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Abstract
Alfalfa use (Medicago sativa L.; “lucerne”) in warm, humid regions of the world
represents a potential area of expansion for the alfalfa industry. The objective of
this review paper is to demonstrate how alfalfa forage breeding and systems
research efforts have identified opportunities for increasing alfalfa contributions
in these regions, along with potential pathways for seed industry and farming
operations to increase adoption. Our review draws primarily on reports from
the Southeast United States and Argentina. Significant technological advance-
ments in plant screening and selection have identified alfalfa plant populations
that are more adapted to the growing conditions experienced in these regions,
which are often characterized by mild temperature, long growing seasons, and
multiple other abiotic and biotic stressors. Management systems research
conducted in the United States and Argentina has demonstrated the use of
alfalfa for conserved forage, grazing, or dual‐purpose use in monoculture or
mixtures with warm‐season grasses such as bermudagrass (Cynodon spp.). These
trials report increased forage production, nutritive value, and ecosystem services
of alfalfa–grass mixtures when compared with traditionally N‐fertilized warm‐
season grass‐based systems. Grazing‐based alfalfa systems in Argentina have
demonstrated methods for utilizing alfalfa as part of beef, dairy, and finishing
systems. Some approaches for expanding alfalfa production in the region
include targeted marketing efforts for adapted varieties and demonstrating
alfalfa applications within existing farming frameworks. This includes
educational programming efforts and on‐farm demonstrations to promote
alfalfa use as a component of the livestock diets, integration into grass‐based
systems, crop rotations, and wildlife use. Continued emphasis on a systems
approach to alfalfa inclusion represents an opportunity for improved forage and
livestock production in warm, humid regions of the world.
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INTRODUCTION

Alfalfa (Medicago sativa L.; “lucerne”) is a perennial
forage legume known for its high forage nutritive value. It
is high‐yielding and well‐suited for conserved forage,
grazing, or dual‐purpose use (Smith et al., 2021; Tucker
et al., 2021). Alfalfa production is primarily concentrated
in the Mediterranean, semi‐arid, or more arid regions of
the world, with an estimated 30million ha planted globally
(National Alfalfa Forage Alliance [NAFA], 2023).

Warm‐humid areas of the world include the tropics
and the subtropics (regions from 34° N and 34° S) and
represent the potential areas for alfalfa expansion
(Moore et al., 2020). These areas are characterized by
alternating warm and cool temperatures, drought and
flooding conditions, and multiple biotic stresses, includ-
ing fungi, viruses, insects, and nematodes. The adoption
of legumes in forage systems in warm‐humid regions
has historically been limited by (1) perceived lack of
persistence, (2) lack of awareness of adapted varieties,
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(3) knowledge of management requirements (Shelton
et al., 2005), and (4) coupling management with the
growing conditions in the region (Silva et al., 2021).
Integration of legumes in warm‐humid regions has
many benefits including improved forage nutritive value
in predominantly C4‐grass regions of the world, reduced
reliance on synthetic N fertilizer, and the potential for
improved animal performance, ecosystem diversity, and
economic returns (Muir et al., 2014; Sollenberger &
Dubeux, 2022).

This review explores alfalfa management scenarios
from the Southeast United States and Argentina with a
view towards using these examples as a model for
expanding the scope of reach of alfalfa in warm, humid
regions. The objective of this paper is to collectively
review alfalfa plant breeding, management strategies,
and opportunities for alfalfa expansion in warm, humid
regions based on these reports.

BREEDING AND GENETICS

Nearly all alfalfa cultivars are synthetic autotetraploid
populations (Bouton, 2001; Li & Brummer, 2012). Most
synthetics are broad‐based, usually containing more than
100 parents for the development of the population.
Breeding has mostly been conducted as phenotypic
recurrent selection using among and within half‐sib
family selection (Casler & Brummer, 2008). The devel-
opment of cultivars in the late 1900s focused on selecting
for fall dormancy groups adapted to the growing region,
winter hardiness, and a broad genetic base for pest
resistance and disease resistance (Bouton, 2001). The
level of fall dormancy is a key trait for alfalfa adaptation
to warm and humid regions. Growth in alfalfa is affected
by fall dormancy, which refers to the characteristic
growth reduction and decumbent shoot orientation that
typically occurs in late summer and early autumn as the
temperature declines and the photoperiod shortens
(Castonguay et al., 2006; McKenzie et al., 1988). The
dormancy level of alfalfa is determined using a standard
test that compares the fall growth for a new variety
relative to the growth of known checks (Teuber
et al., 1998). The most‐dormant alfalfa types (fall
dormancy rating 1–4) will remain very short after the
last cut in late summer, and the least‐dormant types (fall
dormancy 8–11) will continue growing during the fall
and winter. Nondormant varieties (fall dormancy 8–11)
are suited to regions with little frost, such as the southern
United States and the Central Valley of California, and
Northern Argentina, Paraguay, Uruguay, and Brazil
(Vilela et al., 2018). There is a tradeoff between fall
dormancy and yield, and nondormant cultivars show
faster growth and higher yields under the right environ-
mental conditions, but stand persistence is lower than
dormant cultivars (Ventroni et al., 2010). Nevertheless,
management practices such as cutting or grazing interval
and stubble height will determine whether greater
productivity is achieved with nondormant cultivars
(Sheaffer & Marten, 1990; Ventroni et al., 2010). In
areas with limited frost or freezing temperatures, reduced
dormancy can potentially improve yield, especially from

late summer through early winter (Sheaffer &
Marten, 1990). Other complex traits (quantitatively
inherited) are also important breeding targets, including
dry matter yield (Acharya et al., 2020; Adhikari et al.,
2019; Biswas et al., 2021; Sakiroglu & Brummer, 2017;
dos Santos et al., 2018), grazing tolerance (Smith &
Bouton, 1993), low bloat potential (Goplen et al., 1993),
and potato leafhopper resistance (McCaslin, 1994).

Dry matter yield, nutritive value, stand persistence,
and resistance to biotic and abiotic stresses are critical
traits in alfalfa breeding programs, and they are complex,
quantitatively inherited traits that show moderate to low
heritability (Acharya et al., 2020; Bowley & Christie,
1981; Brummer & Casler, 2014; Fernandes Filho et al.,
2023; Hawkins & Yu, 2018; Riday & Brummer, 2004).
Quantitative traits with complex inheritance patterns
require more effort to achieve satisfactory genetic gains.
For example, a comparison among cultivars developed
over five different decades revealed that modern cultivars
only performed better in environments under strong
biotic and abiotic stresses. Cultivars performed similarly
in favorable environments, suggesting that genetic gain
for yield was more due to adaptation and resistance to
biotic and abiotic stress rather than for yield per se (Lamb
et al., 2006). The low rate of genetic progress for dry
matter yield, which averaged 0.50% per year (Lamb
et al., 2006), can be ascribed to long breeding cycles due
to the perennial nature of alfalfa, the harvesting of the
entire plant (inability to make gains in harvest index),
multiple harvests per year, significant genotype‐by‐
environment interaction, high costs on phenotyping,
tetrasomic inheritance, and high level of nonadditive
variance (Acharya et al., 2020; Annicchiarico, 2015;
Annicchiarico et al., 2016). Due to the quantitative
nature of these important traits, new tools and methods
are needed to increase genetic gain.

The use of molecular markers is an excellent tool for
alfalfa breeders to improve the rate of genetic gain for
complex traits. Various molecular marker systems have
been developed for alfalfa over the past 30 years, including
low‐throughput markers (Brummer et al., 1993; Robins
et al., 2008), and high‐throughput single nucleotide
polymorphisms (SNPs) markers using arrays (Li, Han,
et al., 2014), genotyping‐by‐sequencing (Li, Wei, et al.,
2014), target‐enriched sequencing (Andrade et al., 2022),
and more recently, a public mid‐density (3000 loci)
DArTag assay (Zhao et al., 2023). These marker systems
have been applied in alfalfa for research purposes, but the
adoption in breeding programs has been limited due to
costs and/or the lack of molecular breeding methods used
in alfalfa. The DArTag assay has the power to make
routine genotyping a reality for alfalfa breeders due to
lower costs compared to other systems. In addition, the
DArTag assay uses custom‐designed oligos to amplify
targeted SNPs before next‐generation sequencing, and the
target SNPs were selected from 40 cultivated alfalfa plants
and founders from North American breeding programs
(Zhao et al., 2023).

The use of molecular markers to aid the selection of
elite germplasm in plant breeding, a method known as
genome‐wide selection, has potential to increase genetic
gain for complex traits in alfalfa (Andrade et al., 2022;
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Annicchiarico, 2015; Biazzi et al., 2017; Fernandes Filho
et al., 2023; Jia et al., 2018; Li, Wei, et al., 2014).
Andrade et al. (2022) reported predictive abilities ranging
from 0.2 to 0.4 for dry matter yield and canopy height in
alfalfa family bulks. The first five harvests each year
provided enough data to make accurate predictions for
the cumulative dry matter yield. Therefore, the use of
genomic selection can result in reductions in data
collection and breeding decisions by 50% in nondormant
alfalfa breeding programs. In a follow‐up study, the
inclusion of enviromics data (weather and soil data, and
basic physiological parameters) in prediction models
resulted in greater predictive ability for complex traits by
modeling dry matter yield across multiple harvests
(Fernandes Filho et al., 2023).

The application of remote sensing is becoming a
routine method in plant breeding for fast and non-
destructive high‐throughput phenotyping. Breeding
alfalfa for dry matter yield requires frequent and multiple
phenotyping efforts, and up to 10 harvests could be
achieved per year in warm, humid regions (Acharya
et al., 2020; Andrade et al., 2022). High‐throughput
phenotyping has been shown to enable efficient and
nondestructive estimation of dry matter yield and other
traits in alfalfa (Biswas et al., 2021; Cazenave et al., 2019;
Feng et al., 2022). This phenotyping process can also
detect small differences in alfalfa yield when screening
diverse germplasm sources (Cazenave et al., 2019) and
improve the efficacy of the selection process for biomass
in small plots (1.52 m × 0.30 m) and larger plots
(6 m × 4m) (Feng et al., 2022; Tang et al., 2021). The
use of high‐throughput phenotyping in nondormant
alfalfa grown in Florida showed that vegetation indices
can be used to predict dry matter yield in small plots with
an average R2 of 0.60. In addition, the implementation of
bivariate models combining high‐throughput phenotyp-
ing and ground‐based measurements for dry matter yield
showed that ground‐truth dry matter yield measurements
can be reduced up to 70% without compromising genetic
gain in nondormant alfalfa (Biswas et al., 2021).

Advances in alfalfa improvement made use of
recombinant DNA to modulate the expression of genes
involved in multiple traits, including nutritive value,
herbicide resistance, and stress tolerance (Bouton,
2001, 2012a). Transformation allows for the transfer of
DNA sequences of interest into the plant genome to
either enhance or silence the expression of target genes
that determine important traits. A survey showed that
many value‐added traits are being pursued in alfalfa
breeding via biotechnology methods (Samac et al., 1998),
and most of these traits are qualitative in nature. Future
studies and breeding efforts should target the integration
of genomics, enviromics, and phenomics to increase the
prediction ability of models in nondormant alfalfa grown
in warm, humid regions, and ultimately increasing
genetic gain for complex traits.

Breeding for warm, humid regions

Breeding alfalfa for adaptation to warm, humid regions
needs to combine traditional and novel breeding

methods. Subtropical climate transition zones are ideal
regions for breeding forage species with climate adapta-
tion because breeding populations are regularly exposed
to extreme weather events, such as hot and cold
temperatures, drought and flood conditions, and a
multitude of biotic stresses (Quesenberry et al., 2022).

Nondormant cultivars have been adopted in the
southern United States (Bouton, 2012b). The alfalfa
breeding program at the University of Florida (UF)
began in 1950. Early efforts led to the release of Florida
66, which showed improved adaptation to the state's
agroecosystem (Horner, 1970). Additional evaluation
and selection resulted in the release of Florida 77, which
had superior yield and persistence (Horner &
Ruelke, 1981). After additional field selection for growth
and vigor, Florida 99 was released for its improved
resistance to the spotted alfalfa aphid. Recently, the
cultivar UF_AlfPers_2015 was released for its improved
dry matter yield and persistence when grown in Florida
(Rios et al., 2023). All the cultivars released by UF had
fall dormancy ratings of 9. The cultivar Bulldog 805, a
fall dormancy rating of 8, was released for its adaptation
to grazing systems and high yields in hay fields in
Georgia (Bouton et al., 1997), and it is widely grown in
the Southeast US Nondormant cultivars like Florida 66
and Florida 77 produced high dry matter yield across 3
years in Puerto Rico (Velez‐Santiago et al., 1984). Winter
weather in warm‐humid regions is mild, grazing seasons
are long, and producers are fundamentally grazers.
Developing adaptive, grazing‐tolerant varieties such as
“Alfagraze” (Bouton et al., 1991), along with embracing
new research on grazing management, therefore was an
important step. Those who did not want to harvest
alfalfa so often or worried about unpredictable rainy
weather were able to practice targeted grazing.

Stand persistence is critical for alfalfa, especially in
warm‐humid regions and under grazing. It is defined
as maintenance of an adequate number of plants over
time (Bouton, 2012b). Assessing persistence takes several
harvests and must be evaluated over multiple years.
Persistence is a complex trait as it depends on several
characteristics and environmental factors such as drought,
temperature, grazing/harvest pressure, aluminum‐toxicity
tolerance, fall dormancy, and disease resistance, among
other factors (Rimi et al., 2014). Due to the complexity of
evaluating persistence, De Assis et al. (2010) proposed
an indirect method to measure persistence by regressing
yield over time. Therefore, persistence could be estimated
through the regression coefficient, and it is expected to be
negative as the plant stand decreases over time.

ALFALFA SYSTEMS
MANAGEMENT STRATEGIES

Ensuring adequate soil pH conditions and fertility
management are keys for establishment success with
alfalfa, especially in more naturally acidic soils
(Haby, 2002; Tucker et al., 2021) often found in warm‐
climate regions of the world. Required soil pH (CaCl2)
range for successful alfalfa establishment in topsoil
(0–15 cm depth) is 6.5–7.0, and additionally, a subsoil
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(15–30 cm depth) pH at a 5.5 or greater is preferred
(Tucker et al., 2021). Inoculation of alfalfa seed with the
appropriate Ensifer meliloti strain is needed if purchased
seed is not preinoculated; however, most seed is
purchased as precoated with an inert material, the
necessary inoculant, and starter micronutrients (Mo
and B) recommended for successful alfalfa establishment
(Lacefield et al., 2019; Tucker et al., 2021).

Alfalfa can be grown in monoculture or mixtures
with grasses. Perennial C4 grasses are prevalent in warm‐
humid regions, and represent potential for increasing
alfalfa plantings (Cassida et al., 2006; Hoveland
et al., 1988). The majority of the published literature
on alfalfa integration in C4 grass‐based systems is from
the Southeast United States with bermudagrass, which is
the focus of the discussion herein. Research has
demonstrated the complementary growth distribution
of alfalfa when planted in mixtures with bermudagrass
(Baxter et al., 2023; Beck et al., 2017a, 2017b, 2017c;
Brown & Byrd, 1990; Hendricks et al., 2020; Stringer
et al., 1994).

The growth rate of C4 grasses is slower in colder
temperatures, with a cardinal base temperature of 10°C
and higher, and optimum daily air temperature of
30–35°C (Moore et al., 2004). Hanna and Sollenberger
(2015) recorded that bermudagrass grows best above 24°C
mean daily temperatures. Alfalfa growth is inhibited at
temperatures above 30°C with a wide optimum range of
15–25°C (Brown et al., 1972). McKenzie et al. (1988)
reported 27°C as the optimum temperature for herbage
growth and 12°C for optimum root growth of alfalfa.
Thus, when grown in mixtures together, the seasonal
growth distribution of alfalfa and bermudagrass combined
with fluctuations in seasonal temperature create an ebb‐
and‐flow relationship in terms of stand species composi-
tion. While alfalfa production may not cease during
extended periods of hot weather, it can undergo slowed
growth, often referred to as summer slump (McKenzie
et al., 1988). As an example, recent studies focused on
alfalfa integration into bermudagrass in Tifton, GA, have
reported greatest proportions of alfalfa and lowest
contributions of bermudagrass occurring in the spring
(March–June; up to 80% of the stand composition from
alfalfa), followed by increased bermudagrass contributions
in the summer (July–September) (Burt et al., 2023;
Hendricks et al., 2020). These projects confirmed earlier
work conducted by Brown and Byrd (1990) and all report
the lowest proportions of alfalfa occurring during
the summer months; however, the alfalfa contribution
remained at or above 30% throughout the growing
season months (Burt et al., 2023; Hendricks et
al., 2020). Further, Hendricks et al. (2020) evaluated
stand composition beyond September each year and
reported another seasonal transition leading to increased
alfalfa contributions (30%–50% of the stand) in the fall
(September–November) and decreased bermudagrass due
to seasonal dormancy. Burton (1976) reported in the early
1950s that interplanting “Coastal” bermudagrass with
alfalfa “blended nicely with the grass” and produced
excellent yields in a southern Georgia location (5‐year DM
averages of 8720–9859 kg ha−1 depending on P and K
application levels). Brown and Byrd (1990), in a northern

Georgia location in the 1980s, found yields of an
alfalfa–bermudagrass mixture to average 9701 kg ha−1

and were similar in yield to bermudagrass fertilized with
200 kgN ha−1. Hendricks et al. (2020), working at the
same location as Burton, found mixture yields for 3 years
(2016–2018) to range from 14 755 to 22 654 kg ha−1, while
bermudagrass alone with 336 kgN ha−1 to range from
7877 to 11 788 kg ha−1 depending on the year. Brown and
Byrd (1990) reported that at least 200 kgN ha−1 are
replaced by incorporating alfalfa into bermudagrass‐based
systems. By comparing bermudagrass yields at increasing
nitrogen fertilizer levels with alfalfa mixture in replicated
plots, Stringer et al. (1994, 1996) demonstrated that at
least 224 kgN ha−1 is replaced in an alfalfa–bermudagrass
stand (with recommended P and K levels and 20 cm row
spacing) versus nitrogen fertilization of pure stand
bermudagrass. These studies also reported that mixed
alfalfa–bermudagrass stands attained the highest crude
protein concentration (greater than 12% CP) compared to
bermudagrass alone. The effects of alfalfa incorporation
into bermudagrass stands on yield, nutritive value, and
extended forage production illustrate the compatibility of
these forages species. These trials all included 3–5 years
of data collection, with alfalfa accounting for at least 30%
of stand botanical composition. These observations mirror
the United States national alfalfa production trend data,
where the yield follows a bell‐shaped curve. In years 2 and
3 of stand life, alfalfa stands in the United States generally
illustrate the greatest DM yield, followed by decreased
yield in years 4 and 5 (Russelle, 2013; Tucker et al., 2021).
Some studies have also evaluated alfalfa production and
persistence characteristics in bahiagrass (Paspalum nota-
tum Flüggé, White et al., 2021), which illustrates another
potential application for alfalfa in mixtures with perennial
grasses, although persistence characteristics of alfalfa
in this system were limited to about 3 years of useful
stand life.

Alfalfa as conserved forage

Alfalfa is traditionally conserved as dry hay, ensiled as
baleage or silage, grazed, or managed for dual‐purpose
use (grazing and conserved). In warm‐humid regions
of the world, frequent rainfall and humid conditions
often limit the dry down window for hay and create
challenges for preserving a high‐quality product. A rise
in the use of chemical preservatives (Killerby
et al., 2022) and baleage technology creates flexibility
in conserved forage management decision‐making,
where, based on weather conditions, farmers can
decide if conditions will better fit hay or baleage
production (Hersom et al., 2007; Pruitt & Lacy, 2013).
Baleage requires less dry down time to reach the target
dry matter and ensiles forage for a time of later use.
Recent work from Georgia demonstrated that
alfalfa–bermudagrass mixtures are a viable option in
the region and provide a high‐yielding, high‐quality
feed source for livestock as hay or baleage (Hendricks
et al., 2020). Total seasonal forage production of
alfalfa–bermudagrass, when harvested as baleage,
averaged 18 873 kg DM ha−1 with six to eight harvests
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per year over the 3‐year evaluation, two to four more
harvests per year than bermudagrass monoculture
stands.

Alfalfa grazing management systems

Grazing alfalfa is not a common practice in the United
States but is more widely practiced in other regions of the
world (Basigalup, 2023; Bouton, 2012b; Smith et al., 2021).
Besides its ecosystem benefits, such as nitrogen fixation, deep
root systems, and adding plant biodiversity in otherwise
monoculture grass systems, alfalfa is a desirable crop for
grazing because of its high yield potential and nutritional
value. Historically, a major limitation of alfalfa in grazing
systems has been lack of persistence under continuous
stocking and soil acidity limitations, which are characteristic
of many warm‐climate regions of the world (Hoveland,
1989, 1992). Alfalfa breeding programs have made progress
with regard to both limitations with the release of more acid‐
tolerant alfalfa and dual‐purpose cultivars for grazing and/or
conserved forage production (Bouton et al., 1986). Com-
pared with confined animal production systems, direct
grazing has some advantages, such as lower operational
costs, better use of alfalfa quality relative to conserved forage
(hay, baleage, or silage), beef produced on pastures having
less intramuscular fat content, and a higher unsaturated fatty
acids omega‐3/omega‐6 relationship. However, when pure
stands of alfalfa are used as a sole source of cattle feed, there
can be some disadvantages, such as risk of bloat, longer
animal finishing periods in beef operations, or lower milk
production on an individual cow basis. Nonetheless,
depending on the operation goals, the latter can be overcome
by increasing stocking rate to maximize production per unit
area, or increasing profitability by reducing feeding costs
(Basigalup, 2023).

Many grazing systems have been proposed for
improving animal performance while maintaining pas-
ture quality, persistence, and forage species balance.
Grazing methods are in fact variations of two comple-
mentary concepts: spatial distribution (fences) and
temporal distribution (grazing/resting periods, which
allow root and crown reserves to be replenished). Leach
and Clements (1984) noted that alfalfa is unable to
regenerate from seed or vegetatively within the pasture
and persistence is dependent on retaining original plants
in the stand. Proper alfalfa grazing management, in order
to complement high animal production with high levels
of pasture yield and persistence, must be based upon the
particular growing pattern of the plant (Bouton &
Smith, 1998; Smith et al., 2021). Therefore, rotational
stocking of alfalfa has been recommended to combine
adequate levels of grazing intensity with appropriate
resting time while maintaining alfalfa stand persistence
(Bates et al., 1996; Wolf & Allen, 1990). Alfalfa can
tolerate intensive grazing periods if they are not overly
frequent, such as a grazing period of every 21 days,
grazing at 15–20 cm stubble height, or grazing at 350
growing degree days (GDD) or 8–10 nodes throughout
the growing season. Repeated interruption of the reserve
accumulation cycle leads to loss of plants from the stand
and the subsequent decrease in animal production.

Under continuous stocking, Bates et al. (1996) noted
that a forage allowance of 1.0 kg forage per kg of animal
body weight provided the longest stand life, acceptable
animal gains, and stand persistence in a 3‐year grazing
trial in Eatonton, Georgia.

Forage quality also plays a very important role in
animal performance. If alfalfa pastures were grazed at full
bloom (stage at which forage yield and reserves are very
high), digestible DM content would be very low. Grazing
initiation and stocking management decisions are based on
alfalfa plant morphology and growth cycle to better
optimize alfalfa forage yield, nutritive value, and persist-
ence (Lu et al., 2018; Pedreira et al., 2020; Smith
et al., 1989). For example, grazing at early stages of
development (15–20 cm height, 8–10 nodes, or 350 GDD)
from mid‐spring to mid‐summer has been proposed for
improving animal performance based on animals consum-
ing alfalfa forage of higher quality (Berone et al., 2020;
Hoppen et al., 2022).

For alfalfa cultivars with a fall dormancy rating of 5–10
used in the Pampa Region (temperate climate and no
irrigation), many studies conducted by INTA for
beef production utilized an average grazing period of
4–7 days, with an average rest period of 28–42 days,
depending on the season (Basigalup, 2023). Stocking rates
were variable (from 3–6 cattle units ha−1) in these trials based
on spring, summer, fall, or season‐long grazing. Likewise,
forage allowance in one trial ranged from 3.3% to 7.9% of
live weight (lw) in spring and from 2.4% to 4.9% in summer,
and in another trial from 3.5% to 5% throughout the
growing season. In one trial (Ustarroz et al., 1997), pasture
utilization in spring ranged from 75% (with a forage
allowance of 3.3% lw) to 39% (with a forage allowance of
7.9% lw), and in summer, from 84% (2.4% lw) to 60.5%
(4.9% lw). Since different environmental conditions impacted
on forage availability, forage allowance, and stocking rates,
it is extremely difficult to extrapolate results. As an overall
average, best results (in terms of DM production and
persistence) for beef operations in the Argentine Pampa
region were obtained with cycles of 4–6 days of grazing and
28–42 days of resting across the growing season (Romero
et al., 1995).

Previous grazing work with alfalfa–bermudagrass
under rotational stocking (21‐days rest period) in Arkansas
found that adding alfalfa can improve forage production,
nutritive value, and animal performance in beef cattle
systems while reducing the need for synthetic nitrogen
fertilization when compared to bermudagrass monoculture
systems (Beck et al., 2017a, 2017b, 2017c). Rushing et al.
(2022) reported greater stocker cattle performance (initial
body weight ~288 kg; 0.83 kg d−1 ADG and 311 kg animal
gain ha−1) and for alfalfa–bermudagrass systems under
rotational stocking compared with bermudagrass mono-
cultures fertilized with 112 kgN ha−1 (0.55 kg d−1 ADG
and 237 kg animal gain ha−1). The authors estimated that
an alfalfa–bermudagrass system had a net revenue of
$186.75 ha−1, compared with −$65.45 ha−1 for nitrogen‐
fertilized bermudagrass systems. Alfalfa persisted in the
mixed stand, with a contribution of 30% or greater to total
forage yield in a 2‐year trial by Burt et al. (2023). The
enhancement of overall stand nutritive value from alfalfa
contributions of 30% or greater in comparison with
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fertilized and nonfertilized bermudagrass has been well
documented (Beck et al., 2017; Burt et al., 2023; Hendricks
et al., 2020; Rushing et al., 2022). Reported variations in
alfalfa persistence within grazed stands are directly related
to grazing length, season, and stocking density.

The main goal for any grazing system is a high degree
of forage utilization through an adequate grazing pressure.
In doing so, it is important to take into account that the
effect of pasture use intensity on individual live weight
gains is different throughout the year. As a general rule,
systems that include high stocking rates produce more beef
per unit area, but at the cost of decreased individual live
weight gains (Mott, 1960). However, losing some degree of
the potential individual animal weight gain may delay the
finishing process and negatively influence the profitability
of the operation and/or time to achieve return on
investment. To remediate this, farmers may consider using
a variable stocking rate or implement a leader–follower
grazing system, in which the leader group may take
advantage of a higher‐quality herbage (Basigalup &
Ustarroz, 2007).

Grazing alfalfa and bloat

Probably the greatest concern when grazing tender, high‐
quality alfalfa is the risk of bloat. Direct animal loses and
indirect (subclinical) effects are important when condi-
tions predisposing to bloat are elevated, that is, tender
pasture (bud stage or 10% blooming, high plant growth
rate), fasted animals, presence of dew, frosted plants,
high soil fertility, and high individual animal susceptibil-
ity. In this context, this fear of bloat makes farmers graze
more mature alfalfa, when forage quality is much lower.
Feeding overmature alfalfa forage usually results in
greater economic losses from low beef cattle weight gain
or dairy milk production than the potential losses from
bloat itself (Van Keuren & Marten, 1972).

Since there are many factors contributing to bloat, it is
very difficult to define a unique approach for preventing
and controlling it. Although breeding for elevated levels
of condensed tannins in the leaves of forage legumes,
including alfalfa, is suggested (Hancock et al., 2014), the
current management recommendation is to reduce the
probability of reaching a bloat threshold in the rumen. To
achieve this, it is advisable to implement a combination of
antibloat products with a number of complementary
management measures that reduce bloat incidence. Strate-
gies for reducing the risk of bloat may include, but are not
limited to, growing alfalfa–grass mixtures, acclimation of
livestock to alfalfa before turnout on pastures via limit
grazing or by providing roughage for rumen fill, monitor-
ing animals at turnout, and feeding bloat‐reducing
compounds, such as poloxalene or monensin, before and
during turnout onto alfalfa pasture (Smith et al., 2021).

Dual‐purpose use systems

Trials with grazing‐tolerant alfalfa varieties in the 1990s
demonstrated potential fit, production capacity, and
persistence in warm‐humid environments (Bouton &

Gates, 2003). Farmers may consider dual‐purpose use of
alfalfa for both conserved forage and grazing. A 2‐year
study was conducted in Alabama and Georgia to evaluate
forage and animal responses when alfalfa–bermudagrass
mixtures were managed in a dual‐purpose use system
(Tucker et al., 2021). The integrated dual‐purpose cut‐
and‐graze system in this evaluation was harvested for
conserved forage production early in the growing season,
followed by rotational grazing. During mid‐to‐late sum-
mer, the stand was allowed to regrow for a time of later
use, where forage was stockpiled for deferred grazing from
October to November. The dual‐purpose system sup-
ported two mechanical harvest events per season during
the summer months, with an average of 2769 kgDMha−1

per harvest during the 2‐year evaluation, similar to the
cut‐only system in yield, with 2279 kgDMha−1 per
harvest, but with 5.25 harvest events per season. Likewise,
animal performance did not differ among animals grazing
in the graze only (GO) and dual‐purpose (DP) systems,
reporting 235 and 241 kg LWGha−1 (GO and DP) and
261 and 248 kg LWGha−1 (GO and DP) in Alabama and
Georgia, respectively (Burt et al., 2024).

While this system did not provide the greatest
animal live weight gain or harvestable yield compared
to grazing or hay production alone, it was able to
optimize the utilization of the mixture in that it
resulted in greater alfalfa stand persistence than
grazing only, and required less mechanical harvesting,
labor, and associated costs than the cut‐only system.
Further, it allowed for harvesting options during wet
periods when hay harvests would have been delayed,
provided a forage rest period during stressful drought
months, and allowed for use of the area well into the
winter months without negatively impacting persist-
ence of the alfalfa integrated into bermudagrass
(Tucker et al., 2023).

ALFALFA EXPANSION
OPPORTUNITIES AND
CHALLENGES

Targeted seed marketing and growth
opportunity gaps

Warm‐humid climates are found throughout the world,
with planted alfalfa area usually low within these climatic
zones, especially in the tropics and subtropics. For
example, alfalfa in the subtropical, warm, humid
Southeast United States (especially the Gulf of Mexico
and Atlantic coastal states) is low in comparison with
that in the warm‐dry Southwestern United States even at
similar latitudes (United States Department of Agricul-
ture National Agricultural Statistics Service, 2023). Crop
maps and market projection reports of the tropics and
subtropics demonstrate that the planted area of alfalfa
remains very low in these regions. These low numbers
surely had a negative influence on the national and
international seed trades targeting alfalfa sales for those
regions.

Throughout the 20th century, livestock production in
warm‐humid regions was largely achieved using grasses
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as forages. These were managed as either native grass-
lands or cultivated grasslands (Klotz & Bouton, 2021).
Cultivated grasslands are often planted and made up
of a small number of plant species (including alfalfa),
management is intensive with high inputs, whereas
rangelands are complex ecosystems consisting of numer-
ous native plant species, management is extensive with
limited inputs. There are now tens of millions of hectares
of grasses in cultivated (planted) pastures and hay fields
in warm‐humid areas, especially in the eastern half of
the United States (Lark, 2020). Similarly, a report from
Embrapa (Anonymous, 2022) estimated that there
are 180 million hectares of pastures in Brazil, with 80%
of these planted with one grass genus, Brachiaria (Syn.
Urochloa).

The main reason for the discrepancy between planted
alfalfa area and grasses was that alfalfa production was
seen as less dependable and higher risk by farmers
(Bouton, 2021). The planted area and use of alfalfa were
never high compared with grasses, and seemed to
increase and decrease depending on the cost of nitrogen
fertilizer and the occurrence of periodic droughts.
Therefore, farmers, and especially the alfalfa seed
industry, in the past adopted a self‐fulfilling prophecy:
alfalfa use and sales in warm‐humid regions will not
increase substantially. Thus, there was little incentive to
invest heavily in research and marketing efforts. This
position is puzzling today based on obvious opportuni-
ties. For example, according to the USDA NASS, warm‐
humid regions in the United States (from Texas‐
Oklahoma east to the Atlantic Ocean) contain about
40% of the nation's beef herd, a significant and growing
percentage of the nation's dairy herd, and 140 million ha
of cultivated crop land suitable for alfalfa (United States
Department of Agriculture National Agricultural Statis-
tics Service, 2023).

Emphasizing cultivars developed
for warm‐humid regions

Developing adapted cultivars with ideal fall dormancy,
winter hardiness, and pest and disease resistances, mainly
for temperate regions, dominated early breeding efforts
in both the public and private sectors (Bouton, 2001).
Later, more complex traits (quantitatively inherited) such
as grazing tolerance, improved nutritive value, and
potato leafhopper (Empoasca fabae) resistance were
added, resulting in the expansion of alfalfa use into
other geographic regions including warm‐humid areas
(Bouton, 2012a, 2012b). Dry matter yield, however, has
historically been, and continues to be, a main breeding
target trait for alfalfa. However, due to its being
quantitatively inherited with moderate to low heritabil-
ity, yield has proven difficult to improve (Brummer &
Casler, 2014). Difficulties underpinning yield are also
similar to other traits that limit alfalfa use in warm‐
humid regions such as acid soil and aluminum tolerance
(Bouton, 2012b).

The addition of the Roundup Ready trait (RR)
through transformation technologies into modern alfalfa
cultivars gave producers a good management tool for

controlling problem weeds, especially those ubiquitous in
warm‐humid regions (McCaslin, 2005). In some cases,
RR was combined with grazing tolerance of different
dormancy versions of the first proven, grazing‐tolerant
cultivar, “Alfagraze.” These products were recom-
mended for many producers who were grazers in these
regions (Forage Genetics, LLC, n.d.; Silva et al., 2021).
The reduced lignin trait stacked with RR (sold as
HarvXtra®) is also increasing alfalfa's competitiveness
as a high‐value feed in dairy operations (Fisher, 2017;
Silva et al., 2021). Successful transformation to increase
condensed tannin expression in white clover (Trifolium
repens L.) also offers a future approach toward reducing,
and even eliminating, bloat in pasture legumes including
alfalfa (Woodfield et al., 2019).

Understanding barriers and challenges
of farmers

Expansion of alfalfa in warm‐climate regions of the
world requires legumes to be both an enterprise
management and socially relevant fit for the farming
operation. A survey of forage‐livestock operators in the
Southeast United States reported potential barriers for
expansion of alfalfa in the region (Silva et al., 2021).
Responses were limited to farmers from the following
states: Alabama, Arkansas, Florida, Georgia, Kentucky,
Louisiana, Mississippi, North Carolina, South Carolina,
Tennessee, Virginia, and Texas. These forage‐livestock
producers were asked to select one primary response for
perceived opportunities and challenges associated with
growing alfalfa in the Southeast United States. Key
reasons for growing alfalfa were identified as (1) greater
forage nutritional value, (2) greater profit potential from
high‐quality forage in the form of a marketable,
conserved forage product or reduced animal supplemen-
tation costs, and (3) “other.” Other reasons included
diversifying and extending the grazing season in the
region and focusing on ways to better serve the equine
clientele.

Costs of establishment, stand longevity, and “other”
received the majority of responses from participants as
challenges or barriers to alfalfa adoption. In the “Other”
category, while some management limitations were low
soil pH and lack of familiarity with alfalfa as a forage
crop, farmers also noted consistent use of soil‐residual
herbicides as a limiting factor for alfalfa establishment
in the operation. These herbicides are often used in
perennial, grass‐based monocultures as weed control.
This illustrates the relative familiarity with management
requirements and the ease of management of grass
monocultures relative to mixed species stands or legumes.
A combination of lack of familiarity of management
and perceived complexity in management of legumes
is a potential barrier associated with their adoption.
Muir et al. (2014) reported that farmers may be more
comfortable managing grass‐based systems, where pro-
duction responses to practices such as fertilization,
chemical weed suppression, and yield are often quite
visual for farming operations. Nitrogen fixation and other
ecosystem benefits of legumes are harder for farmers to
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conceptualize and see immediately tangible benefits from
their use.

Educational strategies to showcase alfalfa
management systems

The literature on legumes in warm‐climate regions
reports that perception of lack of legume persistence
and low adoption rate of adapted legumes are often
aligned (Muir et al., 2014; Shelton et al., 2005). Success-
ful utilization of alfalfa in warm‐climate regions requires
an integrated, targeted approach. “Alfalfa in the South”
Extension workshops are now educating forage‐livestock
producers on overcoming perceived problems and
emphasizing the establishment, management, and eco-
nomic value of the crop (Tucker et al., 2019; Silva
et al., 2021). Partnerships with the forage seed industry
and through USDA grant initiatives have fostered the
development of several on‐farm demonstrations in
Georgia, Florida, Alabama, and South Carolina (United
States). Farmer demonstration sites showcase alfalfa
establishment, management, quality and persistence in
conserved forage, grazing, or dual‐purpose use systems.
Through USDA grant initiatives, several on‐farm
demonstrations are supported as part of the program,
thereby combining field research data and farmer
experiences from a more holistic perspective. Participants
in the program partner with forage seed industry and
Extension educators to provide real‐world perspectives
on alfalfa performance. The seed industry, in partnership
with Extension efforts such as “Alfalfa in the South,”
needs to continue and expand its educational role. The
industry also needs to increase its marketing and sales
efforts in all warm‐humid regions. Success of past direct
marketing and sales efforts in the Southeast United
States such as the “Alfagraze” program (Grigson, n.d.),
and more recently, the “GotBermudagrass?” initiative
(Forage Genetics International, LLC, n.d.) are notable.
These efforts increased seed sales and planted area
substantially and demonstrated what can be done in the
short term. For example, seed sales reported in Georgia
were sufficient for an estimated 8090 ha to be planted
in the Southeast United States region (Athens Seed
Company, personal communication, 2020).

Opportunities for improving alfalfa use in
livestock systems

Demonstrating applications of alfalfa use in livestock
operations is another strategy to increase awareness in
warm‐climate regions. This requires a cross‐disciplinary
approach, from establishment and management of the
forage crop to utilization by the end user. Discussion of
crop production and animal use is often in differing
“silos” at higher education institutions and within the
agricultural industry, which represents an area for
greater collaboration in the forage industry. Because of
the economic value of alfalfa, it is often recommended to
feed alfalfa to livestock with the greatest nutritional
requirements. In a dairy versus beef cattle scenario,

lactating dairy cattle have greater nutrient demands
than beef cattle. Alfalfa has long been considered a key
component of dairy cattle diets as a high‐quality,
palatable forage or feed alternative for this purpose
(Tarnosky et al., 2023). Large herd dairies are now
common in these regions and corn silage is their main,
on‐farm crop of choice. However, dairy producers who
planted a silage corn crop after a corn crop on the same
land are seeing lost productivity. They are realizing that
alfalfa is still the best rotation crop, and the only forage
with the yield and quality, to solve this problem in dairy
operations.

Opportunities exist for creep grazing, limit grazing, or
rotational stocking of alfalfa stands in beef cattle
operations, where alfalfa may be used as a primary or
supplemental grazing crop for beef cattle (Burt et al., 2023;
Cassida et al., 2006; Hoveland et al., 1988; Rushing
et al., 2022). With increasing feed prices and sporadic
availability of many byproduct feedstuffs, alfalfa may play
a greater role in beef cattle diets than has previously been
recognized by Extension‐industry educators. Alfalfa‐based
conserved forage may also play a role in drylot‐based diets
to meet dietary roughage requirements while reducing
the need for commodity feed‐based supplementation
strategies.

Additionally, alfalfa is also now an integral part of
polyculture seed blends for both pastures, cover crops,
and wildlife plots. These blends allow local seed dealers
to substantially increase their forage seed sales. Better
storage opportunities with baleage wrapping and newer
preservative formulations for dry hay also overcome
harvesting and storage issues created by the region's high
rainfall climate. These trends create expanding markets
for alfalfa seed sales.

Areas of emphasis for expansion into warm‐humid
regions in the future include (1) increasing the seed
industry commitment to marketing and sales efforts in
these regions emphasizing alfalfa's unique traits and use
opportunities, (2) for alfalfa breeders to continue to
develop better varieties that overcome inherent problems
(e.g., soil acidity), and (3) for researchers and farmers to
continue to find ways to incorporate and manage alfalfa's
use across the region's varied livestock production systems.

CONCLUSIONS

Planted area of alfalfa in warm‐humid regions is low, but
represents a global area for expansion. Better, adapted
cultivars, along with improved management systems that
capture the crop's beneficial characteristics, are starting
to make an impact for future expansion of areas planted
in alfalfa. Future breeding efforts need to combine
technologically based selection methods (transgenics,
genomics, and phenomics) with tried and true pheno-
typic/genotypic selection but in a cost‐effective manner.
Alfalfa will never replace perennial grasses as the base
forage in these regions, nor should it, but alfalfa shows
real potential for supplemental use or even interplanting
into warm‐season grasses to solve limitations of high
nitrogen fertilizer use and low nutritional value. It also
has potential to serve unique roles in existing farming
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frameworks in warm‐humid regions such as integration
into beef and dairy diets, crop rotations, and as a
component of multispecies, pasture, and wildlife mixes.
Targeted marketing efforts by the seed industry for
adapted cultivars, continued outreach programs such as
“Alfalfa in the South,” and demonstrating on‐farm
alfalfa applications in these regions need to be enhanced.
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