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Abstract 

Background  Forest ecosystems undergo significant transformations due to harvesting and climate fluctuations, 
emphasizing the critical role of seeding in natural regeneration and long-term structural preservation. Climate change 
further amplifies these dynamics, affecting phenology across species and regions. In Tierra del Fuego (Argentina), 
Nothofagus pumilio (lenga) forests represent the most important timber resource, and it is managed through different 
silvicultural strategies. This species demonstrates notable post-disturbance regeneration, yet seed fall exhibits signifi‑
cant variability, leading to variations in seed quality (e.g., viability). This study aims to assess fluctuations in N. pumilio 
seed quality, determine how it varies concerning forest management strategies, annual productivity, and the co-
occurrence of climatic phenomena including El Niño-Southern Oscillation (ENSO) and the Southern Annular Mode 
(SAM).

Results  Viable seeds represented 18.4% of the total, notably higher in unharvested than in managed areas. Con‑
versely, empty seeds were more prevalent in harvested areas (> 75%). Seed quality exhibited significant differences 
across silvicultural treatments, except for insect-predated seeds, which had similar proportions across all areas, 
though dispersed retention showed higher predation. When considering years with varying production levels, 
high-production years favoured full and viable seeds, particularly in unharvested forests and aggregated retention, 
while low-production years saw reduced viability across all treatments. Quadratic models revealed that viability 
increased with seed production, where unharvested forests achieved the highest values. Climate variability influenced 
seed proportions, where ENSO+/SAM+ promoting more full and viable seeds, while ENSO–/SAM+ favoured non-
predated seeds, especially in unharvested stands.

Conclusions  Seed quality varies among treatments and years with different levels of seeding. Variations in seed qual‑
ity, linked to climatic events, influence seed viability. Seed quality plays a critical role in forest regeneration, ensuring 
a seedling bank for harvested stands to face climate variability. These findings are relevant for forest management 
and ecosystem services, considering the increasing climate variability and extreme events. Understanding these influ‑
ences is crucial for Nothofagus pumilio forests’ sustainability and global forest adaptation strategies.
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Background
Forest ecosystems are intricately influenced by fluc-
tuations in climate, with seeding emerging as a pivotal 
process crucial for forest natural regeneration and the 
preservation of its structure over extended timeframes 
(Martinez Pastur et  al. 2016; Srur et  al. 2018; LaMon-
tagne et  al. 2020). Particularly, within the backdrop of 
climate change (IPCC 2022), which results in widespread 
and ongoing shifts in phenology across many taxa and 
within varied geographic regions (Cleland et  al. 2007). 
In this sense, the most important requirement is the 
production of viable seeds (Fenner 1985) for full density 
regeneration of disturbed areas.

In Tierra del Fuego, Argentina, Nothofagus pumilio 
(Poepp. & Endl.) Krasser (commonly named lenga) for-
ests are the main resource for timber in the sawmill 
industry (Martínez Pastur et  al. 2009) harvested and 
managed through different practices. It is a decidu-
ous species naturally distributed across the geographi-
cal range of Argentina and Chile from 33º to 56º SL 
(Donoso 1975; Veblen et  al. 1996). It evolves by giving 
rise to monospecific forests, ecosystems characterized 
by straightforward and predictable ecological dynamics 
driven by gap formation (Wardle 1970; Alan and Veblen 
1993). Growth phases development are described for 
N. pumilio across diverse site quality gradients (Richter 
and Frangi 1992; Martínez Pastur et al. 2004), where for-
est management strategies for these monospecific forests 
are predominantly based on the natural regeneration 
of harvested stands (Martínez Pastur et  al. 2019). Vari-
able retention harvesting, which combines economic and 
conservation objectives, has emerged as a prominent 
strategy in N. pumilio forests during the twenty-first 
century, incorporating different levels of retention, such 
as aggregate and dispersed retention (Martínez Pastur 
et al. 2009, 2019). It guarantees forest regeneration due to 
both pre-harvesting saplings existence development and 
continuous seed fall supply. In this case, the first years 
after harvesting critically influence seed fall and seedling 
recruitment for the restoration of impacted forest struc-
tures (Martínez Pastur et  al. 2011a,b; Rodríguez-Souilla 
et al. 2023a, b).

The species exhibits robust regeneration through seed 
germination following both natural and anthropogenic 
disturbances, such as harvesting. Notably, seed fall is 
characterized by intermittent occurrences and pro-
nounced inter-annual variations (Herrera et  al. 1998; 
Torres et  al. 2015), at both stand and landscape levels 
(Martínez Pastur et  al. 2013; Rodríguez-Souilla et  al. 
2023a). Consequently, seed fall emerges as a pivotal 
process to ensure the uninterrupted continuity of for-
est ecosystems (Rosenfeld et al. 2006; Cellini 2010; Mar-
tinez Pastur et  al. 2011a) and the safeguarding of their 

inherent genetic resources (Marchelli and Gallo 1999; 
Premoli and Kitzberger 2005). Seeding cycles have been 
well-documented for other Nothofagus forest species 
(Alley et  al. 1998; Monks and Kelly 2006). The intricate 
interplay of biological processes and environmental fac-
tors (Qiu et  al. 2023), including topography, soil condi-
tions, and forest structure (Övergaard et  al. 2007; Soler 
et  al. 2010; Bahamonde et  al. 2013), significantly affects 
annual seed production (Hernández et al. 1992; Hacket-
Pain et al. 2019; Koyejo et al. 2020; Kitayama et al. 2021). 
It also represents high differences according to retentions 
levels, as example of variable retention (Martínez Pastur 
et  al. 2019; Rodríguez-Souilla et  al. 2023a). Within the 
framework of cyclic seed production and variations influ-
enced by the impacts of forest harvesting, it is imperative 
to recognize that this process also involves fluctuations 
in the quality of the fruits (Toro Manríquez et al. 2016). 
These variations include the potential for fruits to be 
predated by bird and insect activities, display instances 
of absent endosperm (empty fruits), exhibit instances 
of embryo-only abortions, and demonstrate viability or 
not. The proportions of each of these scenarios can be 
variable (Ledgard and Cath 1983; Martinez Pastur et al. 
2008), primarily influenced by years of high and low seed 
production, along with climatic factors that alter tree 
physiology (Allen and Platt 1990) and in terms of the 
remaining forest structure after harvesting (Martinez 
Pastur et al. 2008). This process may represent a bottle-
neck that conditions the establishment of a new seed-
ling cohort (Hofgaard 1993). In the context of southern 
Patagonia forests, harvesting practices play a transforma-
tive role, altering light availability and soil moisture and 
consequently stimulating seedling growth (Martínez 
Pastur et al. 2009, 2011b). The residual canopy overstory 
assumes the role of a seed source and mitigates micro-
climatic shifts within managed stands (Chen et al. 1993, 
1995; Martínez Pastur et al. 2011a).

Moreover, the regional climate exerts substantial influ-
ence (Isagi et al. 1997; Liebhold et al. 2004; Bahamonde 
et  al. 2011), particularly during the stages of primordia 
development and flowering (McKee and Richards 1996; 
Martinez Pastur et  al. 2008; Torres et  al. 2015) shaping 
seed fall cycles and masting events (Piovesan and Adams 
2001; Schauber et al. 2002; Bogdziewicz et al. 2019; Qiu 
et al. 2023) within managed and unmanaged forests. The 
response of N. pumilio seed production and its quality to 
annual weather variations might be notable (Richardson 
et al. 2005) in Tierra del Fuego (Torres et al. 2015). This 
area is strongly affected by both the Atlantic and Pacific 
oceans, the Antarctic climate, the Andes (Berman et  al. 
2013; Garreaud et  al. 2013), and by large-scale climatic 
modes such as El Niño-Southern Oscillation (ENSO, 
with its phases La Niña and El Niño) and the Southern 



Page 3 of 10Rodríguez‑Souilla et al. Ecological Processes            (2024) 13:7 	

Annular Mode (SAM, with its positive and negative 
phases) (Silvestri and Vera 2009). Particularly, the syn-
ergy of ENSO and SAM has the potential to magnify 
climate fluctuations in South America (due to telecon-
nection phenomena), especially during spring and sum-
mer (Silvestri and Vera 2003; Fogt and Bromwich 2006, 
2011; Han et al. 2017; Lim et al. 2019). This intricate rela-
tionship underscores the importance of utilizing climatic 
indices such as ENSO and SAM to comprehend the 
close connections between climate and forest dynamics, 
particularly in regions with limited climate data access. 
Interestingly, this relationship between climatic events 
and seeding patterns has been demonstrated in New 
Zealand by Fletcher (2015), and Rodríguez Souilla et al. 
(2023b) employed these indices to assess regeneration 
height growth, while Srur et al. (2018) studied the estab-
lishment of the N. pumilio tree line using similar met-
rics. Although climatic factors have been associated with 
annual variations in seed production, scant attention has 
been given to the qualitative attributes of seeds. In this 
sense, frost days and heavy winds during flowering might 
harm seed production, as not favourable climate condi-
tions may act as lack of available resources during seed 
filling (Goszka and Snell 2020).

Thus, this study aims to explore factors governing the 
quality fluctuations of Nothofagus pumilio seeds. Par-
ticularly, we  determine how it varies concerning forest 
management strategies (comparing harvested and unhar-
vested forests), annual seed production (comparing years 
with differing levels), and the co-occurrence of climatic 
phenomena (comparing years with varying ENSO and 
SAM effects). Two main hypotheses are presented: (i) 
Seed quality shows discernible changes as a function of 
forest retention level and annual seed production; this is 
based on the premise that the generated microclimatic 
conditions (e.g., light exposure and precipitation) operate 
as fundamental thresholds capable of negatively influenc-
ing seed quality. (ii) Climatic events exert a substantial 
impact on seed quality, by modulating tree phenology 
in a way that varies according to the degree of retention 
applied.

Methods
Study area
The study was conducted in monospecific Nothofa-
gus pumilio forests located at Los Cerros ranch (54º 18ʹ 
SL, 67º 49ʹ WL) in the central area of Tierra del Fuego 
(Argentina). In these forests, variable retention harvest-
ing was implemented for timber purposes. This harvest-
ing method retains a percentage of the original forest 
structure by leaving aggregates (a circular patch of 30 m 
radius per ha) and dispersed dominant trees (10–15 
m2  ha−1 of basal area) evenly distributed between the 

aggregates (Martínez Pastur et al. 2009). The studied for-
ests have medium site quality (class II–III according to 
Martínez Pastur et al. 1997), with a dominant tree height 
of 22–24 m, which presented a range of 700–900 m3 ha−1 
of total over-bark volume and 70–80 m2  ha−1 of basal 
area before harvesting. This study belongs to the long-
term PEBANPA network (Parcelas de Ecología y Biodi-
versidad de Ambientes Naturales en Patagonia Austral, 
INTA-UNPA-CONICET, Argentina) (Peri et al. 2016).

Sampling design
Six stands (5–10  ha each) were selected for measure-
ments: three stands were harvested with variable reten-
tion, while three stands of undisturbed forests were 
considered controls (unharvested forests, PF). Within 
the harvested stands, sampling areas were randomly 
located covering three different conditions according to 
the retention levels (see Martínez Pastur et  al. 2011a): 
(i) within aggregate retention (AR), (ii) dispersed reten-
tion under the influence of AR (< 20  m from the aggre-
gate edges) (DRI), and (iii) dispersed retention outside 
the influence of AR (DR). A total of 72 sampling areas 
(4 forest treatments, 3 stands and controls, 6 replicates) 
were selected, and monitored annually between 2011 
and 2022. Forest structure corresponded to the same 
study area and time (2–17 YAH, equal to period studied) 
as Rodríguez-Souilla et al. (2023a, b) where forest treat-
ments showed significant differences not only between 
treatments (Table  1), but also along the period studied, 
where stand basal area averaged 71.4 m2 ha−1 for PF, 60.4 
m2 ha−1 for AR, 16.9 m2 ha−1 for DRI and 8.8 m2 ha−1 for 
DR, while crown cover averaged 86.6% for PF, 74.8% for 
AR, 48.9% for DRI and 40.2% for DR.

In the sampling areas, litter traps (50 cm long, 30 cm 
wide, 20  cm high hard plastic baskets) were randomly 
placed in control and harvested stands (4 treatments, 3 
areas, 6 replicates = 72 litter traps), which were kept in 
their fixed sites throughout the monitored years (col-
lecting the annual biomass production), protected with 
sticks around them to reduce the possibility of distur-
bance by livestock. Each trap was collected every May 
and manually sorted by seeds and leaves of N. pumilio 
trees; other components of the litter were discarded (e.g., 
small branches, fungi, epiphyte plants, miscellaneous, 
and other understory species). The methodology consid-
ered the outputs of Martínez Pastur et al. (2008), where 
most of the seeds fall between March and April and 90% 
of the leaves during April. Seeds were counted, and pro-
duction at each sampling area was quantified (SP, million 
ha−1 yr−1). SP was classified into years of high (> 12 mil-
lion ha−1 yr−1, n = 4), medium (4–12 million ha−1 yr−1, 
n = 4) and low production (< 4 million ha−1 yr−1, n = 4).
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The collected seeds were classified as: predated (by 
birds or insects) and non-predated (sound, undamaged). 
From the total number of sound seeds, a representa-
tive sample was taken from each sample (n = 25, total of 
12,389 seeds over period studied). The latter were differ-
entiated into empty (without endosperm) and full. Full 
ones were classified as: aborted (only embryo inside); 
dead (black or grey endosperm). Immediately, for full and 
sound seeds, tetrazolium test (2,3,5-triphenyltetrazolium 
chloride) was conducted over the full seeds to deter-
mine seed viability. For this, embryos were incubated for 
24  h in a water dilution of 0.1% solution in darkness at 
25  °C (Cuevas 2000) and then classified by viable seeds 
or non-viable seeds according to the enzymatic activity 
(Moore 1985). The number of seeds in each category was 
counted, and the proportions were calculated relative to 
the total.

Regional climate data
In addition, the years were characterized using climate 
indices for the fruiting period of each year (ENSO and 
SAM averages between September and April), obtained 
from the websites: weather.gov/fwd/indices; stateofthe-
ocean.osmc.noaa.gov/atm/sam.php. Each period was 
classified according to its prevalence of positive ( +) or 
negative (−) values of ENSO–SAM (ENSO+/SAM+ , 
ENSO+/SAM−, ENSO–/SAM+). ENSO−/SAM− situa-
tion was not registered between 2011 and 2022. Positive 
and negative ENSO values represent La Niña or El Niño 
events, for cold and warm phases at tropical latitudes, 

respectively. Positive SAM values represent westerly 
wind belt shifts southward or, analogously negative, con-
traction towards Antarctica.

Statistical analyses
For comparisons, different Kruskall–Wallis tests were 
performed because data did not meet the normality 
assumptions due to percentage values, using the Mann–
Whitney U test to compare mean values: (i) 7 analyses for 
each seed quality category (insects, birds, empty, viable, 
not viable, deaths, abortion) considering forest treat-
ments (PF, AR, DRI, DR) as main factors; (ii) 9 analyses 
for each seed quantity category (high, medium, low) and 
seed quality category (not predated, full, viable) consider-
ing forest treatments (PF, AR, DRI, DR) as main factors; 
(iii) 12 analyses for each seed quality category (not pre-
dated, full, viable) and forest treatment (PF, AR, DRI, DR) 
considering each ENSO–SAM combination (ENSO+/
SAM+ , ENSO+/SAM−, ENSO−/SAM+) as main fac-
tors. In addition, non-linear regression models (quadratic 
polynomials) were fit for relations between SP and % Via-
ble. Statistical analyses were performed using STAT​GRA​
PHICS Centurion XVI.I software (StatPoint Technologies 
Inc, US).

Results
The annual seed production exhibited variation between 
harvested and unharvested areas, with an average for the 
studied period of 9.35 million ha−1 yr−1 for PF, 7.16 mil-
lion ha−1 yr−1 for AR, 2.25 million ha−1 yr−1 for DRI, and 

Table 1  Kruskall–Wallis non-parametric test for annual seed production (Years with high, medium and low production) by treatment 
(PF, AR, DRI, DR) analysing: %Not predated, %Full, %Viable

Different letters show significant differences (ab ≠ a, b) by the Mann–Whitney U test (p < 0.05). H(p): Kruskall–Wallis statistic and associated probability. PF  primary 
unharvested forests, AR  aggregated retention, DRI  dispersed retention under the influence of AR, DR  dispersed retention without influence of AR

Amount Treatment %Not predated %Full %Viable

High
(> 12 million ha−1 yr−1)

PF 92.5 59.0 b 44.4 b

AR 90.2 55.9 b 36.6 b

DRI 87.8 44.4 a 24.4 a

DR 87.7 36.3 a 21.8 a

H (p) 2.22 (0.086) 13.96 (< 0.001) 16.38 (< 0.001)

Medium
(4–12 million ha−1 yr−1)

PF 91.1 47.4 b 23.4

AR 89.3 39.8 ab 21.1

DRI 87.1 32.4 a 17.5

DR 87.9 29.1 a 16.1

H (p) 0.84 (0.473) 7.36 (< 0.001) 1.81 (0.146)

Low
(< 4 million ha−1 yr−1)

PF 93.4 b 21.1 5.9

AR 84.9 ab 34.8 11.4

DRI 86.1 ab 33.7 5.8

DR 78.2 a 24.8 7.4

H (p) 4.93 (0.002) 2.68 (0.051) 2.13 (0.097)
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1.08 million ha−1 yr−1 for DR. Viable seeds constituted 
18.4% of the total seed population, with a notably higher 
proportion observed in PF and AR treatments. Con-
versely, empty seeds comprised the largest proportion 
(Fig. 1A), with higher proportions observed in harvested 
treatment areas. During the study period, the quality cat-
egories of seeds exhibited significant differences among 
the treatments, except for seeds predated by insects, 
where similar proportions were observed across all areas, 
although higher proportions were observed in DR.

When examining seed quality across years character-
ized by varying production levels (Table  1), significant 
differences were observed, particularly with regard to 
full and viable seeds during high production years, which 
exhibited greater prevalence in PF and AR. For empty 
seeds, harvested areas presented 55 to 75%, lower for 
DRI. Furthermore, there was a consistent reduction in 
the proportion of full and viable seeds in correspondence 
with annual production levels across all treatments, with 
the lowest viability observed in years characterized by 
low seed production. Nevertheless, the not predated cat-
egory displayed disparities only during years of low pro-
duction, where it was also more prominent in PF.

Further, detailing seed viability for the treatments, 
the quadratic models developed reveal a goodness of fit 
ranging from 65.4% to 80.2% (see Fig.  2). These mod-
els showed that maximum viability is associated with 

a higher seed production. Notably, substantial distinc-
tions are evident among treatments, particularly between 
harvested and unharvested areas. Specifically, AR, DRI, 
and DR treatments achieved comparable maximum 
proportion of viable seeds (39.1%, 33.0%, 37.4%, respec-
tively), regardless of variations in annual seed produc-
tion. In contrast, PF exhibited higher proportion of viable 
seeds, even in the context of maximum seed production 
(46.2%).

When climate variability was integrated into the analy-
ses (as presented in Fig.  3), the ENSO+/SAM+ combi-
nation exhibited elevated values and notable differences 
in full and viable seeds, particularly in PF and AR. Con-
versely, the ENSO−/SAM+ combination yielded higher 
proportions of non-predated seeds, with statistically sig-
nificant differences observed in all treatments except for 
PF. It is worth noting that all treatments displayed simi-
lar patterns of seed proportions in response to different 
combinations of climate events, with these being most 
pronounced in unharvested areas.

Discussion
Variability in seed quality across different treatments 
and climatic events provides insights into the ecology of 
Nothofagus pumilio forests, where silvicultural interven-
tions induce structural changes in the forest, particu-
larly in terms of basal area and overstory canopy cover. 

Fig. 1  A Average classification and percentages for the entire seed quality period studied. n = 12,389 seeds over period studied. B Percentage 
values of the final categories analyzed by Kruskall–Wallis nonparametric test, where different letters show significant differences by the Mann–
Whitney U test (p < 0.05). H(p): Kruskal–Wallis statistic and associated probability. PF  primary unharvested forests, AR  aggregated retention, 
DRI  dispersed retention under the influence of AR, DR  dispersed retention without influence of AR
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Inter-annual variation in seed production is an inherent 
feature of Nothofagus forests (Ledgard and Cath 1983; 
Allen and Platt 1990; Monks and Kelly 2006), closely 
linked to annual litter-fall production (Rodríguez-Souilla 
et al. 2023a). In this sense, previous studies have attrib-
uted these fluctuations to physiological responses of 
trees to disturbances and climatic events (Isagi et  al. 
1997; Liebhold et  al. 2004; Bahamonde et  al. 2011; Tor-
res et al. 2015). Our study focuses on how the quality of 
N. pumilio seeds varies in relation to annual production 
levels, silvicultural treatments, and the prevailing cli-
matic conditions during flowering and fruit formation. 
Notably, on average, one out of every two healthy seeds 
is empty (highest proportion), with this ratio varying sig-
nificantly according to high and low production years, a 
pattern partly explained by climatic events. For instance, 
in years of low seed production in unharvested forests 
(PF), only one out of every five seeds is full, and less than 
one out of every ten seeds is viable (Alley et  al. 1998). 
This is in agreement with Allen and Platt (1990), where 
years of high seed production are accompanied by an 
increase in viability percentage (Veblen et al. 1996; Cel-
lini 2010) up to a maximum level for Nothofagus solan-
dri (as shown in Fig. 2), as for Nothofagus menziesii too 
(Burrows and Allen 1991). This represents that during 
high seed production years in PF, there are approximately 
6.30 million ha−1 viable seeds, while in low production 
years, this value drops to 0.23 million ha−1 seeds (3.8%). 

Harvested areas consistently exhibit higher proportions 
of empty seeds and lower viability (Martinez Pastur 
et al. 2008; Cellini 2010), irrespective of annual seed pro-
duction levels. This situation is possibly due to genetic 
incompatibilities (Donohue et al. 2005), different micro-
climatic conditions created post harvesting (Martinez 
Pastur et  al. 2008; Cellini 2010) or the male-to-female 
flower ratio (Martinez Pastur et  al. 2008; Soler et  al. 
2010), despite the high dispersion capacity of N. pumilio 
pollen (Kelly et al. 2001). This could potentially act as a 
bottleneck for post-disturbance regeneration, depend-
ing on the availability of high seed production years for 
cohort establishment (Rodríguez-Souilla et  al. 2023b), 
and considering that these forests do not present a seed 
bank in the soil because seed viability is lost at the end of 
the growing season (Cuevas and Arroyo 1999). However, 
for our study site, annual seed input has proven sufficient 
to regenerate the forest to full density after logging (Rod-
ríguez-Souilla et  al. 2023b). In contrast, seed predation 
by insects and birds does not show variation according to 
annual seed production levels, except in harvested sited 
when ENSO+/SAM+ occurs, coinciding with conditions 
that lead to higher seed numbers and consequently a 
major food offer and increased annual growth of saplings 
(Rodríguez-Souilla et al. 2023b).

Climate variability appears to influence tree phenol-
ogy, which, in turn, affects seed production (Richard-
son et al. 2005; Martínez Pastur et al. 2008; Allen et al. 

Fig. 2  Quadratic polynomial fitted to each treatment with a coefficient of determination (r2) and significance level (***  P < 0.001). PF  primary 
unharvested forests, AR  aggregated retention, DRI  dispersed retention under the influence of AR, DR  dispersed retention without influence of AR. 
Each value represents the average number of seeds per year (million ha−1 yr−1) versus its corresponding viability (%) per treatment
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2014). This suggests that synchronized flowering stages 
can result in a greater proportion of full and viable 
seeds (Koenig et al. 2015), even more so, in years of high 
seed production. While Nothofagus forests have been 
extensively studied in relation to climate, few studies 
in Tierra del Fuego (Argentina) have explored the con-
nection between climate and the dynamics of native 
forests, including establishment, growth, mortality, and 
site quality variation (Torres et  al. 2015; Rodríguez-
Catón and Villalba 2018; Srur et  al. 2018; Rodríguez-
Souilla et al. 2023b). Positive and negative fluctuations 
in ENSO and SAM have discernible effects on local 
temperatures and precipitation (Rodríguez-Souilla et al. 
2023b), acting as limiting factors in forest development 

for Nothofagus pumilio, as evidenced in our study. The 
influence of ENSO and SAM on physiological processes 
in different forests has been documented (Schauber 
et al. 2002; Hadad et al. 2021), with their effects being 
modified by the seasonality of temperature and rain-
fall in different regions. Moreover, the ongoing climate 
change process (IPCC 2022) and how climatic events, 
such as extreme ENSO or SAM, affect the region, along 
with the increasing frequency and persistence of these 
events (Rodríguez-Souilla et  al. 2023b), must be taken 
into account. In our study, warmer springs (ENSO+/
SAM+) tend to result in more consistent and abundant 
viable seeds, result of abundant flowering, enhancing 
pollination success (Allen and Platt 1990). Differences 
in magnitude and significance were registered for har-
vested and unharvested areas, denoting differences in 
their climatic resilience (Thompson et  al. 2009). This, 
in turn, contributes to higher seed production, par-
ticularly during the critical phases of floral primordial 
development (Schauber et  al. 2002; Martinez Pastur 
et  al. 2007), provided that stress thresholds disrupting 
flowering and fruit formation are not reached: (i) frost 
damaged flowers may be incapable of being fertilized, 
(ii) low temperatures can negatively affect pollen viabil-
ity and pollen tube growth, (iii) pollinator activity may 
be reduced in low temperatures (Tremblay et al. 2002; 
Qiu et  al 2023), and (iv) strong winds can cause dam-
age and massive fall of flowers or newly formed seeds. 
Furthermore, warmer spring and summer temperatures 
promote increased net carbon availability (Allen and 
Platt 1990; Richardson et al. 2005). This does not mean 
that climatic conditions will predict with absolute cer-
tainty the quality of seeds that will result in the seed fall 
quantity. Then, the need for individuals to recover from 
a year of high seed production and consequently high 
carbon demand must be taken into account (Allen and 
Platt 1990; Silvertown 2008). Furthermore, it is essen-
tial to recognize that the increased variability in climate 
and the occurrence of extreme events, which individu-
als are not accustomed to, can have adverse effects on 
the regular growth of trees, particularly concerning to 
seed viability (Goszka and Snell 2020). Besides, vari-
ous ecological processes, including regeneration at the 
altitudinal limit of N. pumilio and ring width variations 
in Araucaria araucana (Hadad and Roig 2016), have 
been associated with positive SAM phases (in conso-
nance with high variability in climate and occurrence 
of extreme events) in northern Patagonia (Srur et  al. 
2018). These processes underscore how higher tem-
peratures, coupled with positive ENSO events, facili-
tate seedling establishment and growth at tree lines, 
ultimately driving maximum seed production (Fletcher 
2015). Torres et  al. (2015) also identified connections 

Fig. 3  Kruskall–Wallis non-parametric test for seed quality 
(%Not predated, %Full, %Viable) for each treatment (PF  primary 
unharvested forests, AR  aggregated retention, DRI  dispersed retention 
under the influence of AR, DR  dispersed retention without influence 
of AR) analysing ENSO/SAM combination occurrence. Different letters 
show significant differences (ab ≠ a, b) by the Mann–Whitney U test 
(p < 0.05)
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between climatic variables and annual seed produc-
tion in Tierra del Fuego forests, suggesting that these 
climate events may shape the observed patterns, par-
ticularly rainfalls. The implications of these findings 
are significant for forest management and ecosystem 
service maintenance, providing valuable insights into 
forest dynamics related to seeding, a crucial process 
for forest regeneration (Rodríguez-Souilla et al. 2023b), 
especially in the context of high climate variability and 
forest vulnerability to disturbances.

Conclusions
Forest management of Nothofagus pumilio forests 
should consider not only annual seed production but 
also the effects of climate events on their quality, par-
ticularly viability. Seed quality exhibited differences 
across treatments, with empty seeds being more prev-
alent in harvested areas. The variation in seed quality 
observed, particularly during high and low production 
years, suggests that climatic events play a pivotal role 
in determining the viability of seeds. Furthermore, our 
findings highlight the significant influence of climatic 
events (ENSO and SAM), on seed production and 
quality. ENSO+/SAM+ combination tended to result 
in more consistent and abundant viable seeds, reflect-
ing the importance of favourable climatic conditions 
during floral development and pollination. Our work 
emphasizes the importance of assessing seed qual-
ity in studying regeneration of N. pumilio forests. This 
aspect is crucial to ensuring the success of interven-
tions, as it determines the creation of a seedling bank 
that will regenerate the harvested stands in a context 
of high climate variability and ongoing climate change. 
The implications of our findings extend beyond eco-
logical understanding. They have direct relevance to 
forest management practices and the maintenance of 
ecosystem services. As climate variability increases and 
extreme events become more frequent, understand-
ing how these factors influence seed quality is essential 
for ensuring the sustainability of N. pumilio forests. 
This knowledge can inform broader discussions about 
climate resilience and adaptation strategies for forests 
worldwide.
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