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Abstract

Accurate and timely crop yield forecasts are critical for making informed agricultural policies and
investments, as well as increasing market efficiency and stability. Earth observation data from space
can contribute to agricultural monitoring, including crop yield assessment and forecasting. In this
study, we present a multiple regression site-specific crop yield model based on the Normalized Dif-
ference Vegetation Index (NDVI) extracted from Sentinel – 2 data at 10 meters resolution calibrated
with yield corn estimations reported by local experts at a field level.

1 Introduction

Argentina is a country in which the agro-industrial export sector, particularly the agricultural sector, par-
ticipates to a large extent in the gross domestic product.[1] The main crops produced in the Pampa region
are corn, wheat and soybeans. Particularly the corn, which participates with a large percentage in the
national annual production [8], is the crop that has the highest initial production cost and is the most
susceptible to reduce its production in the face of extreme climatic events.[5]
The anticipated knowledge of the yield of the corn crop would allow the producer to implement manage-
ment measures both to improve the probable low yields or to consolidate estimation of high yields, as
well as to design more convenient future commercialization strategies. Also, this information could be
used for insurance companies to provide producers with new policies tied to the estimated returns. Fi-
nally, it would allow both the state and reference institutions in the sector to make and report projections
on the total expected corn yield for a given year. It is discounted that this type of information would
assist to stabilize prices with greater certainty in the market of purchase and sale of grain.[10]
The use of remote monitoring tools, in particular the processing of time series of images of Sentinel-2
sensor, from which to derive information on the phenological condition and physiology of crops is a fre-
quent practice.[14] Studies of yield estimation with vegetation indexes derived from satellite information
have shown the existing relationship between vegetation indexes evaluated in the growing season and
yield.[13][7]
The objective of the present work is to study the relationship of field estimations made by local field
experts in collaboration with a local market institution “Bolsa de Cereales de Cordoba” (BCCBA) and a
time series of vegetation index images of Sentinel-2 sensor.
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2 Methodology

2.1 Study area

The area under study includes the departments of Rı́o Primero and Marcos Juárez of the Province of
Córdoba. The territory of Marcos Juárez belongs to the Pampeana phytogeographic region, it has a
moderate to gently rolling plain, with slope gradients ranging between 3 and 0.5. The annual average
temperature is 17oC and the thermal amplitude of 14oC, with a frost-free period that reaches 257 days.
The average annual precipitation is distributed in a range of 850 mm to the west and exceeds 900 mm to
the east. The highest percentage of rainfall is observed during the summer season. However, the water
balance only shows excesses during part of spring, autumn and early winter. The water deficit presents
a variation of 100 mm to the East and 160 mm to the West.[4] This makes the area particularly suitable
for agricultural activities.
The territory of Rı́o Primero belongs to the Chaqueña phytogeographic region. It presents soils with good
physical and chemical conditions for agricultural use, but which are fragile once they have been destitute
of the vegetation cover under which they were developed. The regional pluviometry has a distribution
with a range of 750 mm to the west and 800 mm to the east, with a seasonal distribution of monsoon
type. The water deficit presents a variation of 180 mm to the East and 240 mm to the West.[4]

2.2 Data

The BCCBA has trained over the last 10 years local experts to provide every 15 days a yield forecast
from a field level. These experts constitute a net that is regularly fed with 200 locality specific reports.
We studied 16 localities of these data set, 8 corresponding to Rı́o Primero department (RP) and 8 local-
ities of Marcos Juárez department (MJ). We used the last report received before harvest (Column RTO
of the Table 1). As Chipanshi (2015) states the critical period of the corn crop is strongly related to the
final yield performance. [2]The Office of Environmental Risk, of the National Agroindustry Secretary
studying the water deficit and the crop water consumption (Kc) established the critical period for maize
20 days before and 10 days after flowering. [3]
In the Cloud Computing service of Google Earth Engine (GEE), a serie of 14 cloud-free images of
Sentinel-2 was identified for the 11/1/2016 - 20/2/2017 maize critical period, and 13 images were se-
lected for the same period of the 2017/2018 campaign. The NDVI was calculated for each image of the
serie. The integral, mean, variance and maximum were extracted at pixel level for each serie.
An agricultural land use cover layer built up by BCCBA, where the crops presented in each paddock for
every season are detailed at parcel level, was used to determine the corn coverage. The spatial mean per
maize paddock was computed for each variable derived from NDVI for a 5 km locality buffer. (Table 1).
The productivity index (PI) is a basis for judgment developed by Instituto Nacional de Tecnologia
Agropecuaria(INTA) that takes acount numerous properties of the soil like: Drainage, effective depth,
surface texture, subsurface texture, salinity, alkalinity, content of organic matter, capacity of cation ex-
change, slope, stoniness and rockiness, water erosion and current and potential wind. Is an index that
relates a surface area to its potential crop productivity [12]

2.3 Analysis

A correlation model analysis was carried out between the 4 variables (i.e integral, mean, variance, max-
imum) and the performance reports of the collaborators of the BCCBA of corn for 2017 and 2018 for
each locality under study.
Finally, a multiple regression model was constructed in order to determine the effect of year and the
different localities.
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DEPARTMENT LOCALITIES YEAR NDVI PI YIELDINT VAR MEAN MAX

Marcos Juárez

Arias
2017 19.87 0.061 0.503 0.808 55.5 109
2018 11.536 0.022 0.561 0.745 55.516 88

Corral de Bustos
2017 18.362 0.06 0.487 0.818 84.259 90
2018 10.877 0.025 0.577 0.766 84.46 85

Inriville
2017 14.769 0.059 0.401 0.794 74.651 113
2018 9.825 0.029 0.527 0.762 79.832 75

Los Surgentes
2017 15.617 0.059 0.417 0.79 66.094 115
2018 10.218 0.033 0.54 0.773 74.589 120

Monte Buey
2017 16.495 0.059 0.442 0.793 86.484 114
2018 10.001 0.032 0.53 0.764 86.019 85

Camilo Aldao
2018 9.454 0.034 0.502 0.759 75.007 120
2017 16.817 0.064 0.446 0.814 83.279 115

Leones
2018 11.852 0.029 0.575 0.778 85.258 74
2017 18.905 0.067 0.47 0.808 85.033 98

Marcos Juarez
2018 10.934 0.027 0.546 0.758 85.539 70
2017 17.468 0.059 0.458 0.792 85.513 90

Rı́o Primero

Capilla de los Remedios
2017 7.921 0.067 0.414 0.795 63.523 93
2018 3.21 0.046 0.353 0.677 63.311 51

Montecristo
2017 7.805 0.058 0.395 0.732 71.484 96
2018 3.327 0.047 0.337 0.689 72.28 63

Rı́o Primero
2017 7.583 0.046 0.364 0.697 60.151 107
2018 3.503 0.037 0.351 0.633 63.696 65

Chalacea
2018 4.666 0.041 0.316 0.598 58.439 58
2017 13.425 0.048 0.368 0.704 58.282 80

El Crispin
2018 3.76 0.055 0.389 0.711 62.717 40
2017 7.899 0.057 0.393 0.736 62.794 92

Monte del Rosario
2018 3.649 0.055 0.375 0.698 62.659 69
2017 7.46 0.05 0.377 0.703 62.076 115

Piquillin
2018 3.341 0.051 0.358 0.706 72.518 83
2017 7.393 0.057 0.373 0.754 70.848 75

Villa Santa Rosa de Rio Primero
2018 3.661 0.039 0.376 0.642 43.05 57
2017 8.486 0.05 0.416 0.712 42.759 87

Table 1: Grain yield, NDVI and Productivity index (PI) in 2017 and 2018 for corn paddocks in the
Province of Cordoba, Argentina.

The general equation of the model is:

Y = β0 + β1NDV Iα + β2T + β3L+ ε (1)

WhereNDV Iα represents the four different variables modelled. T is the year effect, L is the locality
effect and the ε is the error term.

3 Results

Linear models showed correlations between the variables (Figure 1) and indicated a significant relation-
ship between the yield estimations and the NDVI variables (Table 2). The differences observed between
the performance of the different variables was low. The standardized mean squared error is low, which
indicates that the distribution of the data to the line of greatest adjustment is small (Table 2).

Valparaı́so, September 25-27, 201965



BigDSSAgro 2019

Figure 1: Linear models between NDVI derived variables and yield performance reported by experts
(RTO). a) INT refers to integral NDVI variable. The data appears to be consolidated in the best fit
regression line. b) MAX refers to the maximum NDVI variable. The data is condensed in the best
fit line. c) MEAN refers to the mean NDVI variable. The data appears to be slowly correlated as is
extensively distributed and outliers can be identified. d) VAR refers to the variance NDVI variable. The
data is widely distributed, presenting outliers.

Variable Model Statistics
R2 RMSE NRMSE

INTEGRAL m1=lm(INT)∼YIELD 0.38** 3.65 0.18
MEDIA m2=lm(MEAN)∼YIELD 0.53* 0.07 0.22

VARIANZE m3=lm(VAR)∼ YIELD 0.30* 0.009 0.25
MAXIMO m4=lm(MAX)∼YIELD 0.40** 0.04 0.19

**p < 0.01, *p < 0.05

Table 2: Linear models adjusted between NDVI variables and yield.

The coefficient of determination R2 was calculated (Table 2) for each model analyzed, as well as the
mean squared error (RMSE), which indicates how concentrated the data is in the line of best fit. Since
the mean square error depends on the scale of the data, the standardized mean square error was also
calculated. (NRMSE = RMSE / (Max (dependent variable) - Min (Dependent variable)) (Table 2).

Studying the residuals of the linear models a patron was discovered, revealing that the models pro-
posed were not suitable for represent the behaviour of the data. As its presented in the Equation (1) a
multiple regression model was constructed, taking in account the effect of the years and the localities
(Table 3). The results obtained, evidence a relation between the field experts yield maize estimations and
the satellite information derived from Sentinel-2, particularly with the NDVI integral and the maximum
variable. The low value of NRMSE (Table 3) reports the goodness of fit.

The effect of the year is due to the climatological differenced observed between the seasons. The
2016/2017 was a humid year for the northern part of the study area and a dried season for the southern
part of the study area, meanwhile 2017/2018 campaign was a slightly above mean precipitation season
for all the area. The effect of the locality was linearly modelled with the productivity index data (R2 :
0.9632, P =< 0.01). The high correlation observed explained the site-specific differences among the
different localities.

Valparaı́so, September 25-27, 2019 66



Big DSS Agro 2019

Variable Model Statistics
R2 RMSE NRMSE

INTEGRAL m5=lm(MAX) ∼RTO + AÑO + LOCALIDAD 0.95* 0.74 0.04
MEDIA m6=lm(INT) ∼RTO + AÑO + LOCALIDAD 0.64 0.03 0.11

VARIANZE m7=lm(VAR) ∼RTO + AÑO + LOCALIDAD 0.49 0.006 0.14
MAXIMO m8=lm(MEAN) ∼RTO + AÑO + LOCALIDAD 0.84* 0.01 0.06

*p < 0.01

Table 3: The multiple regression models adjusted between vegetation index derived variables and re-
ported yield.

4 Conclusions

Even when the relation between vegetation indexes derived from satellite information and field crop yield
measures is already widely described in the literature [15] [11], as well as remote sensed calibration
of crop models [9], the relation of satellite derived indexes and estimated yield field data has not yet
been sufficiently explored. In this study a relationship was established between the variables derived
from NDVI and the maize field estimates made by BCCBA experts for the 2016/2017 and 2017/2018
campaigns in the Marcos Juárez and Rio Primero departments.
The 2016/2017 season presented setbacks due to rainfall above the historical average in the areas of the
department of Marcos Juarez. The anomaly of some extreme data of NDVI (e.g. Marcos Juarez, Camilo
Aldao) may be due to this excess of water in the area. The campaign 2017/2018 in general was a good
campaign in which no floods or droughts were reported in the main agricultural areas.
The multiple regression proved to be a suitable model to capture the variability of maize yield experts
reports and its terrain dispersion.

5 Future works

The performance of different vegetation indexes (i.e LAI, EVI, TNDVI), the behaviour of the model
using co-variables (i.e drainage, salinity, rainfall), as well as, calibration of locally performance estima-
tion models fed with vegetation indices (e.g ARYA) and processed based models. (e.g SAFY) will be
explored.[6]
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