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ABSTRACT
One of the main causes of yield and quality loss in barley (Hordeum vulgare L.) crops are fungal diseases. Unders-

tanding the severity of these diseases is essential to achieve  proper phytosanitary management. Monitoring is the 
practice used to assess the health status of crops. This is necessary for diagnosing and quantifying the level of 
attack, as well as for calculating the impact caused by diseases. This procedure is usually carried out through visual 
estimates and is therefore often subjective and imprecise. Remote sensing techniques emerge as a potentially 
useful alternative for detecting disease hotspots and differentiating areas with varying severity. The objectives were 
the following: to obtain the spectral signatures of healthy and diseased crops, to evaluate the feasibility of differen-
tiating them using spectral indices, to identify the most sensitive bands for differentiation, and to compare the visual 
estimation of severity with that obtained through image classification. For this purpose, samples of healthy leaves 
and leaves showing symptoms of each of the foliar diseases caused by Drechslera teres, Rhynchosporium commu-
ne, and Bipolaris sorokiniana were used. Seventeen indices and the MDI were calculated from the spectral signatures 
obtained in the laboratory. The NDVI, CARI, NRI, OSAVI, RGR, and MDI indices showed significant differences bet-
ween healthy and diseased leaves, but not between different diseases; only GNDVI was able to differentiate between 
them. The most sensitive bands identified by MDI were 440-490 nm and 645-680 nm. Regarding severity, the results 
showed a wide dispersion in visual estimates and the potential for using RGB image classification to quantify the 
intensity of disease symptoms. These results justify future field investigations to develop tools that contribute to 
improved phytosanitary management.
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RESUMEN
Una de las principales causas de pérdida de rendimiento y calidad en el cultivo de cebada (Hordeum vulgare L.) son 

las enfermedades fúngicas. Conocer la gravedad de las enfermedades es fundamental para un manejo fitosanitario 
racional. El monitoreo es la práctica utilizada para evaluar el estado sanitario de los cultivos. Esto es necesario para el 
diagnóstico y la cuantificación del nivel de ataque, así como para calcular el impacto causado por enfermedades. Este 
procedimiento suele llevarse a cabo mediante estimaciones visuales y, por lo tanto, suele ser subjetivo e impreciso. 
Las técnicas de teledetección surgen como una alternativa potencialmente útil para detectar focos de enfermedades y 
diferenciar áreas con distinta severidad. Los objetivos de este trabajo fueron los siguientes: obtener las firmas espec-
trales del cultivo sano y con enfermedades foliares, evaluar la factibilidad de diferenciarlas utilizando índices espec-
trales, obtener las bandas de mayor sensibilidad para diferenciarlas y comparar la estimación visual de la severidad 
con la obtenida mediante clasificación de imágenes. Para esto se utilizaron muestras de hojas sanas y con síntomas 
de cada una de las enfermedades foliares causadas por Drechslera teres, Rhynchosporium commune y Bipolaris so-
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INTRODUCTION 

Barley (Hordeum vulgare L.) is a widely spread crop, being the 
fourth most important cereal worldwide  after rice, corn and 
wheat. Argentina is a leading producer and exporter, with bar-
ley being the second most significant winter cereal after wheat 
(FAO, 2022; INASE 2022; Miralles et al., 2011). 

Diseases are one of the main causes of loss of yield and qua-
lity of production in all agricultural crops. Consequently, timely 
detection of symptoms is the key to select suitable control 
techniques and limit their propagation (Martinelli et al., 2015). 
Among the biotic factors that cause crop diseases, fungi are 
the most relevant barley pathogen (Kiehr et al., 2016). The main 
fungal diseases affecting barley in Argentina, which have mar-
kedly increased their importance in the last years, are net blotch 
(Drechslera teres [Sacc.] Shoemaker), leaf scald (Rhynchospo-
rium commune Zaffarano, McDonald & Linde), and spot blotch 
(Bipolaris sorokiniana [Sacc.] Shoem.). It should be noted that, 
currently, in the Argentine market, there is a limited number of 
barley varieties and they are all susceptible to at least one of 
the main fungal diseases (Erreguerena et al., 2017). 

Crops must be protected during their cycle in order to avoid 
significant losses in yield and production quality. No single 
practice has proven to be totally effective for disease control 
in extensive crops; therefore, integrated disease management 
(IDM) is the most appropriate approach to achieve damage 
reduction with the least possible environmental impact. The 
IDM is based on the combination of cultural, biological and 
chemical practices applied to disease control (Pereyra and 
German, 2012). The current approach of crop management 
assumes that diseases are distributed homogeneously in the 
field; however, this is not true. Heterogeneity appears due 
to site characteristics, such as the influence of neighboring 
crops, predecessor crops, inoculum sources, among others. 
Thus, diseases express themselves in a heterogeneous pat-
tern, presenting foci, gradients or random distributions. This 
heterogeneity presents the possibility of reducing the use of 
phytosanitary products by carrying out a site-specific mana-
gement of diseases, which allows the reduction of costs and 
environmental impacts, while reducing the risk of developing 
resistant biotypes (Martinelli et al., 2015). 

Visual estimation of incidence and severity is the current 
most widely used technique for crop monitoring. With the aim 
to assist the evaluation of diseases through visual estimation, 
diagrammatic scales were developed. However, when surve-
ying numerous samples, the lack of concentration of the eva-
luators due to fatigue leads to a loss of accuracy. In addition, 
there are variations both between evaluators (subjectivity) and 

within the same evaluator (repetitiveness), along with the need 
of evaluators for frequent training to maintain precision. Fur-
thermore, the use of “coarse scales” (values such as 1, 5, 10, 
25% are generally chosen), or their variations depending on the 
organ under study, also affect the results of the estimates. The-
se inaccuracies in the estimates have harmful consequences 
for the environment (due to the unnecessary applications of 
phytosanitary products) and/or affect the producer’s profitabili-
ty (due to large losses) (Bock et al., 2010, 2020; 2022). 

A possible alternative to visual monitoring is the use of remo-
te sensing techniques, which have proven to be useful tools to 
detect symptoms in the initial stages of disease development 
(Calderón et al., 2018). Sensors gather information on the 
properties of plants in different regions of the electromagne-
tic spectrum, including information beyond the visible range, 
allowing the detection of early changes in plant physiology 
due to stress (Bauriegel et al., 2011; Bravo et al., 2003; Kuska 
et al., 2015; Wahabzada et al., 2015). Some of the most pro-
mising techniques are those which use sensors that measure 
reflectance and create spectral indices, which had great deve-
lopment over the last 60 years, with promising results (Ashou-
rloo et al., 2014; Mahlein et al., 2013, 2012; Huang et al., 2007). 
Indeed, remote sensing techniques are potentially useful for 
identifying disease foci and areas that differ in severity when 
used in combination with advanced data analysis methods; 
in addition, they can be used for specific pest management 
programs in sustainable crop production (Franke and Menz, 
2007; Mahlein, 2016).

In this work, the feasibility of identifying the health status of 
barley leaves by processing their spectral signatures was evalua-
ted. To do this, different vegetation indices were calculated and 
the outcomes were statistically compared. These results led us 
to work with RGB images of barley leaves (digital photographs), 
which were processed with classification techniques to digitally 
determine the severity levels. These values were then compared 
with the visual estimates of six agronomists. Due to the high 
spatial resolution of the RGB images, the results obtained have 
greater precision and accuracy than the visual estimates.

MATERIALS AND METHODS

Experimental site

The field trial was carried out at the experimental farm loca-
ted in the Faculty of Agronomy of the National University of the 
Center of the Buenos Aires Province (FA-UNCPBA) (36°49′41.4′ 
S; 59°53′11.6′′ W).

rokiniana. A partir de las firmas espectrales obtenidas en laboratorio, se calcularon 17 índices y el MDI. Los índices 
NDVI, CARI, NRI, OSAVI, RGR y MDI mostraron diferencias significativas entre hojas sanas y enfermas, pero no entre 
enfermedades, sólo mediante el GNDVI fue posible diferenciarlas. Las bandas de mayor sensibilidad identificadas por 
el MDI fueron 440-490 nm y 645-680 nm. En relación con la severidad, los resultados obtenidos presentan una gran 
dispersión en las estimaciones visuales y muestran la potencialidad de utilizar la clasificación de imágenes RGB para 
cuantificar la intensidad de los síntomas de las enfermedades. Estos resultados justifican futuras investigaciones a 
campo con el propósito de generar herramientas que contribuyan a mejorar los análisis fitosanitarios.

Palabras clave: teledetección, cultivos, fitopatología.
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Plots of the barley variety Andreia were sown with an expe-
rimental seeder (PowellTM Engineering) in 7 rows at 0.21 m, 
with a plot length of 10 m, performing 3 repetitions. Plants were 
grown in the absence of nutritional stress, applying insecticides 
and herbicides to control insects and weeds when necessary. 
The trial was conducted in 2019 under rainfed conditions, with 
no supplemental irrigation. A strip design was carried out with 
two fungicide applications for the healthy control treatments 
and without fungicide applications on the remaining ones to 
allow the development of diseases.

Sample collection

Three leaf samples were collected from asymptomatic bar-
ley plants and from plants exhibiting symptoms of each of 
the main foliar diseases affecting the crop: net blotch, leaf 
scald, and spot blotch. Each sample consisted of 8 leaves. 
To confirm the diagnosis, the symptomatic leaf samples were 
analyzed and cultured following the methodology proposed 
by Gilchrist et al. (2005) for each case. The characteristics 
of the mycelium, conidia, and conidiophores were examined 
using a stereoscopic magnifier and an Olympus BX-40 optical 
microscope. Subsequently, the fungi were identified using ta-
xonomic keys.

Spectral signatures 

The spectral signatures were obtained under controlled con-
ditions at the Phytopathology Laboratory (FA-UNCPBA). For 
this purpose, a device with three 50 W halogen lamps was 
mounted because they have adequate light intensity in the 
spectrum region of interest. An Ocean Optics USB 650 spec-
trometer (25° FOV) was used in the range 440-860 nm with a 
bandwidth of 1 nm. The integration time was adjusted to co-
ver the entire dynamic range of the spectrometer (12 bits). An 
average of three detections was set. A board (50 cm side) with 
three layers of Teflon tape was used as a reference (Janecek, 
2012). The leaves were placed on a non-reflective black paper 
background to capture the spectrum. Three repetitions were 
performed for each type of symptom. The spectral signatures 
were smoothed by creating 5 nm bands, i.e., 440-444 nm, 445-
449 nm and so on.

Calculation and analysis of spectral indices

Specific indices

From the spectral signatures, 17 spectral indices were calcu-
lated (table 1). Indices with at least one successful track record 
in detecting pests and diseases were selected. Furthermore, it 
was sought that these indices could be constructed with the 
bands of the MultiSpectral Instrument (MSI) sensor on board 
the Sentinel-2 satellite. This sensor has the potential to be used 
for crop monitoring because it has a high spatial resolution (up 
to 10 m in some bands), a short revisit time (five days in tan-
dem) and free dissemination of its data.

A general purpose index

On the other hand, in order to select the most sensitive bands 
for the detection of diseases, the Maximum Discrimination In-

dex (MDI), developed by Lencina and Weber (2020), was cal-
culated. The MDI is a contrast index (like other widely used 
indices, e.g. NDVI) and it has the particular feature of not ha-
ving pre-established wavelengths or bands; they are, however, 
determined from the values of the spectral signatures of the 
treatments to be discriminated. This index is represented by 
Equation (1)
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being Rλ1 and Rλ2 the reflectance values in the bands of maxi-
mum discrimination. To determine these bands, the geo-
metric mean of the squared differences of the MDI between 
treatments for all samples is maximized. In mathematical 
terms, this is expressed as follows
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where c1 and c2 are the treatments to be discriminated, k is the 
combinations of cases to be discriminated, m and n the num-
ber of repetitions for treatments c1 and c2 respectively, and ,  
stand for the wavelengths or bands to be determined (Lencina 
and Weber, 2020).

This operator is based on carrying out an exhaustive compa-
rison for all possible pairs of bands for each of the treatments, 
allowing  the selection of the wavelengths where the differen-
ces are maximum. To execute this calculation, a script in the 
Python programming language was used (Lencina, 2021).

To detect differences between the treatments (healthy barley 
and barley with symptoms of each of the diseases) and, hence, 
to select those potentially useful indices in discriminating the 
health status of the crop, an analysis of variance and the Tukey 
test were applied (α = 0.05) for the comparison of means, using 
the Infostat statistical software (Di Rienzo et al., 2020).

RGB images

Using the same mounted device for the spectral signatures, 
photographs of the samples were taken with a mobile device 
(8 Mp). To reduce the brightness and irregularities of the back-
ground, preprocessing was carried out using GIMP (Kimball and 
Mattis, 2021). Then, through ENVI 4.7 software (Exelis visual 
information solutions, Boulder, Colorado), a supervised classi-
fication was performed with the maximum likelihood method. 
Three classes were considered: healthy, sick and background. 
Training areas were visually delimited, including necrotic and 
chlorotic areas. To evaluate the spectral separability of the trai-
ning areas, the Jeffries-Matusita index was calculated, which es-
timates separability in three-dimensional space (Lillesand et al., 
2015). Statistical values for each generated class were obtained 
from the classified images and the percentage of severity was 
calculated based on the pixel count. On the other hand, the RGB 
images were sent to six agronomists (previously trained in the 
use of symptoms scales), who estimated the severity using the 
visual method. The values obtained by both methods were then 
compared by calculating parameters such as range and average.

RESULTS

Spectral signatures

Figure 1 shows the average spectral signatures for each di-
sease and the healthy control group. Note that all the signa-
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tures present characteristic vegetation patterns: absorption 
peaks at 400-500 nm (blue) and 650-700 nm (red) due to the 
high absorbance of chlorophylls in these ranges. For all the di-
seases, a decrease in absorbance was observed in the region 
of the visible spectrum 400-700 nm, which is expected, consi-
dering the decrease in activity as well as in the photosynthetic 
area, generated by the pathogens. In the Near Infrared Region 
(NIR), the differences are usually related to the variations in the 
moisture content of the leaves.

Maximum Discrimination Index (MDI)

Figure 2 shows the result of the calculation of the MDI for the 
spectral signatures (twelve spectra: three for each case). This 
result is a contour plot of Eq. (2) representing the discriminant 
capacity of the estimator as a function of the wavelengths. From 
the figure, it is observed that the spectral bands, which maximi-
ze the MDI, are 440-490 nm and 645-680 nm. These bands are 
the most sensitive to differentiate healthy plants from diseased 
ones based on the spectral signatures obtained in the laboratory.

Vegetation 
Index Name Formula Pathogen (Host)

NDVI Normalized Difference
Vegetation Index (R840-R665)/(R840+R685)

Rhizomania (Sugar Beet); pine sawfly (Scots 
pine); mopane worm (mopane woodland); 

powdery mildew (Wheat); Heterodera 
schachtii and Rhizoctonia solani (sugar 

beet); leafhopper (cotton)

SIPI Structure Insensitive Pigment 
Index (R840- R490) / (R840 - R665) -

ARI Anthocyanin reflectance index 
(ARI) 1/(R550)-1/(R700) Bronze bug (Eucalyptus)

TVI Triangular Vegetation Index 0.5 [120 (R750-R550)-200 
(R670-R550)] Powdery mildew (Wheat)

CARI Chlorophyll Absorption in 
Reflectance Index (CARI)

(|(a 670 + R670 + b)|/(a2 + 1)1/2) 

(R700/R670)
b=(550nm-((700nm-

550nm)/150*550)), a=(700nm-
550nm)/150

Powdery mildew (Wheat)

MCARI Modified Chlorophyll Absorption in 
Reflectance Index (MCARI)

((R700 - R670) - 0.2 * (R700 - R550)) * 
(R700 /R670) Powdery mildew (Wheat)

NRI Nitrogen reflectance index (R570-R670)/(R570 + R670) -

GNDVI Green Normalized Difference
Vegetation Index (R840-R560)/(R840+R560)

CLOR 
REDEDGE Chlorophyll Index Red Edge (R840/R700)-1 -

NDRE Normalized difference red-edge (R840-R700)/(R840+R700) -

RBNDVI Red Blue normalized vegetation 
index

(R840- R665+R490) / (R840 
+R665+R840) -

CRI Caroteniod reflectance index (CRI) 1/(R510)−1/(R700) Rhizomania (sugar beet); bronze bug 
(Eucalyptus)

RVSI Red-Edge Vegetation Stress Index ((R712-R752)/2)-R732 Leafroll (Grapevine); Aphid (wheat)

NPCI Normalized Pigment
Chlorophyll Index (NPCI) (R680-R430)/(R680+R430) Leafhopper (cotton)

OSAVI Optimized Soil-Adjusted
Vegetation Index (OSAVI) 1.16 (R800-R670)/(R800+R670+0.16) Leafhopper (cotton)

RGR Red Green Ratio Index R490/R560 Rhizomania (Sugar Beet);

AI Aphid Index (R740-R887)/(R691+R698) Aphid (wheat)

Name, abbreviation, formulas, and history of usage of the used indices. Adapted from Zhang (2019).

Table 1. Vegetation Index used for detecting or monitoring plant disease and pest.
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Figure 1. Average spectral signatures. Dot: control; Dot dashed: Net Blotch; Dashed: Leaf Scald; Continuous: Spot Blotch.

Figure 2. Isolines of discriminant capacity between healthy and di-
seased leaves as a function of the wavelength. Green (99%), red 
(95%), black (75%), blue (50%) and gray (25%).
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Figure 3 presents the average vegetation index values for 
healthy and diseased leaves. The same letter above the bars 
indicates that the averages are not significantly different (p > 
0.05). The figure suggests that ARI, MCARI, RVSI and NPCI are 

not able to discriminate between treatments, whereas SIPI, TVI, 
CL-REDE, NDRE, RBNDVI, CRI and AI can only identify some of 
the diseases. On the other hand, NDVI, CARI, NRI, OSAVI, RGR 
and MDI are suitable to differentiate between healthy and di-
seased leaves but not between the different diseases. Howe-
ver, it should be noted that, for the present analysis, the aim 
of the calculation of the MDI was not to differentiate between 
diseases, but to find the bands where there is greater sensitivity 
to differentiate between healthy and diseased leaves. Finally, it 
is apparent that GNDVI is the only index capable of detecting 
differences between healthy and diseased vegetation as well 
as between all diseases. 

Severity estimation and calculus

A typical RGB image of sick leaves is shown in figure 4 (left), 
where the disease is identified by its brown/red spot. Previously, 
to evaluate the spectral separability of the training areas, the 
Jeffries-Matusita index was calculated. This index computes 
the statistical measure of separability between two datasets 
based on probability distributions, ranging from 0 (indicating 
no separability) to 2 (indicating maximum separability). Values 
close to 2 were obtained, indicating that the classes are highly 
differentiable (Lillesand et al., 2015). The result of applying 
supervised classification to the RGB pixels is depicted in figu-
re 4 (right). Three classes are identified: background (black), 
healthy (green), and sick (red). The quotient between the num-
bers of sick pixels and the sum of healthy and sick ones gives 
the digitally calculated severity. 

The results for the visual estimation of the severity performed 
by the six agronomists and its calculation by image classifica-
tion are presented in Figure 5. The red dots show the digitally 
calculated severity through image classification, whereas the 
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bars depict the range of values returned by visual estimators 
and the dots within are the averages. For net blotch (figure 5a), 
the digitally calculated values of severity are between 6.9% and 
16.0%, while for visual estimation, the range is 2-20%. In the 
case of leaf scald (figure 5b), the digital severity takes values 
between 3.2% and 7.1%, while the estimates of the six agrono-
mists ranged from 3 to 16%. Finally, in the case of spot blotch, 
the digital severity varies between 1.9% and 5.0%, while for vi-
sual estimates, a range between 1-30% is observed.

DISCUSSION 

Spectral signatures

The spectral signatures of the healthy barley crop and those 
with the three main foliar diseases were obtained. The signa-
tures showed expected differences since a reduction in absor-
bance can be seen in the region of the visible spectrum (400-
700 nm) due to a decrease in the content of photosynthetic 
pigments. These results are consistent with those found by Lo-
renzen and Jensen (1989) regarding barley leaves. Numerous 
antecedents indicate that the change in reflectance that occurs 
on diseased leaves is caused by the first stage of the decompo-
sition of chlorophyll pigments and subsequently of carotenoi-
ds, anthocyanins and xanthophylls (Gamon et al., 1992; Penue-
las et al., 1994; Devadas et al., 2009) along with the destruction 
of the cellular structure produced by pathogens in advanced 
stages. These processes can lead to changes in the reflectance 
values in the visible and near-infrared spectral regions, particu-
larly around 470 nm and 670 nm (chlorophyll absorption), 550 
nm (green peak) and 730 nm (red edge) (Sankaran et al., 2010; 
West et al., 2003). Apart from the typical features observed 
among healthy and sick leaves that originate during the patho-
genic process, it should be noted that the contrast in the NIR 
region could have also been caused by the differences in the 
moisture content since the leaves were collected several hours 
before the spectra were taken (Rodríguez-Pérez et al., 2007). 
Although this piece of information does not invalidate the re-
sults and discussions of the present work, it does highlight the 
need to continue with these investigations in further field trials.

Spectral indices

Regarding the MDI, it was found that the bands with the grea-
test sensitivity to differentiate healthy leaves from diseased 

Figure 3. Mean comparison test for each treatment. Means with a common letter are not significantly different (p > 0.05).
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ones were of 440-490 nm and 645-680 nm (figure 2). As com-
mented before, these regions are characterized by the absorp-
tion peaks of chlorophyll b and a, respectively. Furthermore, the 
blue region is also related to the absorption of carotenoids and 
xanthophylls. It is important to highlight that the bands identi-
fied by the MDI as those of “maximum discrimination” depend 
on the data set used for the calculation. For example, in the 
case of discrimination between wheat (crop) and ryegrass 
(weed), the results were 430-450 nm and 690-705 nm (Lencina 
and Weber, 2020).

Among the indices capable of identifying diseased leaves (fi-
gure 3), we can mention those that depend on reflectance in 
the NIR (humidity): NDVI and OSAVI. In different ways, each of 
them compares the moisture content with some of the charac-
teristic pigments of the plant: chlorophyll a and b (NDVI) and 
chlorophyll a (OSAVI). The NDVI index has been widely used 
by numerous authors to estimate parameters such as the leaf 
area index since it is a good indicator of the nitrogen content, 
biomass and grain yield, and the water content of the plant (Jo-
nes et al., 2007, Bongiorno, 2021). The OSAVI index is characte-
rized by having a correction factor to reduce the ground effect 
(Rondeaux et al., 1996). On the other hand, among the indices 
that depend on the NIR, there is also the GNDVI, which is a va-
riant of the NDVI. This index discriminated between each of the 
diseases, with respect to healthy leaves (figure 3). The advan-
tage of the GNDVI is that it is at least five times more sensitive 
to chlorophyll concentration than the NDVI and it is specifica-
lly useful for differentiating between stressed and senescent 
vegetation (Frampton et al., 2013, Bongiorno, 2021). Both the 
GNDVI and NDVI are widely used for the detection of diseases 
in crops. Yuan et al. (2014) and Zheng et al. (2018) successfully 
used these indices to detect yellow rust in wheat, while Isip et 
al. (2019) found the highest coefficient of determination for the 
detection of Gibberella moniliformis in onion. In all these cases, 
determination rates greater than 70% were obtained (Gomez 
Córdoba and Sandoval Morales, 2020). Although the results 
obtained with these indices are auspicious, it is possible that 
the discriminating capacity in this set of leaves is biased by 
the moisture content of the leaves, which, as mentioned abo-
ve, were collected several hours in advance of the moment in 
which the spectral signatures were acquired.

Another index that identified diseases was the CARI, which 
nonlinearly combines the effects of anthocyanins, chlorophyll 

a, and red edge. The CARI index was developed by Kim et al. 
(1994) to minimize the effects of non-photosynthetic materials 
on remote estimates of absorbed photosynthetically active ra-
diation (Daughtry et al., 2000). This index was identified as one 
of the best to detect Blumeria graminis in wheat by Zhang et 
al., (2012). This is because the most suitable spectral regions 
for studying the effects of pigment reduction by pathogens are 
those around 680 nm, which correspond to the absorption peak 
of chlorophyll a, and 550 nm, which coincide with the minimum 
absorption of chlorophyll in the visible domain. The choice of 
700 nm is due to its location at the boundary between the re-
gion where the vegetation reflectance is dominated by pigment 
absorption and the beginning of the portion of the red edge 
where the structural characteristics of the vegetation have the 
most influence on the reflectance (Haboudane et al., 2002).

Finally, among the indices that could identify diseases, we 
can also find the NRI and the RGR. These indices capture the 
relationship between the contents of chlorophylls (red) and 
anthocyanins (green). In healthy leaves, or in senescent ones, 
anthocyanins have a shielding effect against excess sunlight 
(Feild et al., 2001). However, it has also been shown that the-
re is a correlation between the presence of anthocyanins and 
infected plants, which is associated with a reduction in leaf 
cell death (Himeno et al., 2014; Pereira et al., 2019). Therefo-
re, although anthocyanins are minor dyes in barley leaves, their 
presence could be a spectral indicator for the type of foliar di-
seases studied in this work.

The NRI and the RGR, as well as the calculated MDI, indicate 
that it would be possible to detect leaf spots in barley using 
sensors with bands in the visible spectrum region, for example, 
the RGB. This represents an advantage since it would allow the 
implementation of a technique for the detection of foliar disea-
ses using sensors that are already in the market and that have 
a lower cost than infrared or thermal sensors, facilitating the 
adoption of this technology.

RGB images

The results obtained with the NRI, RGR and MDI spectral in-
dices motivated the exploration of discrimination techniques 
based on RGB images. In this work, which is a first approach 
to the problem, the maximum likelihood algorithm was used 

Figure 5. Digital severity (red dots) calculated by image classification and Average visual severity (green dots) estimated by agronomists. 
The bars depict the range of visual estimations. a) Net blotch, b) Leaf scald, c) Spot blotch.
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(Sarkar et al., 2021; Asad and Bais, 2020; Mattupalli et al., 
2018). For each image, the background was separated from 
the leaf and the affected regions were identified. The algorithm 
was able to identify the three diseases and quantify their se-
verity by counting pixels. These values were contrasted with 
the visual estimates made by the six agronomists. From the 
results summarized in figure 5, it is observed that the averages 
of the visual estimates present dissimilar values with respect 
to digital severity. There are cases in which the differences are 
less than 1% (figure 5b, sample 2; figure 5c, sample 3), whereas 
in other cases they reach 15% (figure 5c, sample 1). Likewise, 
a great dispersion of values is observed in the visual estima-
tion of severity among evaluators, with a minimum of 5% for 
Net blotch sample 2 (figure 5a) to almost 25% for Spot blotch 
sample 1 (figure 5c). Moreover, a single visual estimation of 
an agronomist may differ by more than 25% from the digital 
severity, as can be seen in the samples 1 and 2 of Spot blo-
tch (figure 5c) from the difference between the top of the bars 
and the red dots. These discrepancies lead us to wonder what 
might happen in a field situation. It should be kept in mind that 
in visual estimates made in the production fields of a crop, only 
one agronomist conducts the survey; therefore, the difference 
between his estimate and the digitally calculated one could re-
sult in significant values, according to our previous discussion. 
Note that these largest differences occur in cases of very low 
severity. This is where digital estimation of severity can have 
the greatest impact, avoiding unnecessary applications of 
phytosanitary products or significant losses in profitability for 
the producer (Bock et al., 2010; 2020; 2022).

CONCLUSIONS

Some of the calculated spectral indices demonstrated to be 
useful tools for detecting disease symptoms, even at low levels 
of severity. This fact highlights the potential of using spectral 
indices to determine the health status of crops, since these le-
vels of severity are usually the ones considered when setting 
the thresholds for the application of phytosanitary products. 
Our results suggest the potential of optical sensors to detect 
diseases, which represents a great advantage due to its wide 
diffusion and low cost.

The diagnosis and quantification of diseases are the basis of 
the sanitary management of crops. The results shown in this 
work on severity visual estimates coincide with those obtained 
by numerous authors and highlight the need to improve disease 
quantification methods. The inaccuracies generated when di-
seases are visually estimated have a direct and negative effect 
on management control decisions, with the result that produ-
cers may incur in large losses or unnecessary applications by 
underestimating or overestimating the level of damage. Likewi-
se, in research works, these inaccuracies can mask the effects 
of the treatments being studied if the necessary precautions 
are not taken, such as frequent training of the staff or the use 
of diagrammatic scales.

Finally, it must be pointed out that the results obtained in this 
work are based on laboratory conditions. Therefore, it is neces-
sary to validate them in the field by carrying out an evaluation of 
different genotypes, phenological stages and cultivation condi-
tions, in order to test and calibrate the technique for its use in 
monitoring systems based on the use of remote sensors.
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