

Comportamiento productivo de cereales de invierno en INTA EEA Marcos Juárez durante el año 2023.

Donaire, Guillermo; Gómez, Dionisio; Alberione, Enrique; Conde, Belén. INTA EEA Marcos Juárez. E-mail: donaire.guillermo@inta.gob.ar

Palabras claves: cereales de invierno, rendimiento, grano.

Introducción

Los cereales invernales comprenden una gran cantidad de especies y cultivos teniendo cada uno una mejor adaptación o comportamiento a un ambiente determinado. Son muy importantes para la sustentabilidad ambiental en todos los sistemas de producción. Se utilizan mucho para la producción de forraje y granos y también como cultivo de servicio para cobertura de suelos y control de malezas. Estas diferentes alternativas de usos les dieron a las gramíneas tener mayor protagonismo en las rotaciones agrícolas.

De acuerdo con esta gran diversidad de cultivos que tienen la posibilidad de ser incorporados en un planteo con rotación de cultivos invernales es necesario generar información que permita tomar decisiones correctas de acuerdo con las condiciones edáficas, climáticas y de manejo en cada zona productiva.

El presente informe tiene como objetivo actualizar el panorama varietal y el comportamiento productivo en cuanto al rendimiento de grano de avena, cebada forrajera, cebada cervecera, cebada granífera, centeno, trigo pan y triticale, en la zona de influencia de la EEA Marcos Juárez.

Materiales y métodos

En INTA EEA Marcos Juárez durante el año 2023 se realizó un ensayo comparativo de rendimiento en grano con 31 cultivares comerciales de diferentes especies de cereales de invierno de ciclo intermedio con fecha de siembra el 23 de junio. Se utilizaron 8 variedades de trigo pan (Triticum aestivum L.), 14 de cebada (Hordeum vulgare) (8 de cebada cervecera, 3 de cebada granífera para grano forrajero y 3 de cebada forrajera), 4 de avena (Avena sativa), 2 variedades de centeno (Secale cereale), 2 variedades de trigo fideo (Triticum turgidum ssp. durum) y 1 variedad de triticale (x Triticosecale Wittmack). En el cuadro 1 muestra la lista de variedades de cada especie que se utilizó en el ensayo con su origen y año de liberación comercial al mercado. El ensayo se implantó sobre una rotación de cultivos trigo/maíz-maíz-soja de primera con una estrategia de fertilización de reposición de nutrientes, en la cual se distribuyeron en presiembra 240 litros de SolMix 80-20 chorreado (88.7 kg N/ha) y 100 kg/ha de MicroEssentials incorporado en la siembra. La siembra se realizó en forma mecánica bajo el sistema de siembra directa con una sembradora experimental Agrometal, con enganche de tiro, de siete surcos distanciados a 0,20 metros con cono distribuidor. Los ensayos se condujeron libres de malezas, las cuales fueron controladas en pre-siembra con una mezcla de Glifosato 66%, Clorsulfurón 62.5%, Metsulfuron metil 12.5% y Dicamba 57.7%, en dosis comercial. Se utilizó un diseño de bloques completos aleatorizados con tres repeticiones con una unidad experimental (parcela) de 5 m² a cosecha. No se realizó control químico de enfermedades foliares con el motivo de caracterizar el comportamiento sanitario de las variedades evaluadas. Hacia el final del ciclo del cultivo se evaluaron en todas las especies: roya amarilla (*Puccinia striiformis f. sp. tritici / Puccinia striiformis f. sp. hordei*), roya de la hoja (*Puccinia triticina sp. tritici / Puccinia coronata f. sp. avenae / Puccinia dispersa / Puccinia hordei*) y roya del tallo (*Puccinia graminis f. sp. tritici / Puccinia graminis Pers. f. sp. avenae / Puccinia graminis f. sp. secalis*) con el criterio de la escala propuesta por Cobb modificada por Peterson (Stubbs *et al.*, 1986) y la propuesta en Rust Scoring Guide (CIMMYT, 1986). La cosecha de grano se realizó el 7 de diciembre cuando los materiales evaluados se encontraban en madurez de cosecha utilizando una cosechadora experimental automotriz de micro parcela (Wintersteiger). Se analizó la variable rendimiento de grano mediante un ANAVA simple (análisis de variancia) y test de comparación de medias LSD de Fisher. Se trabajó con un nivel de significancia de *p* < 0.05 utilizando el software estadístico Infostat (Di Rienzo *et al.*, 2019).

Cuadro 1. Lista de variedades de cada cultivo que se utilizaron en el ensavo.

		ultivo que se utilizaron en el			
Variedad	Especie	Origen	Año de liberación		
ELENA INTA	AVENA	INTA EEA Bordenave	2021		
SOFIA INTA	AVENA	INTA EEA Bordenave	2021		
PIA INTA	AVENA	INTA EEA Bordenave	2022		
SUSANA INTA	AVENA	INTA EEA Bordenave	2022		
SCARLETT	CEB. CERVECERA	CARGILL S.A.	1999		
ANDREIA	CEB. CERVECERA	CERV.Y MALT. QUILMES	2011		
OVERTURE	CEB. CERVECERA	LIMAGRAIN EUROPE S.A.	2016		
MONTOYA	CEB. CERVECERA	ACKERMANN SAATZUCHT	2017		
LG SINFONIA	CEB. CERVECERA	LIMAGRAIN EUROPE S.A.	2018		
MILITZA INTA	CEB. CERVECERA	INTA EEA Bordenave	2020		
PATAGONICA INTA	CEB. CERVECERA	INTA EEA Bordenave	2021		
VERONICA INTA	CEB. CERVECERA	INTA EEA Bordenave	2023		
ALICIA INTA	CEB. FORRAJERA	INTA EEA Bordenave	2001		
TRINIDAD INTA	CEB. FORRAJERA	INTA EEA Bordenave	2018		
GUADALUPE INTA	CEB. FORRAJERA	INTA EEA Bordenave	2023		
INTA 7302	CEB. GRANÍFERA	CEB. GRANÍFERA INTA EEA Bordenave			
SILERA INTA	CEB. GRANÍFERA	GRANÍFERA INTA EEA Bordenave			
AINARA INTA	CEB. GRANÍFERA	INTA EEA Bordenave	2019		
DON TOMASO INTA	CENTENO	INTA EEA Bordenave	2021		
DIEGO INTA	CENTENO	INTA EEA Bordenave	2022		
BUCK PERLA	TRIGO FIDEO	BUCK Semillas	2019		
BUCK CUARZO	TRIGO FIDEO	BUCK Semillas	2020		
BARBOL INTA	TRITICALE	INTA EEA MARCOS JUÁREZ	2019		
BAGUETTE 501	TRIGO PAN	SYNGENTA AGRO SA	2012		
KLEIN NUTRIA	TRIGO PAN	CRIADERO KLEIN S. A.	2009		
KLEIN LIEBRE	TRIGO PAN	CRIADERO KLEIN S. A.	2013		
BUCK FULGOR	TRIGO PAN	BUCK Semillas	2020		
BUCK PRETAL	TRIGO PAN	BUCK Semillas	2022		
MS INTA B 817	TRIGO PAN	INTA-LDC Semillas	2017		
MS INTA 623 CL	TRIGO PAN	INTA-LDC Semillas	2023		
MS INTA 924	TRIGO PAN	INTA-LDC Semillas	2023		
	 		*		

Referencias: MS: MacroSeed. LDC: Louis Dreyfus Company. EEA: Estación Experimental Agropecuaria. INTA: Instituto Nacional de Tecnología Agropecuaria. CEB: cebada. LG: Limagrain. CL: resistente a los herbicidas imidazolinonas.

Resultados

Durante los primeros meses del año 2023, la ocurrencia de precipitaciones fue menores al promedio histórico sobre todo en el mes de abril, impidiendo recargar el perfil del suelo con normalidad. Al momento de la siembra la humedad superficial garantizó una buena implantación de las especies a evaluar en el ensayo. En el invierno se registraron 28 mm con un agosto sin precipitaciones. Gracias a esta humedad superficial el macollaje transcurrió con normalidad. Las lluvias retornaron de manera oportuna en la primera quincena de septiembre, con 41 mm, favoreciendo al cultivo para el inicio de la etapa crítica. Para los meses siguientes, octubre y noviembre, las precipitaciones nunca se normalizaron siempre con milimetrajes inferiores a la media histórica. Las lluvias de octubre beneficiaron al llenado de los granos ya que llegaron de manera tardía hacia la segunda quincena. El perfil nunca pudo recargarse y el ciclo de cultivo transcurrió sin efecto de la napa freática. Desde la siembra en junio hasta mediados del mes de noviembre en la cual los materiales entraron en madurez fisiológica y dejaron de consumir agua del perfil, se registraron aproximadamente 200 mm.

Cuadro 2. Variables climáticas registradas en la EEA M. Juárez durante el año 2023.

aulo 2. Valiable	3 CIIIII	ancas	regis	uaua	3 611 1		~ IVI. 1	Juaic	Z duit	arite e	ano	2023.
Variable\Mes	Е	F	М	Α	М	J	J	Α	S	0	N	D
Nº de heladas a 5 cm nivel del suelo (Año 2023)	0	0	0	0	0	11	9	8	3	1	0	0
Nº de heladas a 5 cm nivel del suelo (Histórico: 1987- 2023)	0	0	0	1	7	14	17	13	7	1	0	0
Temperatura media (°C) (Año 2023)	24.9	22.4	24.1	19.1	16.5	12.2	12	14	15.2	18.6	20.7	21.9
Temperatura media (°C) (Histórico: 1967- 2023)	24.2	22.9	21.3	17.7	14.3	10.8	10.4	12.1	14.6	18	20.9	23.3
Precipitaciones (mm) (Año 2023)	94	42	109	8	32	6	22	0	41	71	84	125
Precipitaciones (mm) (Histórico: 1960- 2023)	116	107	110	83	36	20	21	19	45	92	107	124
Nivel freático (Mtrs) (Año 2023)	4.38	4.72	5.11	5.39	5.55	5.66	5.70	5.70	5.70	5.70	5.51	5.33
Nivel freático (Mtrs) (Histórico: 1970-2023)	6.52	6.51	6.51	6.39	6.30	6.27	6.26	6.26	6.30	6.32	6.30	6.33

Fuente: estación meteorológica EEA Marcos Juárez. Tec. Agr. Andreucci Álvaro y Patricio Barrios. SIGA2.

Se registraron en total 32 heladas agronómicas observadas a la intemperie a 5 cm del nivel del suelo. Estos valores estuvieron muy por debajo del promedio histórico (47). No se produjeron fenómenos de heladas tempranas en marzo ni en abril. Tampoco en el mes de mayo. El primer evento de helada se registró el día 11 de junio, con 8 días con heladas consecutivas, pero sin causar daño a la biomasa por su buen estado de crecimiento en implantación. Julio, agosto y septiembre presentaron registros inferiores a la media no causando daño en el cultivo. El día 12 de octubre se presentó un frente frío causando una helada tardía pero de poca intensidad y duración, no causando daño a los materiales en evaluación ya que se encontraban en el período de inicio de llenado de granos, solo en caso muy puntuales se observó un leve daño en las espigas y en las estructuras reproductivas. El llenado de granos presentó valores favorables para este evento esperando muy buen peso de estos.

En el cuadro 3 se visualizan los datos fenológicos (espigazón-floración-panojamiento y madurez fisiológica), altura de planta y comportamiento sanitario de las variedades evaluadas en el ensayo.

Con respecto a la espigazón-floración-panojamiento, en general ocurrieron a fines del mes de septiembre hasta mediados del mes de octubre, en un período favorable para este

evento. Se encontró una amplia variabilidad entre las especies, pero dentro de la misma especie, en general, este evento resultó ser similar y parejo entre variedades, con algunas salvedades.

En las cebadas cerveceras y graníferas la floración fue pareja y ocurrió hacia finales del mes de septiembre. Las cebadas forrajeras presentaron mayor ciclo floreciendo a principio-mediados del mes de octubre. Las avenas panojaron a mediados del mes de octubre de manera similar entre las variedades. Los centenos espigaron los primeros días de octubre. El triticale BARBOL INTA espigó hacia fines de septiembre. En cuanto a los trigos, los materiales de trigo pan espigaron hacia finales del mes de septiembre y principios de octubre. En cuanto a las dos variedades utilizadas de trigo fideero, Buck PERLA espigó hacia fines de septiembre y BUCK CUARZO los primeros días de octubre.

Cuadro 3. Datos fenológicos, altura y sanidad de las variedades evaluadas.

Cuadro 3. Datos tenologicos, altura y sanidad de las variedades evaluadas.								
VARIEDAD	ESPECIE	E/F/P	MF	ALT	RA	RH	RT	
SOFIA INTA	Avena	19/10	24/11	85	0	80 S	40 S	
ELENA INTA	Avena	16/10	25/11	100	0	10 S	40 S	
SUSANA INTA	Avena	17/10	22/11	95	0	0	60 S	
PIA INTA	Avena	15/10	21/11	95	0	20 S	30 S	
ANDREIA	Cebada cervecera	24/9	4/11	65	0	0	0	
OVERTURE	Cebada cervecera	22/9	3/11	65	0	0	0	
MONTOYA	Cebada cervecera	26/9	9/11	65	0	0	0	
SINFONIA	Cebada cervecera	19/9	1/11	65	0	0	0	
MILITZA INTA	Cebada cervecera	23/9	2/11	65	0	0	0	
VERONICA INTA	Cebada cervecera	25/9	4/11	65	0	0	0	
PATAGONICA INTA	Cebada cervecera	20/9	5/11	65	0	0	0	
SCARLETT	Cebada cervecera	26/9	2/11	65	0	0	0	
TRINIDAD INTA	Cebada forrajera	15/10	14/11	70	0	0	0	
GUADALUPE INTA	Cebada forrajera	18/10	21/11	70	0	0	0	
ALICIA INTA	Cebada forrajera	4/10	13/11	85	0	0	0	
INTA 7302	Cebada granífera	17/9	1/11	60	0	0	0	
SILERA INTA	Cebada granífera	21/9	1/11	65	0	0	0	
AINARA INTA	Cebada granífera	21/9	1/11	65	0	0	0	
DIEGO INTA	Centeno	3/10	16/11	115	0	0	40 S	
DON TOMASO INTA	Centeno	4/10	18/11	115	0	0	60 S	
BUCK PERLA	Trigo fideo	24/9	11/11	70	0	0	0	
BUCK CUARZO	Trigo fideo	2/10	13/11	65	0	0	0	
BAGUETTE 501	Trigo pan	30/9	12/11	75	0	0	60 S	
BUCK FULGOR	Trigo pan	24/9	4/11	70	0	40 S	0	
BUCK PRETAL	Trigo pan	4/10	11/11	65	0	20 MR	0	
MS INTA 622 CL	Trigo pan	5/10	10/11	75	10 MR	0	0	
MS INTA B 817	Trigo pan	27/9	6/11	65	0	40 S	0	
MS INTA 924	Trigo pan	23/9	3/11	75	0	0	0	
KLEIN LIEBRE	Trigo pan	3/10	9/11	70	0	0	0	
KLEIN NUTRIA	Trigo pan	28/9	5/11	80	0	10 S	0	
BARBOL INTA	Triticale	28/9	10/11	85	20 MR	0	0	

Referencias: E/F/P: Espigazón-Floración-Panojamiento. Espigazón para centeno, trigo pan, trigo fideo y triticale. Panojamiento para las avenas. Floración: para las cebadas. Espigazón: definida como el estado en la cual el cincuenta por ciento de la espiga emerge por sobre la lígula de la hoja bandera en el cincuenta por ciento de la parcela (escala de Zadoks: DC55) (Zadoks et al., 1974). Floración es definida como el estado en la cual el cincuenta por ciento del órgano floral presenta anteras amarillas en el cincuenta por ciento de la parcela (escala de Zadoks: DC65). En cebada es cuando se visualizan las aristas por sobre la lígula de la hoja bandera (DC49). Panojamiento: el estado en la cual el cincuenta por ciento de la panoja emerge por sobre la lígula de la hoja bandera en el cincuenta por ciento de la parcela. MF: madurez fisiológica, (escala de Zadoks: DC90), definida

como el día en el que el cincuenta por ciento de los pedúnculos se encuentran amarillos. ALT: altura, en centímetros. RA: roya amarilla. RH: roya de la hoja. RT: roya del tallo.

En cuanto a la madurez fisiológica, todas las especies, maduraron durante el mes de noviembre, resultando todas las especies evaluadas recomendables para utilizarlas en planteos de doble cultivo en rotación.

La altura de las plantas se vio reducida por las condiciones ambientales, a excepción de las variedades de centeno y la avena ELENA INTA, que fueron las que tuvieron mayor altura del ensayo y sin presencia de vuelco. El resto de las especies presentaron menor altura, con valores entre 60 y 95 centímetros.

Con respecto al comportamiento sanitario las royas constituyen un grupo extenso de patógenos que afectan a la mayoría de los cereales invernales causando graves daños con pérdidas productivas en las variedades susceptibles. En avena se observó la presencia de roya de la hoja y roya del tallo, con variabilidad en resistencia entre los materiales evaluados. En cebada también se reportan roya amarilla, roya de la hoja y roya del tallo, pero las manchas foliares son las más importantes, como, mancha en red (*Drechslera teres*), mancha borrosa (*Bipolaris sorokiniana*) y mancha en red tipo spot (*Drechslera teres f. maculata*). Las condiciones predisponentes no permitieron el desarrollo de royas ni de manchas foliares, no observándose daños foliares de importancia. El centeno es atacado por roya de la hoja, roya amarilla (o estriada o lineal) y roya del tallo. En este caso, las variedades se vieron muy afectadas por roya del tallo. El trigo pan, trigo fideo y triticale, es atacado por roya del tallo, roya amarilla y roya de la hoja. En triticale se observó baja presencia de roya amarilla. En trigo fideo no se observaron enfermedades y en trigo pan, se visualizaron las tres royas pero en baja severidad con la salvedad de roya del tallo en BAGUETTE 501.

En el cuadro 4 se muestran las producciones de grano promedio obtenidas en el ensayo para los distintos materiales evaluados con el grado de significancia del análisis estadístico. En el ensayo se observan muy buenos rendimientos de grano, teniendo en cuenta las condiciones ambientales predisponentes, con un promedio de 3208 kg/ha. Se detectó diferencias significativas entre especies y entre variedades. Trigo pan y trigo fideo presentaron mayores rendimientos. Le siguieron en orden productivo las cebadas graníferas y cerveceras y el triticale BARBOL INTA. Luego, avena y cebada forrajera, y por último el centeno.

La variedad de trigo pan MS INTA 924 se destacó en rendimiento de grano por sobre el resto con valores destacables cercanos a los cinco mil kilos por hectárea. También BUCK PERLA variedad de trigo fideero presentó valores productivos muy buenos. Le siguieron en orden productivo KLEIN NUTRIA, BUCK FULGOR, KLEIN LIEBRE, BAGUETTE 501, MS INTA B 817, BUCK PRETAL y MS INTA 622 CL.

Estos resultados coinciden con los esperados ya que en el caso del trigo pan y trigo fideo, cebada cervecera y granífera el mejoramiento genético tiene como objetivo desarrollar genotipos de alto rendimiento de grano y estabilidad en su producción con una calidad diferenciada en el grano, ya sea para panificación o industria fideera o cervecera o alimentación animal, como son las variedades en estudio. Por el contrario, en avena, cebada forrajera, triticale y centeno, el trabajo del mejoramiento y selección de genotipos superiores se enfoca en desarrollar cultivares con alta capacidad de producción de forraje, rebrote, resistencia al pisoteo y calidad diferenciada en el forraje. Si bien también es importante la producción de granos, para estas especies no es el objetivo principal de los planes de mejoramiento.

Cuadro 4. Producciones de grano medio del ensayo (kg/ha) de las variedades

evaluadas y nivel de significancia del análisis estadístico.

Variedad	Media	Sig.		
MS INTA 924	5143	Α		
BUCK PERLA	4547	В		
KLEIN NUTRIA	4497	В		
BUCK FULGOR	4237	ВС		
KLEIN LIEBRE	4193	ВС		
BAGUETTE 501	4103	BCD		
MS INTA B 817	3937	CDE		
BUCK PRETAL	3837	CDE		
MS INTA 622 CL	3707	DEF		
AINARA INTA	3620	EF		
OVERTURE	3537	EFG		
BUCK CUARZO	3503	EFG		
SILERA INTA	3307	FGH		
SINFONIA	3300	FGH		
MILITZA INTA	3280	FGH		
SCARLETT	3267	FGH		
MONTOYA	3263	FGH		
VERONICA INTA	3117	GHI		
ALICIA INTA	3113	GHI		
BARBOL INTA	3010	HIJ		
PIA INTA	2793	IJ		
ANDREIA	2757	IJK		
PATAGONICA INTA	2587	JKL		
INTA 7302	2577	JKL		
ELENA INTA	2323	KLM		
SUSANA INTA	2180	LMN		
GUADALUPE INTA	2167	LMN		
SOFIA INTA	2073	MN		
TRINIDAD INTA	2057	MN		
DIEGO INTA	1843	NO		
DON TOMASO INTA	1570	0		
CV (%)	8,9			
LSD (5 %) (Kg/ha)	467,5			
Promedio (kg/ha)	Promedio (kg/ha) 3208			

Referencias: CV: coeficiente de variación. LSD: diferencia mínima significativa (p <= 0.05). Media: rendimiento de grano en kilogramos por hectárea. Sig.: significancia del análisis estadístico. Valores seguidos de letras diferentes difieren significativamente (p < 0.05).

Conclusiones

Debido a la amplia variabilidad existente en los cultivos invernales es importante evaluar y caracterizar el comportamiento agronómico y sanitario de las variedades de avena, trigo pan, trigo fideo, centeno y cebada presentes en el mercado, en cada campaña agrícola, con el objetivo de generar y actualizar información para dar una recomendación objetiva.

Bibliografía

- Di Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M., Robledo C.W. InfoStat. Versión 2019. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.
- Rust Scoring Guide. International Maize and Wheat Improvement Centrer (CIMMYT). Londres 40 Apdo. Postal 6-641, Mexico 06600, DF Mexico.
- SIGA2. SIGA2 Sistema de Información y Gestión Agrometeorológico. Estación Meteorológica Convencional EEA INTA Marcos Juárez. http://siga2.inta.gov.ar/en/datoshistoricos/
- Stubbs R.W, Prescott J.M., Saari E.E, Dubin H.J. 1986. Manual de metodología sobre las enfermedades de los cereales. CIMMYT. pp: 1-46.
- Zadoks J., Chang T. y Konzak C. 1974. A decimal code for the growth stage of cereals. Weed Res. 14: 415-421.