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Abstract

Background

Understanding the ecological processes that are involved in the transmission of zoonotic

pathogens by small mammals may aid adequate and effective management measures.

Few attempts have been made to analyze the ecological aspects that influence pathogen

infection in small mammals in livestock production systems. We describe the infection of

small mammals with Leptospira spp., Brucella spp., Trichinella spp. and Cysticercus fascio-

laris and assess the related intrinsic and extrinsic factors in livestock production systems in

central Argentina at the small mammal community, population and individual levels.

Methodology/Principal findings

Ten pig farms and eight dairy farms were studied by removal trapping of small mammals

from 2008 to 2011. Each farm was sampled seasonally over the course of one year with

cage and Sherman live traps. The 505 small mammals captured (14,359 trap-nights)

included three introduced murine rodents, four native rodents and two opossums. Leptos-

pira spp., anti-Brucella spp. antibodies and Trichinella spp. were found in the three murine

rodents and both opossums. Rattus norvegicus was also infected with C. fasciolaris; Ako-

don azarae and Oligoryzomys flavescens with Leptospira spp.; anti-Brucella spp. antibodies

were found in A. azarae. Two or more pathogens occurred simultaneously on 89% of the

farms, and each pathogen was found on at least 50% of the farms. Pathogen infections

increased with host abundance. Infection by Leptospira spp. also increased with
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precipitation and during warm seasons. The occurrence of anti-Brucella spp. antibodies was

higher on dairy farms and during the winter and summer. The host abundances limit values,

from which farms are expected to be free of the studied pathogens, are reported.

Conclusions/Significance

Murine rodents maintain pathogens within farms, whereas other native species are likely

dispersing pathogens among farms. Hence, we recommend preventing and controlling

murines in farm dwellings and isolating farms from their surroundings to avoid contact with

other wild mammals.

Author summary

Some rodents and opossums can transmit zoonotic diseases, thereby causing economic

losses and sanitary problems, including damage to livestock production systems world-

wide. Identifying the factors affecting pathogen transmission will contribute to a better

understanding of the mechanisms involved. In this study, the infection of four zoonotic

pathogens in small mammals captured on intensive pig and dairy farms in central Argen-

tina and potential environmental drivers of those infections were studied. Seven rodent

and two opossum species were trapped on these farms. Murine rodents and opossums

were infected with Leptospira spp. and Trichinella spp. and carried anti-Brucella spp. anti-

bodies. Rattus norvegicus was also infected with C. fasciolaris, and some native rodents

were infected with some of the studied pathogens. Each pathogen occurred on at least

50% of the farms, and two or more pathogens occurred on 89% of the farms. These results

reflect a high circulation of zoonotic pathogens relevant to public health on intensive live-

stock farms. Moreover, all pathogen infections increased with host abundances. Murine

rodents maintain pathogens within farms, whereas other native species are likely dispers-

ing pathogens among farms.

Introduction

Extrinsic factors such as climatic conditions and environmental characteristics [1–3], and

intrinsic factors such as host characteristics [4, 5] influence pathogen transmission. Identifying

the factors that affect pathogen transmission at different levels (i.e., small mammal commu-

nity, population or individual level) will contribute to a better understanding of the mecha-

nisms of zoonosis transmission, because factors may have a different effect at different levels.

Understanding the ecological processes involved in the transmission of zoonotic pathogens is

important for designing adequate management actions [6]. The constant availability of food,

water and shelter for wildlife, as well as livestock over-crowding and poor hygiene, make live-

stock production systems particularly attractive to wildlife [7]. Some rodent and opossum

species carry several zoonotic pathogens [8, 9], such as bacterial, viral, protozoonotic and hel-

minthic pathogens [i.e., 10–15]. These mammals also cause economic losses in agriculture and

other production systems [16–18]. The magnitude of damage and the health risk caused by

rodents and opossums have traditionally led to mechanical and chemical control measures.

However, control actions are sometimes ineffective in the long term because they are poorly

timed or inadequate and ecological information about the species to be managed is lacking
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PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005722 June 30, 2017 2 / 20

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pntd.0005722


[16, 19]. Leptospirosis, brucellosis and trichinosis are among the most important zoonotic

infections worldwide [20–22]. They are endemic in Argentina [23–25] and represent a risk for

personnel and lead to production losses in cattle [26–28].

There are at least nine pathogenic Leptospira species. Humans and other animals can be

infected if they are exposed to urine [29]. Murine rodents (Rattus norvegicus, R. rattus and

Mus musculus) are mainly the permanent hosts and important carriers of pathogenic lepto-

spires [26, 30], but there are many other host species [9, 31]. Leptospira interrogans and L. borg-
petersenii are present in rodents and opossums throughout the world including Argentina [i.e.,

12, 31–35]. The prevalence of L. interrogans in rats increases with age [36, 37] and is more

prominent in females [36]. Seroprevalence in pigs is higher at high precipitation, high temper-

ature and high relative humidity, which indicates the influence of climate variables in the pres-

ence of this pathogen [38].

Several species of Brucella spp. occur in wildlife, domesticated livestock and humans [39–

41]. Each Brucella species has a preferential host and specific virulence. Brucellosis is acquired

by direct contact, via aerosols from infected blood, placenta, fetuses or uterine secretions or by

consuming infected animal products such as milk. Brucellosis usually leads to abortion, which

may result in economic losses in animal production [42]. In Argentina, this disease is present

in pigs [43, 44] and cows [45, 46], although it is more common in cows [47]. Brucella spp. has

been isolated from several rodent species and opossums worldwide [48–50], but the factors

that influence infection are unclear. In Argentina, there have not been major surveys to iden-

tify wild mammals as Brucella spp. hosts [47, 51].

The nematode Trichinella spiralis is the etiological agent of trichinosis that is transmitted

and maintained in a domestic cycle that includes pigs, rats, mice, and other synanthropic and

wild mammals [52, 53]. Humans are accidental hosts that acquire trichinosis through the con-

sumption of undercooked pork meat infected with T. spiralis encysted larvae. In Argentina,

trichinosis is an important zoonosis for public health because outbreaks occur [53]. Although

the role of rodents in the transmission cycle is under debate [54, 55], evidence of a high T. spir-
alis prevalence in Argentinian production systems with evidence of wildlife suggests the circu-

lation of this pathogen between wild and domestic animals [23, 56]. Most prior studies have

focused on infection patterns in rodents [i.e., 56, 57–59], but works on related factors are

scarce [i.e., 60, 61].

Cysticercus fasciolaris is the infective larval stage of the metacestode of the cat tapeworm

Taenia taeniaeformis. Adults are found in the small intestine of their definitive hosts, such as

felids, dogs, foxes and sporadically humans [62, 63]. Rodents, insectivores, lagomorphs and

occasionally humans are the intermediate hosts of C. fasciolaris [62]. Occasionally, human

cases have been reported from Argentina and other countries [Miyazaki et al., 1991 and Eka-

nayake et al., 1999 in 64]. Previous studies have shown that the prevalence of helminthes

(including T. taeniaeformis) in rodents is influenced by the age, sex, season and habitat [65,

66].

The Pampas region accounts for approximately 99% of milk [67] and 70% of livestock

swine production in Argentina [68]. Screening studies in this region showed the presence of

L. interrogans, T. spiralis, Salmonella enterica and hantaviruses in rodents [58, 69–71] and T.

spiralis, L. interrogans and S. enterica in opossums [12, 69, 72]. However, little is known about

the factors that influence pathogen infection, the importance of wildlife and its role in the epi-

demiology of the transmission of zoonoses on farms where contact between wild and domestic

animals is likely. Environmental drivers of pathogen prevalence and, hence, the transmission

risk in small mammal hosts in such systems are unknown. Knowledge about these drivers may

aid effective sanitary and control measures.

Pathogen infection in wild small mammals in livestock production systems
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The aim of this study was to describe the infection with Brucella spp., Leptospira spp., Tri-
chinella spp. and C. fasciolaris in small mammals and to assess related intrinsic and extrinsic

factors on intensive pig and dairy farms in central Argentina at three levels for the small mam-

mals: community, population and individual. We hypothesized that infection depends on both

extrinsic and intrinsic factors:

1. Not all small mammal species are equally infected with Brucella spp. or Trichinella spp. We

expected diet to affect Trichinella spp. infection in small mammals because the consump-

tion of meat is required for infection. We predicted that species habitat preferences affect

Brucella spp. and Trichinella spp. infection because species more associated with livestock

(i.e., murine rodents) are most likely to be infected.

2. The infection of pathogens is density-dependent. We expected that infection with patho-

gens would be higher with higher small mammal abundances at the community and popu-

lation levels.

3. The infection of pathogens differs between production systems. We predicted that Trichi-
nella spp. infection would be higher on pig farms, but that Brucella spp. prevalence would

be higher on dairy farms.

4. Weather is linked to infection risk. We expected that precipitation and temperature would

positively affect infection with Leptospira spp.

5. The infection of pathogens depends on the age of the individuals. We assumed that the

occurrence of Trichinella spp. and Leptospira spp. would be higher in older rather than

young individuals.

Materials and methods

Ethics statement

Trapping, handling and euthanasia were done following the procedures and protocols

approved by the Argentine Law for Animal Care 14346, the Argentinean Society for Mam-

malian Studies [75], the American Society of Mammalogists [76] and the Ethics Committee

for Research on Laboratory Animals, Farm and Obtained from Natures of National Council

of Science and Technical Research (CONICET; resolution 1047, section 2, annex II), and

subsequently the National Agency for the Promotion of Science and Technology of Argen-

tina (ANPCYT PICT-2007-01432) and the National Council of Scientific and Technical

Research (CONICET PIP1410-2009-11). No endangered species were involved in this

study.

Study area and farms description

The study took place in the counties of General Las Heras, Marcos Paz, San Andrés de Giles

and Exaltación de la Cruz (northeast of Buenos Aires province, Argentina (34˚ S, 58.5˚ W)),

on pig and dairy farms. The geographic area belongs to the Rolling Pampa [73] where the cli-

mate is temperate with a mean annual temperature of 17.4˚C and a mean annual precipitation

of 1,014 mm [74]. Farms were surrounded by crops, grasslands and pastures for livestock. The

abundant availability of food and water favors the presence of small mammals that access live-

stock feed [for a detailed description of the farms, see 7].
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Trapping procedure

Trapping surveys were performed on 10 pig farms and eight dairy farms from spring 2008 to

spring 2011. Each farm was sampled during one year for four consecutive seasons. Five habi-

tats were surveyed on each farm (when possible): 1. animal sheds (dairy and pig sheds): struc-

tures in which pigs or cows were present; 2. food storage sheds or silos; 3. human buildings:

dwellings with high human activity not used to store food such as houses, machinery sheds,

warehouses and offices; 4. vegetated areas around dwellings; and 5. drainage channels with

adjacent dirt mounds with tall herbaceous vegetation. Not all habitats were present on all

farms.

Small mammals were captured using cage live-traps (15x16x31 cm) and Sherman traps

(8x9x23 cm). Both types of traps were set adjacent to each other every 10m along trap-lines of

50–100 m with 1–3 replicates per habitat. In each trapping session, the location of the traps

was the same. Traps were active for three consecutive nights and checked daily in the morn-

ing. Captured individuals were identified to species and sex. Individuals were humanely sac-

rificed to collect tissue samples after a deep anesthesia with an intramuscular injection of

ketamine-acepromazine (rodents by cervical dislocation and opossums with an overdose of

isofluorane).

Sample collection and pathogen detection

For Leptospira spp. detection, two types of analyses were conducted. First, urine samples (until

spring 2009) and kidney tissue smears (until spring 2010) from each individual were placed in

EMJH (Ellinghausen-Mccullough-Johnson-Harris) liquid medium. These samples were incu-

bated at 30˚C adding 5-fluorouracil aseptically as cytostatic and examined weekly by dark-field

microscopy for 60 days. Second (after spring 2010), aliquots of renal tissue were incubated in

EMJH and Fletcher semi-solid medium at 30˚C and examined regularly every 15 days by

dark-field microscopy during six months. Direct immunofluorescence (DI) was performed to

evaluate the presence of leptospires in imprints from the kidney [77]. Molecular characteriza-

tion of the isolated strains was carried out by Multiple-Locus Variable-Number Tandem

Repeat (VNTR) Analysis (MLVA), a Polymerase Chain Reaction (PCR)-based method to iden-

tify the serovars of L. interrogans, using two sets of primers flanking a total of 12 loci [78]. For

L. kirschneri and L. borgpetersenii, the primer pairs proposed by Salaün et al. [79] were used to

flank the VNTRs: 4bis, 7bis, 10bis, Lb4 and Lb5. To compare the repetition codes obtained in

the molecular characterization the Pavan et al. [35] criteria were used.

For Brucella spp. detection, blood samples were collected by cardiac puncture and serum

was obtained. For the screening of antibodies against smooth Brucella spp. (B. melitensis, B.

abortus and B. suis) the buffered plate agglutination test (BPAT) and the Rose Bengal test

(RBT) were run. The serum agglutination test (SAT) and the 2-mercapto-ethanol test (MET)

were used to confirm the results [80]. For the detection of antibodies against rough Brucella
spp. (B. ovis and B. canis), the rapid slide agglutination test (RSAT) was used for screening

[81]. For bacteriological assays, the other kidney, spleen and liver were removed from each

individual and portions of these tissues were cut with scissors and smeared on two plates of

BDS (Brucella Broth BBL + Bacto Agar + filter sterilized equine serum 3%) and on two plates

of BDA (Brucella Broth BBL + Bacto Agar + antibiotics) [82]. Plates were incubated at 36±1˚C

with 5–10% CO2 for 14 days.

For Trichinella spp. detection, the tongue, diaphragm, intercostal, cheek and/or leg muscles

of each captured individual were removed, and all muscle samples were artificially digested in

a solution of 1% HCl and 1% pepsin [83]. All larvae isolated were morphologically identified

by the presence of stichosome, which is the main morphological characteristic diagnostic of

Pathogen infection in wild small mammals in livestock production systems
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the genus. Trichinella larvae isolated from opossums were identified to the species level by

nested multiplex PCR and confirmed by sequencing [for details, see 72].

We recorded individuals with parasitic larval capsules of metacestodes that were visible on

the liver surface. Some of these capsules were preserved for morphological and molecular iden-

tification [84]. Eye lenses of each individual were removed and preserved in 10% formalin to

use its dry weight as an age indicator [85].

Data analysis

The prevalence of the studied pathogens was compared among small mammal species using

an independence test [86]. When significant differences were observed, we subdivided the

contingency tables according to Zar [86]. When more than one technique was used to analyze

the presence of a pathogen in an individual, it was considered positive if at least one of those

techniques yielded a positive result.

Trap success was determined for total small mammals and of each species on each farm and

in each season [87]. On the individual level, trap success was also calculated for each habitat,

farm and season. Because of their size, some small mammal species are captured only in the

cage (rats, caviids and opossums) or Sherman traps (mice). For these species, trap success was

estimated by considering only the relevant trap type. Temperature data were obtained from

the meteorological station of Ezeiza [88] and precipitation data from the meteorological sta-

tions of Solis, Lobos, Navarro and San Andrés de Giles [89], Buenos Aires province.

On the community level, we analyzed the effects of environmental factors on the occur-

rence of each pathogen. Pathogen presence was assumed if at least one infected individual was

captured on a farm during a trapping session. The type of production system (pig or dairy

farm), season, monthly mean temperature (˚C), accumulated precipitation in the previous

month (dm) and in the last six months (dm) prior to the captured date, small mammal abun-

dance, species richness and interactions of these variables were considered in the analysis.

On the population level, we studied the occurrence and prevalence of pathogens in each

population and we analyzed the effects of environmental factors. All environmental parame-

ters considered at the community level, host population abundance and interactions of these

variables were included. We considered a pathogen to be present in a population (on a farm in

each season) if at least one individual was infected.

On the individual level, we analyzed the effect of all environmental parameters considered

at the community and population levels for each pathogen. We also tested for the effects of

habitat, sex and age (in months) and their interactions.

For these analyses, Generalized Linear Mixed Models (GLMMs) with binomial error struc-

ture, a logit-link function and the Laplace approximation method were used [90]. Farm was

always included in the model as a random effect because farms were sampled repeatedly (in

each season). When the random effect did not improve the model (based on the change of

deviance between models with and without the random factor), the factor farm was removed

and Generalized Linear Models (GLMs) were used. On the population and individual levels,

the analyses were conducted for each host species separately. For all GLMs and GLMMs analy-

ses the forward stepwise regression procedure was used and the simplest significant models

were reported [90]. Variables that were highly correlated (rPearson>|0.6| or p<0.01) to variables

that had already been included in the model were discarded. Collinearity among all predicted

variables was assessed with the Variance Inflation Factors (VIFs) [91]. If any VIF value was

much larger than 5, which indicated multicollinearity, the variable or interaction was removed,

the VIFs were recalculated and the process was repeated until all the VIFs were smaller than

the preselected threshold [91]. When more than one candidate model was found, we employed
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the Akaike Information Criterion (AIC) for model selection and we only report models with

ΔAIC<7 [92]. For the occurrence models, the accuracy measures Kappa index (K), sensitivity,

specificity and proportion of correct classifications (PCC) were calculated [93, 94]. GLMMs,

VIFs and the accuracy measures were conducted using the lme4 [95], car [96] and PresenceAb-
sence package [97] in the R software [98], respectively.

Results

Pathogen occurrence and prevalence

We caught 444 rodents of seven species (R. norvegicus, R. rattus, M. musculus, Akodon azarae,
Calomys laucha, Oligoryzomys flavescens and Cavia aperea) and 61 opossums of two species

(Didelphis albiventris and Lutreolina crassicaudata) with a sampling effort of 7,333 Sherman

trap-nights and 7,026 cage live trap-nights (Table 1). All species were captured in both produc-

tion systems.

The three murines and both opossums were infected with pathogenic Leptospira spp.,

carried anti-Brucella spp. antibodies and Trichinella spp., whereas none of these pathogens

were present in C. laucha and C. aperea (Table 1). Akodon azarae and O. flavescenswere

infected with Leptospira spp. and the former also carried anti-Brucella spp. antibodies

(Table 1). Metacestodes of tapeworms were found encysted in the liver of R. norvegicus and

A. azarae (Table 1). All capsules were morphologically consistent with C. fasciolaris [99].

Table 1. Prevalence (%) and number of individuals (n) in serological, bacteriological and parasitological analyses of pathogens in seven rodent

and two opossum species captured on 18 livestock farms in central Argentina from 2008 to 2011. Numbers in the last row refer to the percentage of

farms where the pathogen occurred.

Leptospira spp. Anti-Brucella Trichinella spp. Metacestodes*

Total % n % N % n % n

Rodentia

Murines

R. norvegicus 281 24.0 A 179 24.9† A 241 3.0 B 266 39.2 278

R. rattus 17 18.2 A 11 7.1 B 14 17.7 A 17 0 17

M. musculus 86 13.9 A 72 3.2† B 62 2.6 B 78 0 83

Sigmodontines

A. azarae 41 18.2 A 33 3.0 B 33 0.0 - 36 7.3 41

C. laucha 6 0.0 - 3 0.0 - 6 0.0 - 5 0 6

O. flavescens 7 50.0 - 2 0.0 - 6 0.0 - 7 0 7

Caviid

C. aperea 6 0.0 - 4 0.0 - 6 0.0 - 6 0 6

Didelphimorphia

Opossums

D. albiventris 41 8.0 A 25 5.3† B 38 7.5 B 40 0 41

L. crassicaudata 20 13.3 A 15 12.5 B 16 5.3 B 19 0 20

Individuals 505 344 422 474 499

Farms 18 77.8 18 66.7 18 50.0 18 72.2 18

Upper case letters refer to significant differences among small mammal species (p < 0.05).
- Species excluded due to small sample size.
† One R. norvegicus, one D. albiventris and one M. musculus were positive for smooth Brucella spp. antibodies, from which two were positive according to

SAT and 2ME.

* Metacestodes in R. norvegicus were C. fasciolaris, but in A. azarae, they could not be determined (see text).

https://doi.org/10.1371/journal.pntd.0005722.t001
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Based on both morphological and molecular data, the metacestode in R. norvegicus was C. fas-
ciolaris (Table 1) [for more information, see 84]. In A. azarae the metacestode species was not

identified, but it showed the same characteristics as in R. norvegicus, and C. fasciolaris was pre-

viously reported to have infected A. azarae [100]. Because we identified metacestodes to the

species level only in R. norvegicus, we refer to metacestodes at the community level and to C.

fasciolaris at the population and individual levels.

Pathogenic Leptospira spp. was detected in the three murines, the sigmodontines A. azarae
and O. flavescens, and in both opossums (Table 1) at a similar prevalence (χ2 = 6.32, d.f. = 5;

p = 0.277; Table 1). Of the bacteria isolated from 15 of the 66 positive individuals, L. interro-
gans serovar Icterohaemorrhagiae was present in 10 R. norvegicus and one M. musculus; L.

borgpetersenii in one L. crassicaudata, one O. flavescens and one R. rattus; and L. kirschneri in

one R. norvegicus.
Anti-Brucella spp. antibodies were detected in all murines, A. azarae and both opossums

(Table 1). Of 422 samples analyzed, 65 carried rough Brucella spp. antibodies (30 weakly posi-

tive) and three carried smooth Brucella spp. antibodies (Table 1). More R. norvegicus carried

anti-Brucella spp. antibodies than the other two murines, opossums and A. azarae (χ2 = 27.75,

d.f. = 1; p<0.001; Table 1). Despite the detection of antibodies, the bacterium Brucella spp. was

not isolated from any of the 474 individuals analyzed (271 R. norvegicus, 17 R. rattus, 71 M.

musculus, 41 A. azarae, 6 C. laucha, 7 O. flavescens, 6 C. aperea, 36 D. albiventris and 19 L.

crassicaudata).

Trichinella spp. larvae were detected in the three murines and both opossums (Table 1).

Rattus rattus was more frequently infected with Trichinella spp. than were the other four spe-

cies (χ2 = 8.44, d.f. = 1; p = 0.004, Table 1). Trichinella spiralis larvae were isolated from both

opossums for the first time in these species [72].

All pathogens were present in both production systems and each pathogen was present on

at least 50% of the farms (Table 1). Leptospira spp. showed the highest proportion of farms

infected and Trichinella spp. the lowest (Table 2). We found multiple infections with four path-

ogens on six farms, and on 16/18 farms, we found more than one pathogen (Table 2). We

found only anti-Brucella spp. antibodies on one pig farm, but no pathogens were present on

one dairy farm (Table 2).

Extrinsic and intrinsic factors

Due to sample size, population and individual level models were conducted only for R. norvegi-
cus. Analyses in M. musculus were restricted to Leptospira spp. Age was estimated for these two

murines [101, 102].

Precipitation during the previous month was correlated with both the monthly mean tem-

perature and the precipitation in the last six months (rPearson = 0.40 and rPearson = 0.72,

Table 2. Occurrence of each pathogen (+) and pathogen richness on each of the 18 livestock farms in central Argentina from 2008 to 2011. Occur-

rence was assumed if at least one individual was positive at that farm. Prop: Proportion of farms in which each pathogen occurred over the 18 studied livestock

farms. P: pig farm and D: dairy farm.

Type of farm P P P D D D P P D P P P D D P D P D

Pathogen richness 4 4 4 4 4 4 3 3 3 2 2 2 2 2 2 2 1 0

Prop

Leptospira spp. + + + + + + + + + + + + + + 14/18

Metacestodes + + + + + + + + + + + + + 13/18

anti-Brucella spp. + + + + + + + + + + + + 12/18

Trichinella spp. + + + + + + + + + 9/18

https://doi.org/10.1371/journal.pntd.0005722.t002
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respectively; p<0.001 for both cases). Small mammal abundance was highly correlated with

R. norvegicus population abundance and small mammal species richness (rPearson = 0.83 and

rPearson = 0.48, respectively; p<0.001 for both cases).

The occurrence of Leptospira spp. at the community level increased when small mammal

abundance increased (Table 3, S1 Appendix). Occurrence and prevalence in R. norvegicus pop-

ulations depended on the synergistic effect of monthly precipitation and small mammal abun-

dance. The infection in R. norvegicus increased in warm seasons or human buildings when

precipitation increased (Table 3, S1 Appendix). None of the parameters considered explained

pathogen occurrence and prevalence in M. musculus at the population or individual level.

The occurrence of Brucella spp. antibodies at the community level and at the R. norvegicus
population and individual levels increased with the increase of small mammal abundance,

being higher in the winter and summer for the community and individual levels, and higher

on dairy farms at the community level (Table 3, S1 Appendix). Seroprevalence at the R. norve-
gicus population level was also higher in the winter and summer. Brucella spp. antibodies in

Table 3. Summary of the simplest Generalized Linear Models for the pathogens found on the 18 livestock farms in central Argentina from 2008 to

2011 at the three studied levels. At the small mammal community level, explaining the occurrence of each pathogen taking into account all the individuals

captured on each farm and trapping session; at the population level, explaining the occurrence and prevalence of each pathogen in R. norvegicus populations

taking into account only R. norvegicus individuals on each farm and trapping session; and at the individual level, explaining infection of each pathogen in R.

norvegicus individuals. SM AB: small mammal abundance; PP and PP6: accumulated monthly precipitation and accumulated precipitation in the last six

months, respectively; Type: type of productive system (dairy or pig farm); Temp: monthly mean temperature (˚C); Rn: R. norvegicus; d.f.: residual degrees of

freedom; % dev: percentage of deviance explained by the model; K: Kappa index; Sens: sensitivity, Spec: specificity; PCC: proportion of correct

classifications.

Accuracy measures

Response

variable

Model or models d.f. AIC Null AIC % dev K PCC Sens Spec Cut point

Leptospira spp.

Community level: Occurrence SM AB 54 73.94 79.56 0.39 0.70 0.72 0.67 0.44

Population level: Rn occurrence PP*SM AB 34 53.14 54.68 0.32 0.66 0.58 0.74 0.47

Rn prevalence PP*SM AB 34 87.99 98.91 26.98

Individual level: Rn infection Season*PP6 161 193.19 193.70 0.21 0.69 0.44 0.78 0.34

Habitat*PP6 161 189.41 193.70 0.28 0.75 0.40 0.87 0.40

Anti–Brucella

spp.

Community level: Occurrence Season + SM AB 52 60.29 78.88 0.56 0.79 0.70 0.86 0.44

Type*SM AB 53 62.65 78.88 0.57 0.81 0.52 1.00 0.61

Population level: Rn occurrence SM AB 40 42.39 59.36 0.65 0.83 0.72 0.92 0.48

Rn prevalence Season 38 110.12 117.32 17.77

Individual level: Rn infection Season + Habitat*Type + Habitat*SM

AB

200 241.71 250.69 0.36 0.69 0.79 0.66 0.24

Trichinella spp.

Community level: Occurrence SM AB 59 63.90 72.20 0.46 0.82 0.44 0.96 0.48

Population level: Rn occurrence SM AB 44 35.24 41.23 0.56 0.91 0.43 1.00 0.54

Rn prevalence Null model

Individual level: Rn infection Age*Sex 262 73.42 73.80 0.08 0.74 0.63 0.75 0.04

Metacestodes

Community level: Occurrence SM AB 61 67.42 88.94 0.58 0.79 0.73 0.85 0.39

Population level: Rn occurrence SM AB 45 47.70 64.56 0.53 0.77 0.72 0.83 0.54

Rn prevalence Type + PP6 44 144.97 150.00 9.90

SM AB 45 144.24 150.00 8.50

Individual level: Rn infection Age*SM AB + Habitat*Type + Temp. 264 289.05 374.34 0.53 0.78 0.62 0.89 0.51

https://doi.org/10.1371/journal.pntd.0005722.t003
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R. norvegicus individuals also increased with small mammal abundance, but this occurred dif-

ferently among habitats and type of production system (Table 3, S1 Appendix).

The occurrence of Trichinella spp. at the community and R. norvegicus population level

increased with the increase of small mammal abundance, but none of the parameters consid-

ered explained pathogen prevalence in R. norvegicus populations (Table 3). The individual

infection in R. norvegicus increased with age in females (Table 3, S1 Appendix).

The occurrence and prevalence of metacestodes at the community level and of C. fasciolaris
in R. norvegicus populations increased with the increase of small mammal abundance

(Table 3). Additionally, the prevalence was higher on dairy farms and decreased with precipi-

tation in the last six months (Table 3). The infection of R. norvegicus individuals increased

with the increase of temperature, with increasing age as the small mammal abundance

increased, and was more frequent on dairy farms but differently among habitats (Table 3,

S1 Appendix).

Most of the occurrence models had a moderate to substantial agreement, but some of them

had a fair agreement (Table 3) [94]. Only Trichinella spp. occurrence at the individual level

model had a slight agreement; however PCC, sensitivity and specificity indicated a better

agreement (Table 3) [94].

Because of abundance effects on occurrence, we estimated abundance limit values (individ-

uals/100�trap-nights) for each pathogen both at the community and R. norvegicus population

level; above these levels, pathogens are expected to occur (Table 4). These values are also rele-

vant for management actions because they would represent the acceptable small mammal

infestation level in these production systems.

Discussion

We found four pathogens that were highly relevant to public health and occurred regularly on

more than 50% of the farms in both production systems and in several mammalian species.

Farming practices favor pathogen survival and pathogen circulation among small mammal

species and among individuals. The high community density of small mammal abundance

promotes transmission of pathogens to susceptible small mammals and potentially livestock

and humans. Studies involving more than one mammalian host species and more than one

pathogen in production systems are rare [69, 103, 104], and most studies were restricted to

pathogen prevalence [i.e., 32, 48, 60, 69, 105, 106]. Generating such information is vital for

managing overabundant small mammal populations to enhance food security and general

hygiene in production systems and for minimizing pathogen transmission from wildlife reser-

voirs to humans and livestock.

Table 4. Limit values of: small mammal abundance at the small mammal community level and Rattus

norvegicus abundance at the population level for each pathogen, estimated with 18 livestock farms of

central Argentina from 2008 to 2011. Abundances were estimated by its trap success: individuals/

100*trap-nights. Since host abundance on farms explained pathogen occurrence, above the reported abun-

dance values, each pathogen is expected to occur on a farm.

Pathogen Small mammal abundance R. norvegicus abundance

Leptospira spp. 7.6 7.0†

anti-Brucella spp. 4.5* 11.0

Trichinella spp. 18.6 26.3

Metacestodes 7.9 5.5

† Estimated with monthly average precipitation.

* Estimated for winter.

https://doi.org/10.1371/journal.pntd.0005722.t004
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Leptospira spp. was present with a similar prevalence in murines and opossums, as previ-

ously reported for rodents [106, 107], which indicated that several small mammal species have

the potential to maintain this pathogen in the farm environment. As expected, Trichinella spp.

and anti-Brucella spp. antibodies were more prevalent in Rattus species than in host species

inhabiting habitats remote from livestock. Rattus norvegicus, which was the dominant species

in both systems [7], carried all pathogens considered. The prevalence of L. interrogans in this

species is highly variable even at local scales [105, 108–111]. According to our results, the prev-

alence of this bacterium was affected by small mammal abundance, weather and habitat. There

is limited information related to the prevalence/seroprevalence of brucellosis in wildlife reser-

voirs [112], although some studies have reported the isolation and transmission of Brucella
spp. in rodents [113] on farms with infected livestock [114–116]. The prevalence of Trichinella
spp. in R. norvegicus worldwide varies between 0–42.4% [56, 58, 60, 61, 69], whereas the preva-

lence for C. fasciolaris varies between 30–40% [60, 117, 118], as also reflected in this study.

As hypothesized, pathogen infections increased with small mammal abundance confirming

earlier findings [119, 120]. Occurrence patterns were similar at the community and R. norvegi-
cus population level which may have been due to the dominance of this species in both produc-

tion systems. Consequently, it remains unclear whether small mammal abundance or R.

norvegicus abundance determines pathogen infection. Moreover, regulating the abundance of

small mammals that are most likely to carry pathogens can help to prevent transmission [3,

121].

Rattus rattus, M. musculus and both opossums carried three of the four studied pathogens.

The finding of opossums with T. spiralis for the first time [72] supported a diet study on these

livestock farms, where we found that rodents are a part of the opossums diet [122], consistent

with our hypothesis. Akodon azarae carried all the pathogens except Trichinella spp., as

expected, because it is a folivorous-insectivorous species. Neither C. laucha, O. flavescens nor

C. aperea carried Trichinella spp., which may reflect their diets that are based on plants and

insects. In the last three species we did not find pathogens, with the exception of one O. flaves-
cens that was positive for Leptospira spp. Metacestodes were reported in R. rattus, M. musculus
and O. flavescens, suggesting a relationship between C. fasciolaris infection to the presence of

R. norvegicus in rodent communities [123, 124].

An increase in species diversity could increase the transmission risk and prevalence of ubiq-

uitous pathogens, known as the “amplification effect” [125]. Abundance was a key factor in

pathogen infection. However, due to the positive correlation between species richness and

small mammal abundance, it is not possible to separate these two effects. The “dilution effect”

postulates that an increase in species diversity reduces the transmission of host specific patho-

gens [125]. Our results support the “amplification effect” may be because the pathogens con-

sidered are not host-specific and we found several mammalian species infected with these

pathogens, such as Leptospira spp. [126].

As we expected for Leptospira spp., accumulated precipitation influenced small mammal

infection, consistent with previous work [22, 127]. Precipitation mattered despite the continu-

ous presence of water bodies in these systems which are accessed by livestock and small

mammals. We also found that seasonality affects the individual infection in R. norvegicus. Lep-

tospires survival outside the host is favored by humid and warm conditions [128], as reflected

in both production systems despite some differences between them [for a detailed description,

see 7]. However, we found differences in the individual infections in R. norvegicus among habi-

tats, consistent with Cosson et al. [107].

The higher occurrence of anti-Brucella spp. antibodies in small mammals on dairy farms

could indicate that livestock species matter. However, cows and pigs carry different Brucella
species, which was not considered because the bacteria could not be isolated. Natural Brucella
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spp. infections in rodents have not been explored in detail but deserve attention because they

can transmit different Brucella species [i.e., 21, 48]. To our knowledge, this is the first study

with evidence of natural Brucella spp. infection in small mammals in Argentina that explores

the related intrinsic and extrinsic factors. The role of small mammals regarding Brucella spp.

infection should be further explored. Higher seroprevalence in the winter and summer could

be related to livestock births because Brucella spp. is shed during birth or abortion. Therefore,

it would be necessary to include livestock infections in addition to small mammal infections in

future work.

Only host abundance affected Trichinella spp. occurrence. Contrary to our hypothesis, we

did not find differences between production systems at any level, which suggests that Trichi-
nella spp. is dispersed on both dairy and pig farms and that the presence of pigs is not neces-

sary for the infection of small mammals.

Metacestode occurrence was only related to host abundance at the community and R. nor-
vegicus population levels. We are not aware of prior work considering metacestodes beyond

the individual level. However, some authors found associations between temperature, humid-

ity and density-dependent factors and helminth communities in rodents [65, 129, 130]. The

correlation between C. fasciolaris infection in Norway rats and temperature indicates potential

effects on the survival of C. fasciolaris eggs, as proposed by Deter et al. [130]. Individual infec-

tion was also influenced by age and habitat, as previously reported [65, 66, 130]. Because this

parasite is indirectly transmitted, it is necessary to know the abundance and deposition behav-

ior of the definitive hosts and egg survival per habitat to draw firm conclusions [130, 131].

Even if it is somewhat preliminary, this study substantially increases the previously slim

knowledgebase of the ecology of small mammal-borne disease in livestock production systems.

The findings can be used for more detailed future studies. Removal sampling in this study

appeared to have no considerable effect on small mammal abundance [7], but the potential

effects that it would have on pathogens were not considered. Future studies based on non-

invasive methods (capture/recapture) should clarify this aspect.

Murines seem to be the most important species in the maintenance of pathogens on farms

due to their high abundance [7]. They have small home ranges and are rarely found outside

farms [132–134] and may therefore not be vital in spreading pathogens among farms. Opos-

sums have larger home ranges [135] and may be a crucial link that carries pathogens to neigh-

boring farms and other habitats. Several farms arranged as “islands” surrounded by crop fields

and rangelands can be inside the home range of individual opossums. However, information

about these relevant marsupials in agroecosystems in the Pampas region is scarce. Akodon
azarae is also a carrier of some pathogens and O. flavescens carried Leptospira spp. Both sigmo-

dontines are common in the agroecosystems that border farms. They may also maintain and

distribute Brucella spp. and Leptospira spp. However, it is not known if the pathogen preva-

lence of populations in and around crops is similar to farm populations. The interaction

among opossums spreading zoonoses and murines (especially Norway rats) and some sigmo-

dontines maintaining zoonoses in animal production systems may create stable hotspots for

particular diseases. Therefore, maintaining small mammals that are most likely to carry patho-

gens at low abundance, below the limit values identified in this study, may contribute to the

prevention of zoonotic disease in these systems. We suggest focusing management efforts

mainly on dwellings where murines are more abundant [7] but, undertaking rodent proofing

to prevent re-entry, because the single use of chemical control creates dispersal sinks increas-

ing the number of individuals that colonize the dwellings, thus potentially increasing the

immigration of infected individuals [136]. Additionally, farm perimeter habitats should be

managed to isolate them from their surroundings. Avoiding the presence of corridors such as
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weedy fences and channel vegetation may prevent the dispersal of opossums and other native

small mammals among farms [137].
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monthly precipitation and accumulated precipitation in the last six months, respectively;
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fayán, Noelia Campallo, Emiliano Muschetto, Mariano Gonzalez King, Ignacio Gould, and

Florencia Mallou for assistance in fieldwork; and Verónica Lia for helping us with the sam-

pling delivery. A special thanks to “San Marco Veterinary” people for their hospitality during

fieldwork and to Sofı́a de la Sota for reviewing the manuscript.

Author Contributions

Conceptualization: Rosario Lovera, Regino Cavia.

Data curation: Rosario Lovera, Marı́a Soledad Fernández, Jens Jacob, Nidia Lucero, Gabriel

Morici, Bibiana Brihuega, Marı́a Isabel Farace, Jorge Caracostantogolo, Regino Cavia.

Formal analysis: Rosario Lovera, Marı́a Soledad Fernández, Regino Cavia.

Funding acquisition: Jens Jacob, Nidia Lucero, Bibiana Brihuega, Marı́a Isabel Farace, Jorge

Caracostantogolo, Regino Cavia.

Investigation: Rosario Lovera, Marı́a Soledad Fernández, Jens Jacob, Nidia Lucero, Gabriel

Morici, Bibiana Brihuega, Marı́a Isabel Farace, Jorge Caracostantogolo, Regino Cavia.

Methodology: Rosario Lovera, Marı́a Soledad Fernández, Regino Cavia.

Project administration: Rosario Lovera, Marı́a Soledad Fernández, Regino Cavia.

Resources: Rosario Lovera, Marı́a Soledad Fernández, Jens Jacob, Nidia Lucero, Gabriel Mor-

ici, Bibiana Brihuega, Marı́a Isabel Farace, Jorge Caracostantogolo, Regino Cavia.

Supervision: Regino Cavia.

Visualization: Rosario Lovera, Marı́a Soledad Fernández, Jens Jacob, Regino Cavia.

Writing – original draft: Rosario Lovera, Marı́a Soledad Fernández, Jens Jacob, Regino Cavia.

Writing – review & editing: Rosario Lovera, Jens Jacob, Nidia Lucero, Gabriel Morici, Bibiana

Brihuega, Marı́a Isabel Farace, Jorge Caracostantogolo, Regino Cavia.

Pathogen infection in wild small mammals in livestock production systems

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005722 June 30, 2017 13 / 20

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0005722.s001
https://doi.org/10.1371/journal.pntd.0005722


References
1. Palmeirim M, Bordes F, Chaisiri K, Siribat P, Ribas A, Morand S. Helminth parasite species richness in

rodents from Southeast Asia: role of host species and habitat. Parasitol Res. 2014; 113(10): 3713–26.

https://doi.org/10.1007/s00436-014-4036-0 PMID: 25082015

2. Gubler D. Vector-borne diseases. Rev Sci Tech Off Int Epizoot. 2009; 28(2): 583.

3. Reil D, Imholt C, Eccard JA, Jacob J. Beech fructification and bank vole population dynamics-com-

bined analyses of promoters of human Puumala virus infections in Germany. PLoS One. 2015; 10(7):

e0134124. https://doi.org/10.1371/journal.pone.0134124 PMID: 26214509

4. Altizer S, Nunn CL, Thrall PH, Gittleman JL, Antonovics J, Cunningham AA, et al. Social organization

and parasite risk in mammals: integrating theory and empirical studies. Annu Rev Ecol Evol Syst.

2003: 517–47.

5. Winternitz J, Yabsley M, Altizer S. Parasite infection and host dynamics in a naturally fluctuating rodent

population. Can J Zool. 2012; 90(9): 1149–60.

6. Real LA. Sustainability and the ecology of infectious disease. Bioscience. 1996; 42: 88–97.

7. Lovera R, Fernández MS, Cavia R. Wild small mammals in intensive milk cattle and swine production

systems. Agric Ecosyst Environ. 2015; 202(0): 251–9. https://doi.org/10.1016/j.agee.2015.01.003

8. Luis AD, Hayman DT, O’Shea TJ, Cryan PM, Gilbert AT, Pulliam JR, et al. A comparison of bats and

rodents as reservoirs of zoonotic viruses: are bats special? Proc R Soc Lond B Biol Sci. 2013; 280

(1756): 20122753. https://doi.org/10.1098/rspb.2012.2753 PMID: 23378666

9. Acha NP. Zoonosis y Enfermedades Transmitibles al Hombre y a los Animales. Washington: Organi-

zación Panamericana de la Salud; 1986.

10. Webster J, Macdonald D. Parasites of wild brown rats (Rattus norvegicus) on UK farms. Parasitology

(London Print). 1995; 111(3): 247–55.

11. Glass G. Hantaviruses. Curr Opin Infect Dis. 1997; 10(5): 362.
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43. Castro H, González S, Prat M, Baldi P. Detección de anticuerpos anti-Brucella spp. en cerdos med-

iante técnicas de aglutinación y ELISA indirecto en las provincias de Buenos Aires y La Pampa:

Argentina. Rev Argent Microbiol. 2006; 38(2): 75–8.

44. Grimoldi F, Vilar G, Laiño M, Martinez Vivot M, Guida N, Moras EV, editors. Brucelosis en cerdos:

Relevamiento serológico en establecimientos de crı́a en la República Argentina. I Congreso Interna-

cional de Zoonosis, VII Congreso Argentino de Zoonosis; 2011 8–10 junio; Buenos Aires.

Pathogen infection in wild small mammals in livestock production systems

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005722 June 30, 2017 15 / 20

http://viejaweb.senasa.gov.ar/contenido.php?to=n&in=1592&io=22788
https://doi.org/10.4269/ajtmh.2009.09-0195
http://www.ncbi.nlm.nih.gov/pubmed/19861630
https://doi.org/10.1016/S1473-3099(03)00830-2
https://doi.org/10.1016/S1473-3099(03)00830-2
http://www.ncbi.nlm.nih.gov/pubmed/14652202
https://doi.org/10.1016/j.cimid.2008.05.004
http://www.ncbi.nlm.nih.gov/pubmed/18639932
https://doi.org/10.4269/ajtmh.12-0662
http://www.ncbi.nlm.nih.gov/pubmed/23358635
https://doi.org/10.1016/j.actatropica.2012.07.009
http://www.ncbi.nlm.nih.gov/pubmed/22897870
https://doi.org/10.1016/j.cimid.2010.06.002
http://www.ncbi.nlm.nih.gov/pubmed/20674025
https://doi.org/10.1017/S0950268806007746
http://www.ncbi.nlm.nih.gov/pubmed/17224086
https://doi.org/10.3201/eid0302.970219
https://doi.org/10.3201/eid0302.970219
http://www.ncbi.nlm.nih.gov/pubmed/9204307
https://doi.org/10.1016/S1473-3099(06)70382-6
http://www.ncbi.nlm.nih.gov/pubmed/16439329
https://doi.org/10.1111/j.1600-0684.2008.00314.x
http://www.ncbi.nlm.nih.gov/pubmed/19187435
https://doi.org/10.1371/journal.pntd.0005722


45. Lavaroni O, Aguirre N, Vanzini V, Lugaresi C, Torioni de Echaide S. Evaluación de la reacción en
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71. Cueto GR, Cavia R, Bellomo C, Padula PJ, Suárez OV. Prevalence of hantavirus infection in wild Rat-

tus norvegicus and R. rattus populations of Buenos Aires city, Argentina. Trop Med Int Health. 2008;

13(1): 46–51. https://doi.org/10.1111/j.1365-3156.2007.01968.x PMID: 18291001

72. Castaño Zubieta R, Ruiz M, Morici G, Lovera R, Fernández M, Caracostantogolo J, et al. First report

of Trichinella spiralis from the white-eared (Didelphis albiventris) and the thick-tailed opossum (Lutreo-

lina crassicaudata) in central Argentina. Helminthologia. 2014; 51(3): 198–202. https://doi.org/10.

2478/s11687-014-0229-4

73. Soriano A, León R, Sala O, Lavado R, Deregibus V, Cauhepe M, et al. Rı́o de la Plata grassland. In:

Coupland R, editor. Ecosystems of the World 8A Natural grasslands Introduction and Western Hemi-

sphere. Amsterdam: Elsevier; 1991. pp. 367–407.
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