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• Background and Aims Grasses of the Festuca genus have complex phylogenetic relations due to morpho-
logical similarities among species and interspecific hybridization processes. Within Patagonian fescues, informa-
tion concerning phylogenetic relationships is very scarce. In Festuca pallescens, a widely distributed species, the 
high phenotypic variability and the occurrence of interspecific hybridization preclude a clear identification of the 
populations. Given the relevance of natural rangelands for livestock production and their high degradation due to 
climate change, conservation actions are needed and knowledge about genetic variation is required.
• Methods To unravel the intraspecific phylogenetic relations and to detect genetic differences, we studied 21 
populations of the species along its natural geographical distribution by coupling both molecular [internal tran-
scribed spacer (ITS) and trnL-F markers] and morpho-anatomical analyses. Bayesian inference, maximum like-
lihood and maximum parsimony methods were applied to assemble a phylogenetic tree, including other native 
species. The morphological data set was analysed by discriminant and cluster analyses.
• Key Results The combined information of the Bayesian tree (ITS marker), the geographical distribution of 
haplotype variants (trnL-F marker) and the morpho-anatomical traits, distinguished populations located at the 
margins of the distribution. Some of the variants detected were shared with other sympatric species of fescues.
• Conclusions These results suggest the occurrence of hybridization processes between species of the genus at 
peripheral sites characterized by suboptimal conditions, which might be key to the survival of these populations.

Key words: Intraspecific genetic differentiation, phylogenetic relationships, ITS, chloroplast DNA markers, 
morpho-anatomical analyses, plant traits, Festuca pallescens, Festuca, Patagonia, glacial refugia, hybridization, 
speciation.

INTRODUCTION

Dryland ecosystems cover almost half of Earth’s land surface 
and house nearly 40  % of humanity, with outstanding im-
portance for socioeconomic activities (Bradford et al., 2020; 
Maestre, 2021). Natural rangelands that develop in dryland 
areas constitute most of the world’s grasslands and are de-
graded due to overexploitation (Grau and Aide, 2008; James 
et al., 2013). In addition, plant communities of dryland ecosys-
tems are highly sensitive to changes in temperature and precipi-
tation regimes, such as those occurring due to global climate 
change (Magrin et al., 2014; Golodets et al., 2015). Increasing 
the knowledge of evolutionary processes in populations of key 
grassland species is necessary to both help predict upcoming 
changes and contribute to solutions.

Broadly distributed grassland species, covering envir-
onmental gradients and heterogeneous habitats, provide an 
interesting experimental design to study evolution and adapta-
tion to suboptimal conditions (Maestre et al., 2012). Within these 
habitats, species have adapted in unique ways by developing 
deep and efficient root systems and water storage structures, 

or by going dormant during dry periods, to evade, avoid or re-
sist drought (Davies et al., 2012; Moreno and Bertiller, 2015). 
These species tend to present large phenotypic and genetic 
variation (Manel et al., 2012). The level of genetic differenti-
ation among central populations of the same species tends to 
be low due to historical persistence and the constant genetic 
exchange between individuals, but habitat heterogeneity could 
result in genetically distinct ecotypes (Hufford and Mazer, 
2003; Eckert et al., 2008; Jakob et al., 2009). The continuous 
stress that populations undergo in dryland ecosystems may lead 
to adaptive changes and eventually even speciation processes 
(Hoffmann and Hercus, 2000). Natural hybridization may be 
a mechanism to promote adaptation, particularly in small and 
isolated populations that develop near the limits of their dis-
tribution range (Thompson et al., 2010). Specifically, glacial 
refugia during the Quaternary could have developed the condi-
tions for the occurrence of ancient hybridization processes (Liu 
et al., 2018; Shepherd et al., 2022). Ultimately, hybridization 
may lead to adaptive evolution and speciation, which allows 
the new species to colonize extreme habitats to which neither 
of the parental species is adapted (Rieseberg et al., 2003; Liu et 
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al., 2011). The recognition of ecotypes or hybrids can be com-
plex, but the use of molecular markers complemented by the 
analysis of morphological character expression permits the re-
construction of phylogenetic trees (Pourebrahimi et al., 2022), 
thus making it possible to assign taxonomic status.

The Patagonian region constitutes the largest arid or semiarid 
ecosystem in southern South America. Climatic gradients 
mainly determined by the Andean mountains and a complex 
geomorphology give rise to a variety of environments and 
soil and vegetation types (Villalba et al., 2003; Gaitán et al., 
2020). Plant communities in Patagonia are represented by two 
main functional groups: shrubs and perennial grasses (Bertiller 
and Bisigato, 1998). Natural rangelands dominated by tus-
sock grasses and scattered shrubs are the main input for cattle 
raising and have been intensively used since the early 1900s 
(Defossé et al., 1990). Due to overgrazing and the effects of cli-
mate change, these valuable habitats undergo degradation and 
desertification, meaning that key species of grasses become less 
abundant due to a drastic reduction of their populations (Gaitán 
et al., 2017; Oliva et al., 2020). As perennial dominant grasses 
lose habitat, grasslands deteriorate and different species, par-
ticularly shrubs, may establish and dominate (Gonzalez and 
Ghermandi, 2021).

Festuca pallescens is a dominant allohexaploid species from 
natural rangelands of Patagonia (Dubcovsky and Martínez, 
1992). This keystone species has a wide distribution and in-
habits many diverse environments. It has been well studied 
and described morphologically and physiologically (Somlo et 
al., 1985; Bertiller et al., 1990; Fernández et al., 2004, 2006; 
Caballé et al., 2011; López et al., 2019, 2021), but information 
about its genetic variability is scarce (Dubcovsky and Martínez, 
1991, 1992; López et al., 2020). Phenotypic variation among 
populations analysed in a common garden was observed and 
the molecular identification of a hybrid ecotype was carried out 
(López et al., 2018, 2020). This ecotype is found in a peripheral 
population clustered with another closely related polyploid, 
Festuca argentina, a sympatric species of F. pallescens (López 
et al., 2018). However, this previous study covered only part of 
the distribution range. Here, by extending the analysis to the 
whole natural range, we aim to analyse intraspecific variation 
and to reconstruct interspecific phylogenies involving other na-
tive species. Our main hypothesis is that the wide distribution 
range of this species, covering highly heterogeneous habitats, 
promoted genetic differentiation among populations. We also 
hypothesize that hybridization with sympatric species is pos-
sible in peripheral areas. We combined a molecular study of 
populations encompassing the whole distribution range with 
a thorough morphological analysis to describe intraspecific 
variation.

MATERIALS AND METHODS

Sampling strategy

Twenty-one populations of Festuca pallescens covering the 
distribution range of the species were analysed (Table 1, Fig. 
1). Leaves were collected for DNA extraction and sequencing. 
Sampled individuals were identified in the field based on 
exomorphological characters described for the species (Nicora, 

1978; Catalán and Müller, 2012). Additionally, four individuals 
of the sympatric hexaploid species Festuca gracillima, from the 
southernmost area of F. pallescens’ distribution, were collected 
and included in the analysis.

DNA extraction and PCR amplification

DNA from at least three individuals per population was 
extracted. Leaf tissue was frozen using liquid nitrogen and 
ground to fine powder with an automatic mixer mill (Resch, 
Germany). DNA extraction followed the protocol of Doyle and 
Doyle (1987), with slight modifications (Gonzalo-Turpin and 
Hazard, 2009). Two DNA markers were used for the phylo-
genetic analysis: the internal transcribed spacer (ITS) and a 
chloroplast DNA region (trnL-F). The complete ITS region 
(ITS1-5.8S-ITS2) was amplified using the primers CY1-CY3 
(Wright et al., 2006), ~600–700  bp in length (Torrecilla and 
Catalán, 2002; Catalán et al., 2004). For the amplification 
we used 40 ng of DNA as template, 0.625 U of GoTaq DNA 
polymerase (Promega, Madison, WI, USA) with 1× Colorless 
GoTaq® reaction buffer (Promega), 1.5 mm of MgCl2, 0.25 mm 
of each dNTP and 0.3 µm of each primer in a total volume of 
30 µL. PCR reactions were carried out following this program: 
4:30 min at 95 °C, 30 cycles of 30 s at 94 °C, 1 min at 56 °C and 
2 min at 72 °C, and a final extension of 10 min at 72 °C. The 
trnL-F region (~1000 bp, Catalán et al., 2004) was amplified 
using the universal primers c and f (Taberlet et al., 1991) with 
100  ng of DNA, 1  U of GoTaq DNA polymerase (Promega, 
Madison, WI, USA) with 1× Colorless GoTaq® reaction buffer 
(Promega), 2 mm MgCl2, 0.2 mm of each dNTP and 0.2 µm of 
each primer in a total volume of 50 µL. The amplification pro-
gram used for this marker was as follows: 1 min at 94 °C fol-
lowed by 35 cycles of 1 min at 94 °C, 1 min at 50 °C and 1 min 
at 72 °C, followed by a final extension of 7 min at 72 °C. PCR 
products for both markers were checked for positive amplifica-
tion in 1.5 % agarose gels, stained with Gel Red, and visualized 
with a UV transilluminator. Amplified regions yielded bands of 
~700 bp (ITS) and 1000 bp (trnL-F), which were purified using 
the ExoSAP-IT™ PCR Product Cleanup (Thermo Fisher) com-
mercial kit and then sequenced in a capillary sequencer (ABI 
3700, Unidad de Genómica, Instituto de Biotecnología de 
INTA, Hurlingham, Argentina).

Phylogenetic analyses

The ITS sequences were aligned using Muscle with manual 
adjustments when needed in AliView 1.26 (Larsson, 2014). For 
the phylogenetic analysis of the ITS region we additionally 
used sequences from 14 Patagonian species of Festuca retrieved 
from GenBank (Supplementary Data Table S1). In addition, a 
sequence from the ecotype of F. argentina previously men-
tioned was also included (López et al., 2018). Two Patagonian 
grasses (Poa ligularis var. ligularis and Pappostipa speciosa 
var. speciosa) were used as outgroups. All the ITS and trnL-F 
sequences of F. pallescens and F. gracillima were deposited in 
GenBank (accession numbers are provided in Supplementary 
Data Table S1).

A matrix of 24 sequences of 578 characters each was gen-
erated for the analysis of the ITS region. Gaps were treated 
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as missing data and indels as point mutations. Boundaries of 
each sequence were established by alignment with the species 
of Festuca retrieved from GenBank (14 species). To assess the 
phylogenetic relationships between species of Patagonia and 
among populations of F. pallescens we performed analyses 
based on Bayesian inference (BI), maximum parsimony (MP) 
and maximum likelihood (ML) criteria. The IB, MP and ML 
analyses were carried out with MrBayes 3.2.7a (Ronquist et 
al., 2012), TNT 1.5 (Goloboff and Catalano, 2016) and the 
online software RAxML (Kozlov et al., 2019), respectively. 
We used JModelTest 2.1.10 to establish the best-fitting nucleo-
tide substitution model that is required to run BI and ML ana-
lyses (Darriba et al., 2012). This resulted in model GTR + G 
according to both the Akaike information criterion (AIC) and 
Bayesian information criterion (BIC). Bayesian analyses were 
carried out by running pre-established parameters (1 million 
generations initiated from different random trees, sampling 
every 100th generation model parameters such as nucleotide 
substitution rates, γ shape, proportion of invariable sites, nu-
cleotide frequency) estimated by MrBayes. After burn-in 

(discarding 25  % of the total sampling), parameters were 
sampled when reaching stationarity. The ITS consensus tree, 
obtained from 15 000 trees, was supported by branch values 
from the posterior probability. Clades with >95  % posterior 
probability values are considered well supported. Parsimony 
analyses were executed by subjecting the data set to a heur-
istic search strategy to find all equally parsimonious trees 
(MULPARSon, TBR) with 10 000 replicates, saving no more 
than ten trees of length equal to or shorter than 10 (López et 
al., 2018). These saved trees were collapsed to a consensus 
tree that was used as a negative constraint for a second search. 
All parsimonious trees obtained were used to compute a strict 
and 50 % majority rule consensus tree. Bootstrap support for 
branches was calculated through heuristic searches of 1000 
replicates. Clades with bootstrap values <50 are shown un-
resolved. We used the software FigTree (http://tree.bio.ed.ac.
uk/software/figtree/) to edit and visualize the consensus tree. 
To reconstruct the relationships between haplotypes we ran 
the program Network 10.2.0.0, which works with a median-
joining network algorithm (Bandelt et al., 1999). The dataset 

Table 1. Geographic locations of the sampling sites of Festuca pallescens populations. GenBank accession numbers are included.

Population Abbreviation Sample site Latitude (south) Longitude (west) GenBank accession no.

ITS trnL-F 

  1 ACA* Aguas Calientes, Neuquén, Argentina 36°41ʹ2″ 70°36ʹ37″ OP081817 KX701976

  2 LMI Los Miches, Neuquén, Argentina 37°6ʹ36″ 70°49ʹ3″ OP081817 KX701976

  3 HUI* Huinganco, Neuquén, Argentina 37°12ʹ17″ 70°37ʹ12″ OP081817 KX701976

  4 CHO Chos Malal, Neuquén, Argentina 37°21ʹ38″ 70°7ʹ23″ OP081817 KX701976

  5 CLI* Catan Lil 2, Neuquén, Argentina 39°45ʹ40″ 70°37ʹ7″ KX688222 KX701976

OP081824

  6 SRA San Ramón Ranch, Río Negro, Argentina 41°10ʹ32″ 70°59ʹ1″ KX688222 KX701976

  7 PIL* Pilcaniyeu Experimental Field, Río Negro, Argentina 41°3ʹ40″ 70°31ʹ1″ KX688222 KX701976

  8 MON Montoso, Chubut, Argentina 42°42ʹ52″ 71°01ʹ59″ KX688222 KX701976

  9 JAC Ingeniero Jacobacci, Río Negro, Argentina 41°55ʹ9″ 69°12ʹ58″ KX688222 KX701976

KX701978

  10 SOM Somuncura Plateau, Río Negro, Argentina 41°25ʹ1″ 66°58ʹ1″ KX688222 KX701976

  11 YAG Yague, Chubut, Argentina 42°57ʹ0″ 71°12ʹ0″ KX688222 KX701976

OP081824

  12 APE* Arroyo Pescado, Chubut, Argentina 43°2ʹ49″ 70°58ʹ2″ KX688222 KX701976

  13 CRO* Cronómetro, Chubut, Argentina 43°14ʹ19″ 71°4ʹ54″ OP081820 KX701976

  14 GOC Gobernador Costa, Chubut, Argentina 44°1ʹ12″ 70°51ʹ36″ KX688222 KX701976

  15 RPI Río Pico, Chubut, Argentina 44°8ʹ24″ 71°26ʹ24″ KX688222 KX701976

  16 FON* Fontana, Chubut, Argentina 44°56ʹ46″ 71°31ʹ09″ OP081819 KX701976

  17 RMA* Río Mayo, Chubut, Argentina 45°28ʹ12″ 69°49ʹ48″ KX688222 KX701976

OP081816 OP081821

OP081822

OP081824

  18 LBA* Mte Lago Bs As, Santa Cruz, Argentina 46°36ʹ0″ 71°7ʹ48″ KX688222 KX701976

  19 LCO Laguna Colorada, Santa Cruz, Argentina 51°40ʹ15″ 69°53ʹ58″ KX688222 KX701976

  20 BLE* Bajo la Leona, Santa Cruz, Argentina 51°31ʹ48″ 69°42ʹ4″ KX688222 OP081823

  21 GAI* Guer Aike, Santa Cruz, Argentina 51°37ʹ33″ 69°37ʹ53″ OP081818 OP081825
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used for the reconstruction contained the chloroplast DNA 
sequences of F. pallescens (seven haplotypes), F. gracillima, 
F. purpurascens and F. argentina and the sequence corres-
ponding to the hybrid ecotype (López et al., 2018).

Morphological data

Twelve populations of F. pallescens that differ in either 
of the two evaluated molecular markers were selected for 
morphological characterization (Table 1). Plant material was 
obtained from the living collection of F. pallescens popula-
tions held at the Campo Experimental Agroforestal Trevelin 
(CEAT INTA Esquel; 43°07ʹ30″S, 71°33ʹ04″W, 356  masl), 
Argentina. Twenty-four quantitative and nine qualitative mor-
phological traits were measured in 6–12 specimens of each 
population (Supplementary Data Table S2). Morphological 
characters included in this study are those traditionally used 
for the delimitation of species in Festuca (Dubcovsky and 
Martínez, 1988; Catalán and Müller, 2012). In this genus, 
the distribution of sclerenchyma in the leaf cross-section is 
a main trait for species identification (Aiken et al., 1985; 
Dubcovsky and Martínez, 1988). Therefore, leaf anatomy 
characters were observed in the middle region of the blade of 
the penultimate leaf of the short internodes zone in all spe-
cimens studied. The identification of different combinations 
of adaxial and/or abaxial girders of sclerenchyma of vas-
cular bundles was based on leaf cross-sections stained with 
safranin.

Statistical analysis

The quantitative variables were tested for normality with 
the Shapiro–Wilks test (Mahibbur and Govindarajulu, 1997), 
as well as using diagram boxes. Homogeneity of variance was 
checked with Bartlett’s test. One-way ANOVA (α = 0.05) was 
performed to evaluate the significance of the differences among 
the specimens for each trait. Tukey’s test (P < 0.05) was ap-
plied for a posteriori comparison of each pair of means. For 
the analysis of the variable lemma awn length, population ACA 
(1) was excluded because plants lack awns in the lemma (see 
Results section).

The morphological data set (Supplementary Data Table S3) 
was analysed by discriminant and cluster analyses, with each 
character represented by mean values. Morphological character 
values were standardized prior to use in multivariate analyses. 
Pearson and Spearman correlation coefficients were estimated 
to identify pairs of highly correlated characters that may dis-
tort multivariate analyses (Michener and Sokal, 1957; Conover, 
1999). Discriminant analysis allows samples to be classified 
within predefined groups using the discriminant functions ad-
justed for maximizing the between-groups to within-groups 
ratio of variance. Cluster analysis was performed to reveal the 
structure residing in the morphological dataset. Sample simi-
larities using the morphological data matrix were calculated 
based on the Euclidian distance, and the average linkage hier-
archical agglomerative method was used to establish clusters. 
The statistical analyses were performed using Infostat v. 2015 
(Di Rienzo et al., 2015).

Populations sampled
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Fig. 1. (A) Geographic distribution of the ITS variants of the evaluated populations of F. pallescens. Festuca pallescens variants are coloured in shades of green. 
(B) Bayesian tree based on nuclear ITS markers. Numbers above the branches indicate posterior probability values. The scale bar shows the expected substitutions 

per site. Pappostipa speciosa var. speciosa and Poa ligularis were used as outgroups.
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RESULTS

Variation at the ITS region

Six variants were identified at the ITS region along the dis-
tribution range of F. pallescens. The most common variant 
(F.pallescensVar1) was detected in 14 populations. Four nor-
thern populations [ACA (1), LMI (2), CHO (3) and HUI (4)] 
shared a distinctive ITS sequence, and the other four variants 
were found in two western populations [CRO (13) and FON 
(16)], one eastern population [RMA (17)], and one southern 
population [GAI (21)] (Fig. 1A). The ITS dataset included 
19 taxa: F. pallescens (with six variants), 16 native spe-
cies of Festuca, including the hybrid ecotype of F. argentina 
(Supplementary Data Table S1), and two outgroups (P. ligularis 
and P. speciosa). From the 578 aligned nucleotide positions, 73 
(12.63 %) were parsimony-informative. The three phylogenetic 
analyses exhibited similar topologies, with two major clades 
that separate the F. pallescens variants from the hybrid ecotype. 
The BI tree showed the highest support values (Fig. 1A); MP and 
ML can be found in Supplementary Data Fig. S1. The ITS vari-
ants found in F. pallescens specimens formed a well-supported 
clade, associated with F. gracillima. A strong association with 
other Patagonian native species (e.g. F. purpurascens) and with 
northern species (e.g. F. ventanicola) was also observed. In a 

separate clade, the hybrid ecotype variant clustered together 
with F. argentina. This clade is sister to only one species dis-
tributed in the extreme north of Argentina (F. superba).

Variation in the chloroplast DNA (trnL-F) region

A total of seven chloroplast haplotypes were found among 
the analysed populations. The topology of the network shows 
the ancestral character of the most frequent haplotype (Hp1) 
(Fig. 2). Haplotype 4 shares the same six-nucleotide insertion 
as F. purpurascens but differs by two nucleotides in other posi-
tions. Haplotypes 2 and 5 share an insertion of 22 nucleotides 
but differ at two positions. One of these polymorphisms is an 
ambiguity (W in IUPAC code), with Hp2 showing W, and two 
alternative nucleotides observed in Hp1, Hp5, Hp6 and Hp7 
(T), and Hp3 and Hp4 (A). Haplotype 7 shows high similarity 
with F. gracillima’s haplotype and is distanced from Hp1 by 
nine mutations. Additionally, the sympatric species F. argentina 
differs from Hp1 by 13 mutated positions and shares the same 
haplotype as the hybrid ecotype (Fig. 2).

The most frequent haplotype (Hp1) was found in 18 popu-
lations (Fig. 2). Haplotypes were fixed in 17 populations, 15 
exhibiting the common haplotype and the other two [BLE (20) 
and GAI (21)] exclusive types. Intrapopulation variation was 

–66°0′

–72°0′ –66°0′ –60°0′

–36°0′

–42°0′

–48°0′

–54°0′

Populations sampled
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HP7

HyEc
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HP3
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Restricted

cpDNA
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Hp2
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Hp4

Hp5

Hp6

Hp7
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Fig. 2. Geographic distribution of the haplotypes detected in F. pallescens populations along the entire distribution range. Putative glacial refugia [lowland, per-
ipheral and valley refugia as described by Sérsic et al. (2011)] for different plant species are delimited with blue lines. The box on the right shows the haplotype 
network. Haplotypes are represented with different-sized circles according to their frequencies (HyEc, hybrid ecotype; Fgra, F. gracillima; Fpur, F. purpurascens; 

Farg, F. argentina). Point mutations are shown as black lines and indels as red lines.
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observed in four populations [CLI (5), JAC (9), YAG (11) and 
RMA (17)] (Fig. 2).

Morphological analyses

Significant differences between two or more populations 
for 20 of the 24 continuous variables were detected (ANOVA; 
P < 0.05). The average values and standard deviations of the 
quantitative traits analysed, as well as the results of a pos-
teriori tests, are summarized in Supplementary Data Table 
S2. Population ACA (1), from northern Patagonia, was clearly 
the most differentiated. Its specimens showed ciliated ligules 
with significantly shorter hairs (P < 0.05). Northern popula-
tions [ACA (1), CLI (5), PIL (7), HUI (4) and JAC (9)] pre-
sented shorter hairs in the abaxial surface of leaves compared 
with southern populations [APE (12), CRO (13), FON (16), 
RMA (17), LBA (18), BLE (20) and GAI (21)]. Specimens of 
populations ACA (1) and HUI (4) presented longer ligules and 
were different compared with other populations (P < 0.05). In 
addition, populations ACA (1), HUI (4), CLI (5) and JAC (9) 
showed significantly shorter spikelets (P < 0.0001). Two popu-
lations of south Patagonia [LBA (20) and GAI (21)] had longer 
synflorescences (P < 0.0001). Plants from the CRO (13) and 
FON (16) populations presented longer lodicules (P < 0.0001).

Most variables were not correlated, except for spikelet length 
with lemma length (Pearson = 0.83), spikelet length with pa-
leae length (Pearson = 0.87), and lemma length with paleae 
length (Pearson = 0.9). Pearson and Spearman correlation 
values were similar. Since the use of highly correlated charac-
ters is an implicit weighting of these characters and suggests 
potential multicollinearity problems, the total number of vari-
ables was reduced to 30 for final analyses (Supplementary Data 
Table S3).

Discriminant analysis led to the identification of morpho-
logical patterns that allowed a good discrimination among 
some populations. Populations ACA (1) and HUI (4) were 
clearly discriminated when the first two discriminant functions 
(axis 1 and axis 2) were plotted (Fig. 3), while ACA (1), HUI 
(4) and CLI (5) were discriminated considering the axes 1 and 
3 (Supplementary Data Fig. S2). The first three axes accounted 
for 62.82 % of the variation. The absolute values of the coeffi-
cients of the standardized discriminant functions are shown in 
Supplementary Data Table S3.

Leaf cross-sections revealed the presence of sclerenchyma 
under the abaxial epidermis and in the ribs under the adaxial 
epidermis in all specimens analysed. In addition, different 
combinations of adaxial and/or abaxial girders of scleren-
chyma in vascular bundles were observed, depending on the 
population (Fig. 4). Population ACA (1) was the only one with 
double girders of sclerenchyma (adaxial to abaxial) in the 
main and secondary vascular bundles. In other populations the 
main and secondary vascular bundles showed different com-
binations with presence and/or absence of abaxial girders of 
sclerenchyma. In population ACA (1) all specimens showed 
abaxial girders of sclerenchyma in the main vascular bundle 
and 50  % of them presented double girders. In secondary 
vascular bundles all plants also presented double girders of 
sclerenchyma. Populations that presented abaxial girders of 
sclerenchyma in the main vascular bundle were HUI (4), CLI 

(5), PIL (7), JAC (9), APE (12), CRO (13), RMA (17) and 
GAI (21) (see different percentages in Fig. 5). In populations 
FON (16), LBA (18) and BLE (20), girders of sclerenchyma 
in the main vascular bundle were not observed. Populations 
that presented abaxial girders of sclerenchyma in secondary 
vascular bundles were PIL (7), JAC (9), APE (12), CRO (13) 
and GAI (21) (see percentages in Fig. 5). In populations HUI 
(4), CLI (5), FON (16), RMA (17), LBA (18) and BLE (20), 
girders of sclerenchyma in secondary vascular bundles were 
not present.

In the cluster analysis, populations were grouped in terms 
of their similarity according to the 30 morphological traits 
analysed (Supplementary Data Table S3). Considering a ref-
erence line equal to 50  % of the maximum distance (a fre-
quently used criterion) to validate clusters, the cut-off line 
was established at distance 5.83. The dendrogram shows that 
population ACA (1) is clearly separated from the rest and 
populations of north and south Patagonia were grouped into 
two main clusters (Fig. 5).

DISCUSSION

Maintaining genetic diversity across populations of a species 
is essential to ensure its survival, particularly under the cur-
rent climate change context. We took the first steps towards 
describing differentiation among populations of a widespread 
keystone species of an arid and semiarid region. In this study, 
we found intraspecific variation at molecular markers and 
morpho-anatomical traits. Edge populations of F. pallescens 
hold different genetic variants in comparison with those lo-
cated at the centre of the distribution. Distinct populations 
can be observed particularly at northern, eastern and southern 
sites. In general, the same pattern is observed for both markers. 
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Fig. 3. Scatterplot of scores derived from discriminant functions axis 1 and 
axis 2 produced by discriminant analysis applied to 30 morphological variables 
for the 12 populations of Festuca pallescens studied: ACA (solid squares), CLI 
(solid inverted triangles), PIL (solid diamonds), HUI (solid triangles), JAC 
(solid circles), CRO (open triangles), APE (open inverted triangles), GAI (open 
diamonds), LBA (open squares), RMA (open circles), FON (open pentagon), 

and BLE (open hourglasses).
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Similarly, morphological traits also separated populations into 
two latitudinal groups.

Intraspecific phylogeny

The Poaceae family includes >700 genera of economic and 
ecological significance, but phylogenetic relationships among 
species are complex and sometimes unresolved (Grass 
Phylogeny Working Group, 2001; Soreng et al., 2017). In 
addition, phylogenetic studies encompassing the relation-
ships among Patagonian fescues are limited (Dubcovsky and 
Martínez, 1988; Ospina González, 2016; López et al., 2018). 
The genus Festuca holds >500 species all over the world (Inda 
et al., 2008). Although well supported phylogenies exist, the 
representation of Patagonian species is very scarce, e.g. only 
F. argentina, F. subantarctica, F. purpurascens, F. gracillima, 
F. magellanica and F. pyrogea were included (Torrecilla and 
Catalán, 2002; Torrecilla et al., 2003; Catalán et al., 2004; Inda 
et al., 2008; Minaya et al., 2017). In a previous study, we re-
ported the position of F. pallescens within these phylogenies, 
clearly positioned within the ‘fine-leaved lineage’ (López et 
al., 2018). Here, with an enlarged sampling, we reconstructed 
the relationships between the Patagonian fescue species and 
the F. pallescens variants. Our results show that most of F. 
pallescens’ variants are closely related to F. gracillima, a sym-
patric species that occurs at the southernmost end of the dis-
tribution. This species is described as a complex together with 
F. pallescens (Dubcovsky and Martínez, 1991; Torrecilla and 
Catalán, 2002; Catalán and Müller, 2012). The variant detected 

in the four northernmost populations is separated from the 
main clade, forming an unresolved polytomy to another sym-
patric species, F. purpurascens. The natural distribution of F. 
purpurascens overlaps with F. pallescens’ distribution, and the 
two species showed high genetic similarities at both molecular 
markers.

Festuca gracillima, F. purpurascens and all the variants 
of F. pallescens were grouped with most species of Festuca, 
and were separated, with strong support, from a group that 
included F. argentina, F. superba and the hybrid ecotype. 
These results are consistent with Catalán et al. (2004), in 
which the festucoid grasses are separated into two major lin-
ages: ‘broad-leaved’ and ‘fine-leaved’ (Inda et al., 2014). 
Festuca argentina would belong to the first group, while F. 
purpurascens and F. pallescens would presumably belong to 
the latter (Catalán et al., 2004; Inda et al., 2008; López et 
al., 2018). In a further study of molecular, anatomical and 
micro-morphological characters, these species are also sep-
arated in different groups (Ospina González, 2016), but F. 
argentina is placed in an ambiguous position, close to either 
broad- or fine-leaved lineages. Even though Ospina González 
(2016) placed F. purpurascens and F. pallescens in a fine-
leaved group according to his molecular results, anatomically 
he describes F. purpurascens within the broad-leaved lineage 
while F. pallescens is placed in the fine-leaved lineage to-
gether with F. gracillima. Clearly the high variation within 
and among species of the Festuca genus deserves more at-
tention and further studies will contribute to a better compre-
hension of the relationships of the species belonging to this 
genus.

ACA
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E

C

F

B D

HUI

ACA

GAI
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PIL

Fig. 4. Leaf cross-section of specimens stained with safranin showing examples of the different combinations of adaxial and/or abaxial girders of sclerenchyma 
of vascular bundles. Population names follow those of Supplementary Data Table S1. (A) Adaxial to abaxial girders of sclerenchyma in main vascular bundle. 
(B) Adaxial to abaxial girders of sclerenchyma in secondary vascular bundles. (C) Abaxial girders of sclerenchyma in main vascular bundle. (D) Abaxial girders 
of sclerenchyma in secondary vascular bundles. (E) Secondary vascular bundles without girders of sclerenchyma. (F) Main vascular bundle without girders of 

sclerenchyma.
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Genetic differentiation along the natural range

We identified eight distinct populations that differed from 
the most frequent ITS variant. Four of these populations are 
located at the northern edge of the distribution, and all the indi-
viduals sampled share the same sequence. This region was af-
fected by sea introgressions and glaciations during the Miocene 
and Pleistocene (Ramos, 1982; Folguera and Ramos, 2002; 
Rabassa et al., 2005), which makes it a perfect spot for sto-
chastic factors to develop differentiation from the central popu-
lations (Eckert et al., 2008). Within this northern region the 
extent of glaciations was limited to the foothills of the Andes 
(Flint and Fidalgo, 1964; Hollin and Schilling, 1981), leaving 
many ice-free areas where species could survive in situ (e.g. 
Markgraf et al., 1995; Sérsic et al., 2011; Soliani et al., 2012). 
At this latitude, F. pallescens shares its habitat with other native 
species of the genus, which are morphologically similar (e.g. 
F. acanthophylla var. acanthophylla and F. acanthophylla var. 
scabriuscula). Marginal populations are considered active re-
gions for speciation processes which are particularly common 
in plants (Crawford, 2010; Rajakaruna, 2018). Ancient hybrid-
ization and speciation processes at glacial refugia might be a 
possible explanation of the variants shared by northern popula-
tions, but also of the southern variants found in this study (see 
next section).

Four populations at the species range edges have shown dis-
tinct variants. The occurrence of differentiation at suboptimal 
locations could imply an evolutionary advantage under extreme 
climatic conditions, allowing the species to colonize and re-
main at these further frontiers. For instance, plant species in-
crease their ploidy level with latitude (Rice et al., 2019) and 
most Patagonian fescues are mainly polyploids (Dubcovsky and 
Martínez, 1988, 1992). Polyploidy diversifies an organism’s 
genetic background and provides selective advantages in novel 
or stressful environments (Van de Peer et al., 2017), and can 
also be a common way of sympatric speciation through hy-
bridization processes (Wei et al., 2019; Gordon et al., 2020). 
Therefore, showing distinct genetic and morpho-anatomical 
variants, edge populations of F. pallescens could either suggest 
an ecological advantage (i.e. drought or salinity stress) or re-
inforce the possibility of hybridization with sympatric species.

A similar pattern of distribution of the genetic variation was 
displayed at the chloroplast level. The less frequent haplotypes 
found in our study were detected in marginal populations (east 
and south of the distribution). The populations carrying the al-
ternative variants match the distribution of different putative 
glacial refugia described for Patagonian plant species (Cosacov 
et al., 2010; Sérsic et al., 2011; Baranzelli et al., 2022) (Fig. 
2). Two haplotypes found in the southernmost populations 
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Fig. 5. Dendrogram resulting from cluster analysis obtained with the morphological data of F. pallescens populations. The dendrogram includes morpho-
anatomical results of leaf cross-sections (following Fig. 4) and molecular variation according to ITS and cpDNA. The scale corresponds to Euclidean distance.
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near one of the aforementioned refugia (Sérsic et al., 2011) 
are of particular interest: Hp4 and Hp7 from populations BLE 
(20) and GAI (21), respectively. The haplotype 4 shares a step 
mutation with one haplotype found in population RMA (17), 
closer to the centre of the natural range for the species, but it 
also presents a six-nucleotide insertion that matches the se-
quence of F. purpurascens. On the other hand, Hp7 is almost 
an exact match of F. gracillima’s sequence. The populations 
BLE (20) and GAI (21) belong to the southernmost region of 
the distribution, where it overlaps with the distribution range of 
F. purpurascens and F. gracillima (Dubcovsky and Martínez, 
1988; Ospina González et al., 2015). Hybridization with other 
species of the genus that share the same ploidy count is plaus-
ible and it has been argued as either a cause or consequence 
of speciation (Dubcovsky and Martínez, 1991, 1992; Oliva, 
1996; Šmarda and Stančík, 2005; Ospina González, 2016; 
Fernández et al., 2017). Fescues are known to hybridize within 
the genus (Humphreys et al., 1995; Inda et al., 2014), and a 
putative hybrid ecotype has already been described in a loca-
tion with suboptimal conditions and isolated from the centre of 
the distribution (López et al., 2018). Interspecific hybrids have 
also been described as common among other species of the 
Poaceae, and these events can complicate the reconstruction 
of phylogenetic relations between species (Díaz-Pérez et al., 
2014; Baiakhmetov et al., 2020).

The high genetic diversity detected in population RMA (17) 
at both markers deserves attention. This population is close to a 
described plant refuge and a phylogeographical break for sev-
eral species reviewed by Sérsic et al. (2011). The steppe vege-
tation is poorly represented since most studies were devoted to 
temperate forest species. However, in situ survival throughout 
glacial cycles was suggested based on phylogeography and 
ecological niche modelling that indicated stable geographical 
distribution of two Hordeum species for at least the Holocene 
(Jakob et al., 2009). Past vegetation reconstruction within the 
southern distribution range of F. pallescens confirms its pres-
ence during the Holocene (Echeverría et al., 2022). The legacy 
of the glacial era is still imprinted in the current taxa, but F. 
pallescens was never studied. Our results are the first infor-
mation contributing to knowledge of the evolutionary history 
of the species. Future studies should include other chloroplast 
markers to infer phylogeographical patterns.

Morphological and anatomical comparisons

In the genus Festuca there are vegetative characters that are 
of great taxonomic importance and one of them is the internal 
morphology of the leaves (Saint-Yves, 1927; Parodi, 1953; 
Aiken et al., 1985). In Patagonian fescues, the distribution of 
sclerenchyma on the leaves not only helps to explain the geo-
graphical distribution of some of the species but also taxonom-
ically separates the species into different groups (Dubcovsky 
and Martínez, 1988). Festuca pallescens can be distinguished 
by the presence of sclerenchyma under the abaxial epidermis 
and in the ribs under the adaxial epidermis, but does not possess 
girders of sclerenchyma in the main and secondary vascular 
bundles (Dubcovsky and Martínez, 1988). The morphological 
analyses allowed us to confirm the taxonomic identity of the 
studied specimens and, in addition, to detect the phenotypic 

variability of the species throughout its natural distribution 
range.

The specimens from ACA population (1) were morpho-
anatomically the most different among all populations analysed. 
Unlike the other populations, plants in ACA presented awnless 
lemmas, double girders of sclerenchyma (adaxial to abaxial) in 
the main and secondary vascular bundles and ligules with the 
shortest hairs. According to Dubcovsky and Martínez (1988), 
these characteristics are observed in F. purpurascens, F. argen-
tina, F. acanthophylla var. acanthophylla, F. cirrosa, F. monticola 
and F. acanthophylla var. scabriuscula. Within the region of 
the ACA population, F. pallescens grows in sympatry with F. 
acanthophylla var. scabriuscula and var. acanthophylla. The spe-
cimens of the ACA population presented other leaf anatomical 
traits (e.g. number of vascular bundles and the arrangement of 
subepidermal sclerenchyma) that are more similar to those typical 
of these two species than to F. pallescens. Similarly, the southern-
most populations [BLE (20) and GAI (21)] live in sympatry with 
F. gracillima. Although leaf anatomy in BLE specimens is similar 
to that in F. gracillima, that in GAI is not, because they present 
abaxial girders in the main and secondary vascular bundles. As 
previously stated for genetic variability, these results might be 
evidence of ancient hybridization processes that occurred during 
the Pleistocene at periglacial refugia at both the northern and 
southern limits of the distribution range. Different putative gla-
cial refugia have been described within the current distribution 
range of F. pallescens, from north-west Patagonia (~35° S) to the 
south of Santa Cruz (~51° S) (Sérsic et al., 2011). Moreover, the 
distribution ranges of F. acanthophylla and F. purpurascens in  
the north and F. gracillima in the south match with some of these 
areas (Dubcovsky and Martínez, 1988) (Fig. 2). The coexistence 
of these species with F. pallescens in confined proximity and 
through many recolonization cycles could have promoted inter-
specific crossing. Hybridization during prolonged isolation in gla-
cial times was reported for other species around the world (e.g. 
Consaul et al., 2010; Klein and Kadereit, 2016; Liu et al., 2018; 
Shepherd et al., 2022) and also in Patagonia (e.g. Tremetsberger 
et al., 2009; Soliani et al., 2012; Azpilicueta et al., 2014).

A latitudinal pattern in the distribution of genetic variation 
is frequently found within Patagonian species, both plants 
and animals, mainly related to historical processes like glaci-
ations (e.g. Bekessy et al., 2002; Marchelli and Gallo, 2006; 
Azpilicueta et al., 2009, 2014; Arana et al., 2010; Cosacov et 
al., 2010; Lessa et al., 2010; Mathiasen and Premoli, 2010; 
Sérsic et al., 2011; Soliani et al., 2012, 2015; Vera-Escalona 
et al., 2012; Baranzelli, 2017; Fasanella et al., 2017; Renny, 
2022). The variation detected in our study indicates that 
F. pallescens would follow the same latitudinal pattern. 
Northern populations shared some traits that differed from 
those recorded in the southern populations. For example, 
the ACA (1) and HUI (4) populations presented the longest 
ligules. In addition, the populations of northern Patagonia 
[ACA, HUI, CLI (5), PIL (7) and JAC (9)] differed from the 
other populations by presenting significantly shorter hairs on 
the abaxial surface of leaves. Moreover, the ACA, HUI, CLI 
and JAC populations presented significantly shorter spike-
lets. Discriminant analyses separated the ACA, HUI and CLI 
populations, leaving the rest of the populations without a de-
fined grouping pattern. From the results of the cluster ana-
lysis, it is clear that the ACA population is separate from the 
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rest of the populations, which grouped into two main sub-
groups according to their latitudinal geographical distribu-
tion (north and south populations).

Conclusions

Our results showed a low genetic differentiation among 
central populations but distinctiveness at peripheral sites, sug-
gesting that hybridization of F. pallescens with sympatric spe-
cies is possible; morphological traits and molecular markers 
converged on similar outcomes. Low genetic variability is an 
expected outcome of permanent persistence in situ as suggested 
by Jakob et al. (2009) for Hordeum spp. Pollen and phytolith re-
cords showed evidence of the presence of current steppe species 
belonging to the Poaceae family during the early Quaternary, re-
inforcing this possibility (Palazzesi and Barreda, 2012; Palazzesi 
et al., 2021). In the north, the group of analysed populations 
shared the same distinct molecular variants but displayed dif-
ferences in morphological traits. Hybridization with sympatric 
species at these latitudes may be suggested, and even different 
stages of speciation can be proposed given the high separation 
of the ACA population from the rest of the northern populations. 
This population is at the limit of the distribution range. A similar 
situation can be inferred at the southern edge, where populations 
resemble those of F. gracillima in both molecular and morpho-
logical characters. Marginal sites usually offer suboptimal con-
ditions for a species; therefore, hybridization can play a key role 
in adaptation (Španiel and Rešetnik, 2022).

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
oup.com/aob and consist of the following. Table S1: species 
and GenBank accession numbers. Table S2: one-way ANOVA. 
Table S3: discriminant analysis. Figure S1: maximum parsi-
mony and likelihood tree based on nuclear data set. Figure S2: 
scatterplot of scores derived from axis 1 versus axis 3 produced 
by discriminant analysis applied to 30 morphological variables 
for the 12 populations studied.
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