
ABSTRACT

Compacted soil in Argentine and other countries causes serious loss of agricultural production.
In previous studies we used biological indicators of soil quality to describe the soil in different
systems of agricultural management. In this study, we studied the microbial activity from soil
based on enzyme activities measurements at agricultural soil located in the Northeast of the
Province of Buenos Aires. This followed an experimental design consisting of three blocks
completely randomized with three treatments: decompacted soil (DECOMP), compacted soil
(COMP) and non-cultivated soil (CONTROL). The size of the experimental unit was 4.200 m.
The number of variable continuous quantitative biochemical measures was 10. Soil samples were
taken with 15-days frequent biochemical analyses during the period June 2010 to April 2013.
Multivariate time series analysis was used to study the behavior of soil enzyme activities. A time
series algorithm was used to study the biochemical profile of the soil subjected to three cycles of
agriculture with the ts library in the R environment under Debian GNU/Linux system. The exact
likelihood was computed via a state-space representation of the ARIMA process, and the
innovations and their variance found by a Kalman filter. We demonstrate that the biochemical
characterization of the soil is related to the state of its compaction using the ARIMA model.
These data lead to the idea that the interrelation of biochemical variables from soil could be used
as an accessor of the degree of current compaction of soil. Finally the effect of mechanical
decompaction of soil on biochemical variables for 3 years under no-tillage as a management
system was tested.
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INTRODUCTION

Compacted soil in Argentine and other countries causes serious loss of agricultural production.
In previous studies as Rossi et al (2008) and Rossi et al (2010) we used biological indicators of
soil quality to describe the soil in different systems of agricultural management. The degree of
soil compaction and the soil microbiome were studied by numerous authors such as Hartmann et
al. (2014), Barik et al. (2014). In this paper we investigate the microbial activity of soil on the
basis of enzymatic profiles over time in contrasting situations of soil state. For this we use time
series analysis using a set of statistical techniques that allows describing and predicting the
behavior of a time series and modeling the stochastic process from which they come in order to
make predictions. The ARIMA model family (Autoregressive Integrated Moving Average model
and extensions) according to Box and Jenkins (1970), Brockwell et al. (2002), Hyndman and
Khandakar (2008) is widely used and presents good results for near prediction horizons in time
of time series that present seasonal behaviors. This paper introduces the ARIMA family of
models, completely analyzes a series and analyzes aspects of stationarity, seasonality and
diagnosis to build the model that best fits it. The time series is analyzed with the statistical
programming environment and language R (2008).

METHODS

In this study, we studied the microbial activity from soil based on enzyme activities
measurements at agricultural soil located in the Northeast of the Province of Buenos Aires. This
followed an experimental design consisting of three blocks completely randomized with three
groups: decompacted soil (DECOMP), compacted soil (COMP) and non-cultivated soil
(CONTROL). The size of the experimental unit was 4.200 m. The number of variable continuous
quantitative biochemical measures was 10. Soil samples were taken with 15-days frequent
biochemical analyses during the period June 2010 to April 2013 according to Alef and
Nannipieri (1995). Multivariate time series analysis was used to study the behavior of soil
enzyme activities according to Wold (1938) and Wiener (1949). A time series algorithm was
used to study the biochemical profile of the soil subjected to three cycles of agriculture with the
ts library in the R (2015) environment under Debian GNU/Linux system. The exact likelihood
was computed via a state-space representation of the ARIMA process, and the innovations and
their variance found by a Kalman filter. Determinations of infiltration with a simple ring,
resistance to penetration with a shock penetrometer and bulk density from 0 to 10 cm and from
10 to 20 cm deep were made according to Pilatti and de Orellana (2000).



The R language commands used to analyze the time series stored in the class object are presented
below.

####### 1. IDENTIFICATION
2 # TIME CHART
3 plot(tsdata, xlab = "", ylab = "PROCEDIMIENTOS INICIADOS", main = "GRÁFICO TEMPORAL")
4 # CHART ADF PACF
5 mx=12*2
6 par(mfrow=c(1,2))
7 tsdata %>% acf(lag.max=mx, xaxt="n", main = TeX("$y_t$"), xlab = "", ylab = "ACF")
8 axis(1, at=0:mx/12, labels=0:mx)
9 tsdata %>% pacf(lag.max=mx, xaxt="n", main = "", xlab = "", ylab = "PACF")
10 axis(1, at=0:mx/12, labels=0:mx)
11 # CLASSICAL DECOMPOSITION
12 tsdata %>% decompose(type = "multiplicative") %>% plot()
13 # SEASONAL CHART
14 seasonplot(tsdata, col = rainbow(7), year.labels=FALSE, year.labels.left=TRUE,
15 ylab = "PROCEDURES", xlab = "MES", main = "SEASONAL TEMPORARY GRAPH")
16 # ADF TEST
17 adfTest(tsdata) # RESULT: NO STATIONARY
18 # SUGGESTED NUMBER OF DIFFERENCES (SIMPLE OR SEASONAL, RESPECTIVELY)
19 ndiffs(tsdata) # RESULT d = 1
20 nsdiffs(tsdata) # RESULT D = 1
21 #BOX-COX TRANSFORMATION
22 lambda <- BoxCox.lambda(tsdata) #SUGGEST lambda = 0.318 24 tsdata.transformed <- tsdata %>%
BoxCox(lambda)
23 24 # STATIONARY SERIES
25 stationary <- tsdata.transformed %>% diff(differences = 1) %>% diff(differences = 1,
26 lag = 12)
27 stationary %>% plot(xlab ="", ylab = TeX("$\\nabla_{12}(\\nabla y_t^{(\\lambda)})$"),
28 main = "TEMPORARY GRAPH")
29 par(mfrow=c(1,2))
30 stationary %>% acf(lag.max=mx, xaxt="n", xlab = "", ylab = "ACF",
31 main = TeX(" $\\nabla_{12}(\\nabla y_t^{(\\lambda)})$"))
32 axis(1, at=0:mx/12, labels=0:mx)
33 stationary %>% pacf(lag.max=mx, xaxt="n", main = "", xlab = "", ylab = "PACF")
axis(1, at=0:mx/12, labels=0:mx)
34 ####### 2. AJUST
35 # AFC AND PACF PLOT SUGGEST ARIMA(2,1,2)(0,1,1)[12]
36 t1 <- tsdata.transformed %>% Arima(order = c(2,1,2), seasonal = list(order = c(0,1,1),
37 period=12))
38 ####### 3. DIAGNOSIS
39 # RESIDUALS ARE STATIONARY
40 plot(t1$residuals, xlab = "", ylab = "", main = "RESIDUALS")
41 46 mx = 12
42 par(mfrow = c(2,1))
43 plot(t1$residuals, xlab = "", ylab = "RESIDUALS", main = "RESIDUALS")



44 t1$residuals %>% acf(lag.max=mx, xaxt="n", xlab = "", ylab = "ADF", main = "")
45 axis(1, at=0:mx/12, labels=0:mx)
46 # RESIDUALS ARE INDEPENDENTS
47 t1$residuals %>% Box.test(type = "Ljung-Box")
48 tsdiag(t1)
49 #RESIDUES FOLLOW A NORMAL DISTRIBUTION
50 par(mfrow=c(1,2))
51 qqnorm(t1$residuals, main = "GRÁFICO QQ", xlab = "THEORETICAL QUANTILES", ylab =
52 "SAMPLE QUANTILES")
53 qqline(t1$residuals, col = "red")
54 hist(t1$residuals, main = "HISTOGRAM OF RESIDUALS", xlab = "RESIDUALS", ylab =
55 "FRÉQUENCE")
56 t1$residuals %>% jarque.bera.test() #RESULT: p-valor 0.9348
57 ####### 4. PREDICTION
58 horizonte <- 12*2
59 pred <- t1 %>% forecast(h = horizonte, level = c(95))
60 # UNDO TRANSFORM
61 pred$mean <- pred$mean %>% InvBoxCox(lambda)
62 pred$lower <- pred$lower %>% InvBoxCox(lambda)
63 pred$upper <- pred$upper %>% InvBoxCox(lambda)
64 pred$x <- pred$x %>% InvBoxCox(lambda)
65 pred$fitted <- pred$fitted %>% InvBoxCox(lambda)
66 pred$residuals <- pred$residuals %>% InvBoxCox(lambda)
67 #MEASURES OF PREDICTION
68 accuracy(pred)
69 # PREDICTION
70 pred %>% plot(shaded = FALSE, xlab = "AÑOS", ylab = "PROCEDURES",
71 main = TeX("$SARIMA(2,1,2)(0,1,1)_{12}$"))
72 lines(pred$fitted, col = "red")
73 legend("topleft", legend=c("SERIE", "PREDICTION", "CONFIDENCE INTERVAL AT 95%",
74 "RESULTS"), col=c("black", "blue", "black", "red"), lty=c(1,1,2,1), lwd = 2,
75 cex = 0.6)
76 ### AUTOMATIC MODELING
77 t1 <- tsdata %>% auto.arima()
78 horizont <- 12*2
79 pred <- t1 %>% forecast(h = horizont, level = c(95))

RESULTS

As we know the stochastic process {Yt }= {Yt | t € Z} is stationary if its statistical properties do
not depend on the period of time in which it is observed.
In the first place, a preliminary analysis was carried out where the classic decomposition of the
time series was carried out in the form

Yt = St x Tt x Rt



It was observed that the mean and the variance were not constant, therefore, the Box-Cox
transformation was applied to stabilize the variance and the differentiations were made to convert
the constant mean.
Then a statistical model was developed that describes the stochastic process. Figures 1, 2, 3 and
4 show that the time series has a seasonal behavior that appears as two peaks in July and
September. This suggests that a seasonal ARIMA model would fit the data well.
SARIMA(2, 1, 1) × (0, 1, 1)12

Figure 1: Time series of soil dehydrogenase activity every 15 days of each year

In the first instance, we can observe that the time series are not stationary since their respective
means and variances are not constant. This interpretation from the graph was corroborated in the
calculations, therefore the time series had to be transformed.

The microbial activity of the soil measured on the basis of the dehydrogenase activity was higher
in the undisturbed soil (CON) with respect to the activity in the soil subjected to mechanical
loosening (DECOMP) and with respect to the soil without mechanical loosening treatment
(COMP ) p < 0.05. A trend of increased microbial activity over time was also observed in the
mechanical decompaction treatment (DECOMP) with respect to the undisturbed soil (CON).



Figure 2: Time series of soil ß glucosidase activity every 15 days of each year

In these measurements we can see that the time series are not stationary since their respective
means and variances are not constant. This interpretation from the graph was corroborated in the
calculations, therefore the time series had to be transformed.

The microbial activity of the soil measured on the basis of beta glucosidase activity was higher in
the undisturbed soil (CON) with respect to the activity in the soil subjected to mechanical
loosening (DECOMP) and with respect to the soil without mechanical loosening treatment
(COMP) p < 0.05. It was also observed that the microbial activity increased over time in the
mechanical decompaction treatment (DECOMP) with respect to the undisturbed soil (CON) p <
0.05. On the other hand, the microbial activity of the compacted soil (COMP) and of the
undisturbed soil (CON) did not present variations except for those explained by seasonality
during the entire period studied.

Figure 3: Time series of soil phosphatase activity every 15 days of each year



In the first instance, we can observe that the time series are not stationary since their respective
means and variances are not constant. This interpretation from the graph was corroborated in the
calculations, therefore the time series had to be transformed.

The microbial activity of the soil measured on the basis of phosphatase activity was higher in the
undisturbed soil (CON) presented a statistically significant difference p<0.05 with respect to the
other groups when measuring the activity in the soil subjected to mechanical decompaction
(DECOMP) and with respect to the soil without mechanical decompaction treatment (COMP).
However, it was observed that the microbial activity of the compacted soil (COMP), of the soil
under mechanical decompaction (DECOMP) and of the undisturbed soil (CON) did not present
variations except for those explained by seasonality during the entire period studied. Therefore,
the microbial activity based on the activity of the phosphatase enzyme did not result in an
indicator of change compared to the state of soil compaction under the conditions studied.

Figure 4: Time series of soil urease activity every 15 days of each year

In the first instance, we can observe that the time series are not stationary since their respective
means and variances are not constant. This interpretation from the graph was corroborated in the
calculations, therefore the time series had to be transformed.

The microbial activity of the soil measured on the basis of urease activity presented a higher
trend in the undisturbed soil (CON) with respect to the activity in the soil subjected to
mechanical loosening (DECOMP) and with respect to the soil without mechanical loosening
treatment. (COMP). However, it was observed that the microbial activity of the compacted soil
(COMP), of the soil under mechanical decompaction (DECOMP) and of the undisturbed soil
(CON) did not present variations except for those explained by seasonality during the entire



period studied. Therefore, the microbial activity based on the activity of the phosphatase enzyme
did not result in an indicator of change compared to the state of soil compaction under the
conditions studied.
The stationary transformed time series differentiated from the original series showed a stationary
behavior in the preliminary analysis of the soil biochemical data, so the ARIMA model was
applied. The seasonal ARIMA model with the lowest Akaike information criterion using R.The
predictions and their realized 95% confidence interval. The forecasts have the increasing trend
and seasonal behavior that one might expect when examining older data. We demonstrate that the
biochemical characterization of the soil is related to the state of its compaction using the ARIMA
model.

The lot under study is located in a cartographic unit that presents three series of soil, Delgado
series 40%; Santa Isabel Series 40% and Teodelina Series 20%. The infiltration curves show
very low infiltration rates with rapid value declines. Ten minutes after the start of the
measurement, the values drop to very low values close to the base value.

The critical apparent density data was calculated according to Pillatti and de Orellana (2000). In
the layer from 0 to 10 cm, the average value corresponding to the three series is 1.382 and for the
layer from 10 to 20 cm it is 1.354, which indicates that up to 20 cm the soil of the lot under study
presents Da values above the critical values. Considering the critical value 100%, only one value
is below 90%, a value from which radical growth is considered critical.

On the other hand, if the maximum apparent density data is taken as that cited by Ferreras et al.
(2007), obtained by means of the proctor test, the maximum reference value is somewhat higher
than that estimated by Pillatti and de Orellana (2000). Therefore, the relative bulk density values
decrease. The quotient between the bulk density measured in the field and that measured by the
Proctor test establishes the Relative Compaction (RC), a value that allows comparison between
different Da values.

If the CR values are very high, close to 90%, it means that the soil is very close to the maximum
compaction it can admit, with a severe decrease in the largest pores, affecting crop growth
(Ferreras et al. 2007).

We work with the family of ARIMA models for the analysis of time series based on the concept
of stochastic process and understanding a time series as a realization of it. Next, the fundamental
concepts for the analysis of time series were worked on, the family of ARIMA models was built
and the data set was analyzed.



CONCLUSION

The model of the ARIMA family that was adjusted to the series following the established criteria
was chosen. Once the model was estimated, the requirements were verified in the diagnostic
stage and the desired results were obtained. Also, the predictions provided by the model were
found together with a graph of the same in which it can be seen that the series continues with a
growing trend and with its characteristic seasonal behavior.

Finally, the modeling of the series was used in the R language library that follows an algorithm
that aims to achieve the model that contributes the least AIC.

These data lead to the idea that the interrelation of biochemical variables from soil could be used
as an accessor of the degree of current compaction of soil. Finally the effect of mechanical
decompaction of soil on biochemical variables for 3 years under no-tillage as a management
system was tested. The soil presents values of apparent density, resistance to penetration and
infiltration, characteristic of compacted soils. It is estimated that the productive potential of this
soil is compromised by physical compaction up to 30 cm deep. A mechanical decompaction up
to 25 - 30 cm deep will improve the physical conditions of the soil in the layer of the profile with
the highest root activity. In this way, infiltration will be improved and the soil will be explored
by the roots more easily. These changes in soil properties are expected to be reflected in
increased yields, although this is not always the case as yield is shaped by many other variables.

This work was support by PE AEAI-271171. Diagnóstico de la compactación del suelo en
siembra directa y técnicas para la descompactación y su control. INTA-Instituto de Suelos.
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