). Genotype and environmental differences in fibre diameter profile characteristics and their relationship with staple strength in

- Brown DJ; Crook BJ; Purvis IW. (2002). Differences in fiber diameter profile characteristics in wool staples from Merino sheep and their relationship with staple strength between years, environments and bloodlines. Australian Journal of Agricultural Research 53: 481-491.

• Crimp S; Nalston J; Ash A; Anderson Berry L; Done T; Greiner R; Hilbert D; Howden M; Jones R; Stokes C; Stoeckl N; Sutherst B; Whetton P. (2003). A study to determine the scope and focus of an integrated assessment of climate change impacts and options for adaptation in the Cairns and Great Barrier Reef Region. Australian Greenhouse Office, Canberra. 82 p.

• D’Odorico P; Bhattachan A; Davis KF; Ravi S; Runyan CW. (2013) Global desertification: drivers and feedbacks. Advances in Water Resources, 51: 326-344.

• Easdale MH; Domptail SE. (2014). Fate can be changed! Arid rangelands in a globalizing world—a complementary co-evolutionary perspective on the current ‘desert syndrome’. Journal of Arid Environments 100: 52-62.
• Easdale MH; Domptail SE. (2014). Fate can be changed! Arid rangelands in a globalizing world—a complementary co-evolutionary perspective on the current ‘desert syndrome’. Journal of Arid Environments 100: 52-62.
• Elvira MG; Jacob MH. (2004). Importancia de las mediciones objetivas en la comercialización e industrialización de la lana. Carpeta Técnica, Ganadería No. 11, INTA Esquel, Chubut, Argentina.
• Ferguson MB; Thompson AN; Gordon DJ; Hyder MW; Kearney GA; Oldham CM; Paganoni BL. (2011). The wool production and reproduction of Merino ewes can be predicted from changes in liveweight during pregnancy and lactation. Animal Production Science 51(9): 763-775.
• Giorgetti HD; Montenegro OA; Rodríguez GD; Busso CA; Montani T; Burgos MA; Horvitz SS. (1997). The comparative influence of past management and rainfall on range herbaceous standing crop in east-central Argentina: 14 years of observations. Journal of Arid Environments 36(4): 623-637.
• Giraudo C; Villagra S; Losardo P; Bidinost F; Garramuño J; Abad M; Uzal F; López J; Bustos C; Gibbons A. 2002. Manejo de la parición para mejorar la producción de corderos. Comunicación Técnica No 14, INTA Bariloche.
• Groffman PM; Baron JS; Blett T; Gold AJ; Goodman I; Gunderson LH; Levinson BM; Palmer MA; Paerl HW; Peterson GD; LeRoy Poff N; Rejeski DW; Reynolds JF; Turner MG; Weathers KC; Wiens J. (2006). Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9: 1–13.
• Hatcher S; Atkins KD; Thornberry KJ. (2005). Age changes in wool traits of Merino sheep in western NSW. In Association for the Advancement of Animal Breeding and Genetics 16: 314-317.

- Naylor GR; Hansford KA. (1999). Fibre end properties in processed top relative to the staple for wool grown in a Mediterranean climate and shorn in different seasons. Wool Technology and Sheep Breeding 47: 107-117.
- Reynolds JF; Stafford Smith DM; Lambín EF; Turner BL; Mortimore M; Batterbury SPJ; Downing TE; Dowlatabadi H; Fernández R; Herrick JE; Huber Sannwald E; Jiang H; Leemans R; Lynam T; Maestre FT; Ayrza M; Walker B. (2007). Global desertification: building a science for dryland development Science 316: 847-851.

• Schlink AC; Mata G; Lea JM; Ritchie AJM. (1999). Seasonal variation in fibre diameter and length in wool of grazing Merino sheep with low or high staple strength. Australian Journal of Experimental Agriculture 39(5): 507-517.

• Villagra ES; Easdale MH; Villar L; Giraudo C. (2011). Estado de situación y propuesta de acción para el área afectada por la sequía en la Provincia de Río Negro. INTA Bariloche. (http://sipan.inta.gov.ar/contenido/bibliografia/pdf/22.PDF)

- Villagra ES; Easdale MH; Giraudo CG; Bonvissuto GL. (2015). Productive and income contributions of sheep, goat, and cattle, and different diversification schemes in smallholder production systems of Northern Patagonia, Argentina. Tropical animal health and production 47(7): 1373-1380.
- Whelan MB; Geenty KG; Cottle DJ; Lamb DT; Donald GE. (2008). The relationship between a satellite derived vegetation index and wool fibre diameter profiles. Proceedings of 10th World Conference on Animal Production, Cape Town, SA, 23-28 November, WAAP.
- Yamin M; Hynd PI; Ponzoni RW; Hill JA; Pitchford WS; Hansford KA. (1999). Is fibre diameter variation along the staple a good indirect selection criterion for staple strength?. Wool Technology and Sheep Breeding 47: 151-158.