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Abstract: Mycorrhizal fungus diversity is an ecosystem health indicator, and thus, the appreciation
of the aboveground as well as the belowground biota, such as fungi associated with natural and
managed ecosystems, is essential to provide sustainable products and suggestions to farmers. Less
is known about the totally arbuscular mycorrhizal fungi (AMF) and fungal endophytes useful to
agroecology, which are environment friendly microbial biofertilizers to mitigate the complications of
conventional farming. Specific AMF are found in most covers; grassy ecosystems are increasingly
investigated through their exclusive fungal species that improve sustainable cultivation. Different
grazed pastures, forages, and their diversity are important objects of study either in economic
or ecological scope. Based on recent reports, the occurrence of AMF in grasslands and pastures is
significant, supporting more diverse AMF than native forests. Therefore, we show current information
on these topics. We conducted a Web of Science search of published articles on AMF, pastures, and
grasslands and analyzed them. The results confirmed the important role of pH as the driver of AMF
diversity distribution between the grassy ecosystems from Argentina and Brazil. In grasslands, the
main family represented was Glomeraceae, while pastures maintain predominantly Acaulosporaceae.
Brazilian grasslands and pastures presented four times the AMF richness of those from Argentina.

Keywords: arbuscular mycorrhizal fungi; agroecology; pastures; grasslands; cattle raising; Argentina;
Brazil

1. Introduction

Plants and soils are increasingly appreciated along the different terrestrial ecosys-
tems as they support several ecosystem services for high quality human life. However,
anthropogenic activities have introduced fertilizers and pesticides in the fields, modifying
the biota in the different South American ecosystems [1]. The vast majority of natural
ecosystems and agroecosystems are made up of high percentages of plants that form myc-
orrhizal symbioses. Arbuscular mycorrhizas (AMs) are the ones that predominate in these
ecosystems and they are formed by arbuscular mycorrhizal fungi (AMF, Glomeromycota)
that colonize the roots and absorption plant’s organs, such as rhizoids [1–3]. In South
America, plants with great economic importance for Argentina and Chile, wine-producing
countries [4], such as vineyards, increasingly cultivated, as well as Ilex paraguariensis, “yerba
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mate”, native to South America, are associated with AMF [5]. Crops such as soybeans
are also increasingly cultivated, as near half of the world’s soybean production arises
from South America [6], and research on soybeans carried out in Argentina showed its
colonization by AMF [7–9]. In Argentina, Faggioli et al. [10] also showed the high AMF
diversity under soybean fields. As agricultural soils can benefit from microbial inoculants
and biofertilizers, plants with AMF associations can obtain sufficient supplies of phospho-
rus from soils in sustainable crop production [11]. Additionally, other components are the
fungal endophytes, which provide nutrients (such as phosphorus, iron, zinc, copper, etc.)
from the soil to the plant and also protect the host. [12]. These endophytes can be found
in various parts of the plant, such as branches, roots, and leaves [13]; however, they are
not commonly detected in tropical grasses. For instance, Brachiaria spp. from different
pastures in Brazil presented 28 taxa of stem-associated endophytic fungi, 18% of isolates
belonging to 4 of the most common species [11]. As Tyagi et al. [13] pointed out in their
review, these endophytes can be the answer to palliate the conventional farming practices
as these are environment friendly microbial biofertilizers that colonize the plant without
damage. Endophytes rather help in increasing the growth of plants and also help in abiotic
and biotic stress tolerance in host plants. Natural grasslands (hereafter grasslands) are
ecosystems where the herbaceous vegetation type prevails, including grasses and other
grass-like vegetation instead of pastures, are the grasslands managed by means of cutting
or cattle-grazing [14]. Globally, the great terrestrial ecosystem’s area is grasslands, covering
ca. 40% of the Earth’s surface [15]; they are found on all continents except for Antarctica, in
a wide range of climates, and on a wide range of soil types. Furthermore, grasslands are
overgrazed, and, consequently, soil erosion and weed encroachment are common ecological
problems affecting them. Thus, many of the world grasslands are ecosystems functionally
impoverished and present degraded conditions [16]. Additionally, pastures are the basic
worldwide resources of feed for livestock, and in humid zones, mixed farming systems of
managed grasslands supply over 90% of the milk, 70% of the sheep and goat meat, and
35% of the beef. Currently, it is estimated that 26% of the terrestrial surface of the Earth and
70% of the world agricultural lands are covered by grassy ecosystems or grasslands sensu
lato (i.e., natural grasslands and pastures), providing support to over 800 million people.
Pastures are the principal source for livestock feed, a wildlife habitat, an environmental
protection tool, an important in situ conservation of carbon storage, water, and plant genetic
resources. Around the world, grasslands and pastures are threatened ecosystems; they are
at degradation risk due to the rapid population increase, together with the climate change
effects, which have negatively pressured them, affecting more strongly arid and semi-arid
environments [17]. Moreover, grasslands and pastures are important to people due to the
fact that they are important providers of different ecosystem services (ESs) [14]. Biodiver-
sity is an important factor involved in the ecosystems functioning, and consequently, an
essential link in the provision of ESs [18,19]. Health and quality of soil ecosystems are
directly involved in agronomical practices, and soil microbial communities play an impor-
tant role in soil sustainability [20]. Among soil microorganisms, AMF and bacteria [21] are
proposed as the key organisms for soil sustainability due to their capability to promote soil
biodiversity and functioning [22]. Furthermore, AMF are a key functional group of the soil
biota involved in agricultural grassland’s management and productivity with potential
capabilities for sustainable production by ESs [23]. However, the effects of herbivory on
AMF are controversial due to their responses to grazing are context-dependent, directly
related to the carbon flux within the plant–AMF–soil system, to the intensity and extent of
grazing over time, to the mycorrhizal dependence of the grazed plant’s species, and to the
adaptation of AMF and their host plants to grazing [24–28].

In general, the natural grasslands of South America have grown on soils with low
fertility [29], except for the Pampas of Argentina, southern Chile, and the southern portion
of Uruguay. Furthermore, the environmental features of most of the South American
regions occupied by grasslands are highly vulnerable to excessive use [30]. As early as
1993, it had been warned that the “extent of the degradation process of these savannas
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could be larger than in other savannas of the world. Their fragility would reflect also less
resilience due to the weakness of the natural resources and the abusive utilization” [31].
This erosive problem has also been observed by Modernel et al. [32], who emphasized the
negative effect that it entails for the provision of ESs of these biomes. Globally, six major
areas of livestock concentration were observed, namely the Central and Eastern United
States, Central America, Western and Central Europe, India and China, and South America,
South Brazil, and Northern Argentina [33]. Moreover, native grasslands in the Pampas
and Campos in Argentina, Brazil, and Uruguay in southern South America have produced
beef cattle since the 16th century. These grasslands provide feed for 43 million cattle heads
and 14 million sheep, with small external input additions. In a meta-analysis conducted
using published and secondary data between 1945 and 2015, Modernel et al. [32] have
examined the ESs provision and its relationship with land use changes by these grasslands
that are considered biodiversity hotspots. In the Pampas and Campos, they have registered
4000 native plant species, 300 bird species, 29 mammal species, 49 reptile species, and 35
amphibian species inhabiting the biome. However, and surprisingly, fungi, and especially
AMF, have not been considered in that meta-analysis despite the biodiversity survey being
carried out exhaustively.

Data from the Southern Hemisphere are scantly represented among global biodiversity
studies; particularly, fungal and mycorrhizal fungi and their symbioses are underrepre-
sented [34,35]. This biodiversity information lacks in contradiction to the high biodiversity
of South American hotspots and ecosystems still understudied and which need to be con-
served [36]. In addition to the above, when the scientific production of South American
mycorrhizal biodiversity was analyzed, Brazil had the higher number of publications on
those issues, followed by Argentina [37]. These countries represented the higher number of
available data on mycorrhizal associations and their biodiversity to be used as data sources.
Argentina and Brazil are the South American countries that present more publications
related to plant and mycorrhizal associations [37,38] and the main number of studies also in
AMF diversity [39]. However, the relationship between AMF, cattle raising, and grasslands
remains unexplored.

1.1. Grasslands and Pastures

The vegetation types with prevalence of Poaceae grasses and other grass-like vegeta-
tion are considered natural grasslands or grasslands, and the those managed for cutting
or cattle-grazing are named pastures. Grasslands present great ecological, economic, and
social values [16] but continue to receive limited scientific attention. The microbiota associ-
ated with grassland vegetation was also under-investigated in the past time [40]; however,
during the last five years, the interest in studying these plant–microbe interactions has
been promoted [41–46]. Among the microbiota associated with the grassland plant species,
the AMFs represent important components interconnecting soil and plants through the
hyphal networks and secreted substances, such as glomalin, useful to the restoration and
sustainability of these for these valuable ecosystems at risk [47].

Earlier, Modernel et al. [32] and recently Bengtsson et al. [48] listed those ESs provided
by natural and semi-natural grasslands, from South America, Africa, and Europe such
as those related to soil organic carbon stock, climate change mitigation, water provision,
nutrient cycling and erosion control, including fodder production, cultural, connected
to livestock production, and population-based regulating services (e.g., pollination and
biological control) which are connected to biodiversity. They also showed that these
grasslands can supply additional non-agricultural services, such as water supply and flow
regulation, carbon storage, erosion control, climate mitigation, and cultural ESs.

Three major types of grasslands can be distinguished within agricultural production
systems: natural, semi-natural, and improved grasslands [49,50]. Then, Franzluebbers
et al. [51] reviewed the agronomic and environmental impacts of pastures and crop ro-
tations in South America, showing the benefits of pastures grown before crops, such as
enhancement of soil organic matter in the soil surface with perennial pastures, improve-
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ment in water infiltration and water quality, and synergies between crop and livestock
systems. Thus, more studies are needed on the management of grasslands for fodder and
meat production. Nowadays, pastures have obtained increasing importance worldwide
due to the need of sustainable management for increasing their productivity. There is also
much interest to improve grassland resilience under environmental alterations [52]. Several
reports showed that pasture species were highly mycorrhizal dependent [53]. Moreover,
spore density can be low in intensively managed pastures, but fungal richness can be high
in semi-natural pastures compared to native grasslands and forests, which are usually
used as a reference of pristine ecosystems. In this work, we show significant reports from
Argentina and Brazil and explore them.

1.2. Mycorrhizal Symbioses in Temperate Grasslands and Pastures

Higher species richness (42 AMF species) was recovered from seminatural subtropical
pastures in Portugal [54]. However, only two species were shared between subtropical and
tropical pastures. Notably, Scutellospora calospora was a common species in pastures. In gen-
eral, other species are frequently found preferentially in native forests, such as Acaulospora
lacunosa [54], Acaulospora spinosa, Ambispora brasiliensis, Dentiscutata heterogama [55]. Un-
der intensively managed pastures, some AMF, such as Claroideoglomeraceae, dominated
soils [54]. Pastures grazed by domesticated livestock and products from cows are crucial
for milk and cheese production [56].

Grasslands in a good state of conservation present a high abundance and diversity of
Glomeromycota species [57,58]) capable of contributing to great ecological and environ-
mental values due to their multiple attributes and functional traits. Grassland ecosystems,
where many late successional native plant species are highly dependent on symbiotic
interactions with AMF [53], are especially influenced by AM fungal associations. Although
AMF have been more extensively studied in temperate grasslands compared to any other
biomes [59], “temperate grassland” is a broad classification that encompasses many dif-
ferent ecosystem types, such as tallgrass prairies or shortgrass prairies with distinct plant
and fungal communities that may respond differently to perturbations. The C for nutri-
ent exchange dynamics between plant hosts and AMF has been well described in highly
controlled systems (e.g., laboratory, greenhouse, agronomic blocs) [60–62] and in field
experiments focused on one or two grass species [63–66]. However, monoculture or species-
specific responses are not readily scaled to diverse grasslands. Due to their importance
in plant-nutrient cycling and the differential nutrient distribution patterns between AMF
taxa [67], an ecosystem-scale understanding of the drivers of AMF distribution patterns is
needed [68].

This work reviewed the impact of cattle raising on soil propagule multiplication and
the diversity of the indigenous AMF species by comparing the AMF diversity in South
American grasslands and pastures with special focus in Argentina and Brazil, where only
1% to 10% of these areas are protected [69]. In this review, we focused on the natural
and agronomic grassy ecosystems, with economic importance for the different regions of
South America, with details for Argentina and Brazil, two South American countries with
the highest number of publications in AMF diversity [37,39,70], and their associations in
grasslands and pastures [71,72].

2. Materials and Methods

During March to October 2022, a Web of Science search of articles published through
these dates was conducted based on selected papers included in the database focusing on
AMF diversity, grasslands, and pastures. The search was focused in Argentina and Brazil
in South America. Six different sets of keywords were used in order to increase the number
of publications obtained: “arbuscular mycorrhizal fungi grassland Brazil OR arbuscular
mycorrhizal fungi pasture Brazil OR arbuscular mycorrhizal fungi grassland Argentina
OR arbuscular mycorrhizal fungi pasture Argentina OR hongos micorrícicos arbusculares
pastizales Argentina OR hongos micorrícicos arbusculares pasturas Argentina”.
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Each publication was revised, and those that did not conduct a direct analysis of
AMF in Argentina and Brazil grasslands and pastures were excluded from the dataset. A
database was carried out, including AMF species, grassland ecosystem type (grassland,
pasture), citation, country (Argentina, Brazil), coordinates (UTM system), biodiversity
variables measured (spore density, spore abundance, richness), and soil-climatic variables
(precipitations, Koopen climatic type, pH, phosphorous concentration, and soil type).

The data obtained were analyzed using non-metric multidimensional scaling (NMDS)
to visualize and assess patterns of dissimilarity between pastures and grasslands based on
their AMF species composition. Then, similarity analyses (ANOSIM) were performed to
test the hypothesis of differences in species composition between pastures and grasslands.
The ANOSIM analysis applied was based on a Jaccard dissimilarity matrix using species
presence/absence data; p values were obtained from 999 permutations. To discriminate the
differences by country (Argentina vs. Brazil) and by grassy ecosystem type (grassland vs.
pasture), a cluster analysis was carried out. Additionally, a Spearman correlation analysis
was performed between species richness and soil-climatic variables. Further, all statistical
analyses were performed using the R statistical software (vegan and BiodiversityR inversion
3.3.2 packages).

3. Results and Discussion
3.1. Argentina

Sustainable production is increasing worldwide [73]. Sustainable agroecosystems in
Argentina are also increasingly established. Additionally, sustainable wine production
is more studied and the sustainability of traditional management in different vineyard
systems in Berisso, Buenos Aires province, Argentina was evaluated [74], comparing the
conventional management to organic; however, they did not evaluate the mycorrhizal
associations in those fields.

In Argentina, AMF diversity in grassy ecosystems (Figure 1) was registered in very
different biogeographic areas. Furthermore, grasslands were widespread along a wide
range of bioclimatic regions, including megathermic grass communities in Chaco and
Mesopotamia, mesothermic in Espinal, Monte, Pampa, and Prepuna, but also microther-
mic in Patagonia and Puna, whereas most of pastures studied were placed in the Pampa
region [75], occupied by mesothermic grasses, and only one pasture was reported in the
Espinal (Figure 1). In addition, in these mega-, meso-, and microthermic grass communities,
the proportion of grass species changes in their photosynthetic pathways (C3 or C4), with
the higher number of C4 grass species inhabiting arid and semiarid and hot areas with a re-
placement with C3 species accompanying the temperature decrease and elevation increase
in microthermic grass communities [75]. Moreover, these mesothermic and microthermic
grasses are included in the temperate grasslands, such as Pampas and southern Campos
(Figure 1) [75], with co-dominance of C3 and C4 grasses accompanied by scant shrublands
and forests; these gassy systems are also considered as temperate subhumid grasslands [76]
or the Río de la Plata grasslands because their continuous plain extensions are surrounding
the estuary of the “Río de la Plata” along eastern Argentina, Uruguay, and southern Brazil;
see [76] and references therein. Although Pampas and southern Campos show similar
physiognomic and vegetation uniformity, it is possible to separate these temperate grass-
lands biogeographically into vegetation units such as Rolling Pampa, Mesopotamic Pampa,
Flat Inland Pampa, West Inland Pampa, Flooding Pampa, and Austral Pampa [69,77]) and
Northern Campos and Southern Campos [78]. Megathermic grasses in Chaco grasslands
are characteristic [75] of the Argentine Dry Chaco that involved the 69% of the total South
American Chaco region, together with the dry forest and savannas. In this region with
annual rainfall highly variable, natural grasslands are under a strong degradation process,
probably due to the main cattle grazing production system in this region based on seden-
tary cattle managing results in overgrazing; in addition, only 12% of the region’s area is
protected [79].
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Figure 1. AMF distribution in Argentinean and Brazilian grasslands and pastures among South
American grassy environments. Reference: The map’s marked points indicate the data obtained from
the reviewed bibliographic citations, and the sizes of the points are correlated with the number of
citations found for each site.

Moreover, C3 or C4 synthetic pathways are correlated to the adaptation to and dis-
tribution of grasses at different environmental conditions; thus, megathermic C4 grasses
are able to settled in more hot and dry environments than microthermic C3, which grow
in cold environments and highlands or montane grasslands, and C3 grasses replace C4
with elevation increments [75–77,79–81]. Additionally, C3 or C4 photosynthetic pathways
in Poaceae are correlated to the degree of dependence for the growth of the grass species
on their AMF fungal symbiont or mycotrophy; thus, C3 grasses are in general facultative
mycotrophs and C4 hosts are mainly obligate mycotrophs [82–84]. In Argentinean grass-
lands, AMF diversity was negatively affected by elevation in Puna grasslands, although
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grass AMF colonization was related more to the photosynthetic pathways of grasses than
to the elevation increase [71,85–87]. In Chaco highlands, AMF diversity was related to
many AMF taxa differentially associated with C3 or C4 grasses [71,88]. In microthermic
C3 grasslands of the Patagonia steppe, AMF diversity was affected by cattle racing, thus
AMF spore abundance decreased under intense grazing [89]; in the southern microthermic
grasses in Tierra del Fuego, sheep grazing further accompanied a low abundance of spores
and richness of AMF [90]. Moreover, AMF colonization in C3 grasses in the southern Monte
region was also negatively influenced by experimental defoliation [91] at the field level.

Among Argentinean pastures, they were mainly encompassed in the Pampa region,
with few exceptions for Espinal pastures of Eragrostis curvula (Schrad.) Nees. (Figure 1).
Along communities of mesothermic grasses of the Pampa region, the AMF family’s diversity
and root colonization have been shown to be good indicators of soil pH and exchangeable
Na features and of management conditions such as herbicide use [92]. In these pastures,
Glomeraceae was the most abundant family under cattle grazing [72], and similar results
have been registered in Tierra del Fuego natural grasslands used as sheep pastures [90] and
for C4 E. curvula monospecific pasture in the Espinal region with prevalence of rhizophilic
AMF guild followed by ancestral and a few edaphophilic species [93,94].

From 1997 to 2023, AM symbiosis and AMF diversity were studied in Argentinean
grasslands and pastures. During the last decade, twenty-five AMF species were registered
in eleven publications (Table 1) belonging to genera Acaulospora, Ambispora, Dentiscutata, En-
trophospora, Funneliformis, Gigaspora, Glomus, Pacispora, Rhizoglomus, Rhizophagus, Sclerocystis,
Scutellospora, and Septoglomus. Along the same period and similar scientific publications
from these Brazilian ecosystems, the AMF richness registered was four times higher than
in Argentinean systems (Table 1). Although in the last ten years, most of the AMF genera
were found in ecosystems from both countries ecosystems, some were exclusively reported
in Brazil, such as Archaeospora, Cetraspora, Diversispora, Fuscutata, Oehlia, Paraglomus, and
Sieverdingia (Table 1). Thus, Brazilian grasslands and pastures presented in this decade
four times the AMF richness of those from Argentinean ecosystems; some taxa found
in these ecosystems are illustrated belonging to the most represented Glomeromycota
families, such as Acaulosporaceae (Figure 2), Ambisporaceae (Figure 3), Diversisporaceae
(Figure 4), Entrophosporaceae (Figure 5), Gigasporaceae (Figure 6), Glomeraceae (Figure 7),
and Scutellosporaceae (Figure 8).
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Figure 7. Glomeraceae recorded in grasslands and pastures of Argentina and Brazil. AMF spores of 

Funneliformmis mosseae (a), Glomus fuegianum (b–d), Rhizoglomus microaggregatus (e–g), Rhizophagus 

intraradices (h–j), Sclerocystis rubiformis (k–m), S. sinuosa (n,o), Septoglomus constrictum (p). 
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Figure 7. Glomeraceae recorded in grasslands and pastures of Argentina and Brazil. AMF spores of
Funneliformmis mosseae (a), Glomus fuegianum (b–d), Rhizoglomus microaggregatus (e–g), Rhizophagus
intraradices (h–j), Sclerocystis rubiformis (k–m), S. sinuosa (n,o), Septoglomus constrictum (p).
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inner spore layers (d,e); auxiliary cells from Scutellosporaceae (f).

3.2. Brazil

In Brazil, AMF diversity was recorded along diverse all-grassy ecosystems (Figure 1);
thus, temperate subhumid grasslands covered the southern Brazil in the southern Campos
region, and there are also tropical and subtropical grasslands [75,76]. However, these were
distributed only along megathermic grass communities and are considered tropical grass
ecosystems; thus, C4 grasses prevail among them [75]. Therefore, throughout these tropical
and subtropical grasslands, central savanna and Cerrado grasslands, there is vegetation
covering large extensions [69,76], mainly by obligate mycotrophic C4 grasses [82–84] with
a high probability of being associated with AMF. Additionally, permanent tropical pastures
also involved C4 grasses, such as Brachiaria sp., that are commonly established in Brazil;
those pastures allocate frequent AMF species, like Acaulospora mellea, Claroideoglomus
etunicatum, Dentiscutata heterogama, Funneliformis geosporus, and Scutellospora calospora [95].

Exclusive AMF species are generally found in different plant communities such as in
the pastures of Amazonia, Brazil, or under forest. Most of the species included Acaulospo-
raceae (Acaulospora) (Figure 2), Diversisporaceae (Diversispora), Gigasporaceae (Gigaspora,
Scutellospora) (Figures 4 and 5), Glomeraceae (Glomus and Rhizophagus) (Figure 7), and
Scutellospora (Figure 8) (Table 1). The species richness of Acaulosporaceae was higher in
pastures compared to forest, while the species of Glomeraceae and Gigasporaceae were in
higher numbers in forest [55].

Table 1. Arbuscular mycorrhizal fungi (AMF) species from grassy ecosystems in South America
during the last decade.

AMF Species Vegetation Type Reference Country

Acaulospora bireticulata Grassland; Pasture [96,97] Argentina
Acaulospora cavernata Pasture [97]
Acaulospora excavata Grassland; Pasture [91,98]

Acaulospora laevis Grassland; Pasture [91,96,99,100]
Acaulospora scrobiculata Grassland; Pasture [92,97–99]

Acaulospora spinosa Grassland; Pasture [92,99–102]
Ambispora leptoticha Grassland; Pasture [91,92]

Dentiscutata heterogama Grassland [96,99]
Entrophospora claroidea Grassland; Pasture [92,97,99,100]
Entrophospora etunicata Grassland; Pasture [91,92,96,97,99,100]
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Table 1. Cont.

AMF Species Vegetation Type Reference Country

Entrophospora infrequens Grassland; Pasture [92,97,99–102]
Entrophospora nevadensis Grassland; Pasture [92,97,100]

Funneliformis badium Grassland [98,102]
Funneliformis mosseae Grassland; Pasture [89,91,92,97,99–102]

Gigaspora candida Grassland [96,99]
Gigaspora margarita Grassland; Pasture [97,102]
Glomus fuegianum Grassland [98,102]

Glomus hoi Grassland [98,102]
Pacispora scintillans Grassland [98,102]

Rhizophagus intraradices Grassland; Pasture [92,98,102]
Sclerocystis sinuosa Grassland [101]

Scutellospora biornata Grassland; Pasture [92,96,99]
Scutellospora calospora Grassland [89,96,99]

Scutellospora dipapillosa Grassland [89,96,99]
Septoglomus constrictum Grassland; Pasture [92,97,99–101]

Acaulospora sp. 1 [103] Pasture [103] Brazil
Acaulospora sp. 1 [55] Pasture [55]

Acaulospora sp. 1 [104] Grassland [104]
Acaulospora sp. 2 [103] Pasture [103]
Acaulospora sp. 2 [104] Grassland [104]
Acaulospora sp. 3 [103] Pasture [103]
Acaulospora sp. 3 [104] Grassland [104]

Acaulospora sp. 4 Grassland [105]
Acaulospora sp. 5 Grassland [105]

Acaulospora bireticulata Grassland [104]
Acaulospora brasiliensis Grassland [104]
Acaulospora colombiana Pasture [55]

Acaulospora colossica Grassland [104,105]
Acaulospora delicata Grassland [104,105]

Acaulospora elegans cf Pasture [55]
Acaulospora excavata Pasture [106,107]
Acaulospora foveata Pasture [55,95,105,108]

Acaulospora foveoreticulata Pasture [106]
Acaulospora gedanensis cf Pasture [55,103]

Acaulospora koskei Grassland [104,105]
Acaulospora laevis Grassland; Pasture [55,105]

Acaulospora longula Pasture [106]
Acaulospora mellea Grassland; Pasture [104–106]

Acaulospora morrowiae Grassland [104,105]
Acaulospora rehmii Pasture [55]
Acaulospora rugosa Grassland [104,105]
Acaulospora spinosa Grassland; Pasture [55,104]

Acaulospora scrobiculata Grassland; Pasture [104–106,109]
Acaulospora tuberculata Grassland; Pasture [55,105]
Ambispora appendicula Grassland; Pasture [55,104,107,107]

Ambispora callosa Grassland [104]
Ambispora leptoticha Pasture [103]
Archaeospora trappei Pasture [55]
Cetraspora pellucida Pasture [55,103,105]

Dentiscutata erythropus Grassland; Pasture [104,106]
Dentiscutata heterogama Pasture [103]

Diversispora sp. Grassland [104]
Diversispora spurca cf Grassland; Pasture [55,105]

Entrophospora claroidea Grassland; Pasture [105,106]
Entrophospora etunicata Grassland; Pasture [95,104–106,110]
Entrophospora infrequens Grassland [105]
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Table 1. Cont.

AMF Species Vegetation Type Reference Country

Entrophospora lamellosa Grassland [104]
Entrophospora lutea Grassland [105]
Funneliformis sp. Grassland [104]

Funneliformis geosporus Grassland [95,104,105]
Funneliformis mosseae Grassland [104,105]
Fuscutata heterogama Grassland [104]

Gigaspora sp. 1 Pasture [103]
Gigaspora decipiens Grassland [104,105]
Gigaspora gigantea Grassland [104,105,110]

Gigaspora margarita Grassland [104]
Glomus sp. 1 [104] Grassland [104]
Glomus sp. 1 [105] Grassland [105]
Glomus sp. 2 [104] Grassland [104]
Glomus sp. 2 [105] Grassland [105]

Glomus sp. 3 Grassland [104]
Glomus sp. 4 [55] Pasture [55]

Glomus sp. 4 [104] Grassland [104]
Glomus sp. 5 [104] Grassland [104]
Glomus sp. 5 [105] Grassland [105]

Glomus sp. 6 Grassland [104]
Glomus sp. 7 Grassland [105]
Glomus sp. 8 Grassland [105]

Glomus sp. 9 [55] Pasture [55]
Glomus sp. 9 [105] Grassland [105]

Glomus sp. 10 Grassland [105]
Glomus sp. 13 Grassland [105]
Glomus sp. 15 Pasture [55]

Glomus sp. 16 [55] Pasture [55]
Glomus sp. 16 [105] Grassland [105]

Glomus corymbiforme Pasture [55]
Glomus glomerulatum Grassland; Pasture [104,106]

Glomus hoi Grassland [105]
Glomusmicrocarpum Grassland [104,105]

Oehlia diaphana Grassland [104,105]
Pacispora sp. Grassland [104]

Paraglomus albidum Grassland [105]
Paraglomus occultum Grassland [104,105]

Rhizoglomus microaggregatum Grassland [104,105]
Rhizophagus clarus Grassland; Pasture [55,104,105]

Rhizophagus fasciculatus Grassland [104]
Rhizophagus intraradices Pasture [55,106]
Rhizophagus invermaius Grassland [104,105]
Sclerocystis clavispora Grassland [105]

Sclerocystis sinuosa Grassland [105]
Scutellospora sp. Grassland [104]

Scutellospora auriglobosa Pasture [106]
Scutellospora biornata Grassland; Pasture [55,104]
Scutellospora calospora Grassland [104]

Scutellospora dipurpurescens Grassland [104]
Scutellospora pernambucana Grassland [104]

Scutellospora rubra Grassland [104]
Scutellospora scutata Pasture [95,108]

Septoglomus constrictum Grassland [104,105]
Sieverdingia tortuosa Pasture [103]

References: when the specific names of taxa were unresolved, i.e., Glomus sp1, and taxa nomenclature was
presented along different publications, the number of the respective citation was added to the taxon name; e.g.,
Glomus sp1 [105] is the new taxon name of Glomus sp1 recorded in the citation [105] Zangaro et al. (2013) to avoid
duplicated names for different AMF.
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3.3. AMF Diversity in Argentinean and Brazilian Grasslands and Pastures

When the whole dataset was analyzed (Figure 9a), the NMDS plots suggested that
there are no significant differences in the species composition between pastures and grass-
lands (Figure 9b), neither between Argentina nor Brazil (Figure 9c), considering that the
stress value for NMDS of the pooled data was greater than 0.2, and therefore, its inter-
pretation should proceed with caution. This result was also confirmed by the ANOSIM
(R = 0.1379, p = 0.001).
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Figure 9. Non-metric multidimensional scaling (NMDS) showing dissimilarity between pastures
and grasslands based on their AMF species composition, considering (a) whole dataset and (b)
comparison between grasslands vs. pastures and (c) between countries.

The total AMF diversity in pastures and grasslands was analyzed considering the
richness or number the species at family level, including also species Incertae sedis. The
taxonomic location of each species followed the Wijayawardene et al. (2020) [111] proposal.
In general (see Figure 10), the main families were Glomeraceae, Acaulosporaceae, and
Gigasporaceae, and Ambisporaceae, Entrophosporaceae, Paraglomeraceae, Diversispo-
raceae, Archaeosporaceae, Pacisporaceae, Perviscutaceae, and Scutellosporaceae, were
scantly represented.
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Figure 10. Richness of total AMF species in pastures and grasslands distributed in Glomeromycota
families.

In grasslands, the main (Figure 11a) families represented were Glomeraceae (29 species),
Gigasporaceae (22), and Acaulosporaceae (20), with a third number of fewer species being
Ambisporaceae, Entrophosporaceae, Paraglomeraceae, Diversisporaceae, Incertae sedis, Ar-
chaeosporaceae, Pacisporaceae, Perviscutaceae, and Scutellosporaceae. Thus, Glomeraceae
is one of the families, together with Claroideoglomeraceae and Paraglomeraceae, consid-
ered as part of the rhizophilic guild of AMF [94], and they may be capable of protecting
their hosts against root pathogen colonization. Furthermore, Glomeraceae is a family that
thrives in nutrient-rich environments and survives against major soil disturbances, such
as those that occur in agroecosystems [112,113] but also in harsh natural ecosystems such
as montane and highland grasslands in the arid ecosystems of Argentina and Brazil in
South America [71,85]. Moreover, Glomeraceae has short life cycles with rapid growth
and abundant production of spores [101,114,115]; these characteristics are consistent with a
ruderal life strategy [116] that allows them a rapid and wide distribution at the ecosystem
level but also biogeographically, being found in almost all the biomes of South America,
the neotropics, and worldwide [39,117,118]). In the analyzed grasslands, Gigasporaceae
plays the role of the edaphophilic guild [94] with the function of increasing the uptake of
nutrients in the host plant, mainly benefiting those plants with thick roots, poorly adapted
to nutrient absorption, and that depend on AMF for their nutrition, as is the case of C4
grasses that are obligate mycotrophs [82–84]; also, this is a competitive family [116] with
low abundance and species richness in arid environments [94].

In pastures (Figure 11b), the main families were Acaulosporaceae, followed by Glom-
eraceae and Gigasporaceae, and a few species were found belonging to Ambisporaceae, En-
trophosporaceae, Paraglomeraceae, Incertae sedis, Diversisporaceae, and Archaeosporaceae.
The families Pacisporaceae, Pervestutaceae, and Scutellosporaceae were not reported in
pastures. Thus, AMF communities in grasslands were distributed among more families (12)
than in pastures (9), bringing to the AMF biodiversity of grassland soil higher functionality
than in the studied pastures because a larger number of AMF families could be involved in
different ecosystem functions and may provide different and more numerous benefits to
plants in grasslands than in pastures [93,94,116].
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Figure 11. Richness of AMF among Glomeromycota families in Argentina and Brazil, considering
(a) grasslands, (b) pastures.

The greater presence of species belonging to the Acaulosporaceae family in pastures
may be related to the constant disturbance that most pastures considered in the study
undergo. This disturbance is grazing, which causes a loss of biomass and a reduced
allocation of carbon to the roots and, consequently, to the arbuscular mycorrhizal symbionts.
It has been demonstrated that ancestral AMF, to which the Acaulosporaceae family belongs,
may have the lowest carbon demand from the plant host due to the relatively low amount
of both intraradical and extraradical hyphae [68,94]. Therefore, in agroecosystems like
pastures, Acaulosporaceae species would be able to thrive due to their ability to use carbon
more efficiently [116].

The number of AMF species shared between the grasslands and pastures of Argentina
and Brazil is shown in the Venn diagram (Figure 12). The Brazilian pastures are the grassy
ecosystems that have the higher number of exclusive species, while Argentinean pastures
presented the lowest number of shared species (Figure 12).
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Figure 12. Venn diagram of AMF species shared between grasslands and pastures of Argentina and
Brazil with the number of identified species shared in each grassy ecosystem analyzed. References:
Ar_Gras, Argentinean grasslands; Ar_Pas, Argentinean pastures; Br_Gras, Brazilian grasslands;
Br_Pas, Brazilian pastures. Species exclusive to Argentinean grasslands are shown in blue, while
those exclusive to Argentinean pastures are in green. Yellow represents species exclusive to Brazilian
grasslands, and pink represents species exclusive to Brazilian pastures. Additionally, there are
color tones in overlapping ovals representing the mixture between the basic colors overlapped, and
the numbers within these overlaps are the species shared among different biomes; the central red
overlapping area represents species shared by all the studied biomes.

The AMF diversity differences between the studied grassy ecosystems were clustered
by country rather than by ecosystem type (Figure 13), although the differences were not
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significant. These differences could be due to biogeographical reasons. Thus, the AMF
diversity in these grassy ecosystems depends on the fact that the Brazilian grasslands and
pastures are ecosystems of tropical areas, and the Argentine ecosystems are temperate with
variants from humid to semi-arid and arid environmental conditions. Therefore, tropical
Brazilian grassy ecosystems may involve more potential host plants for AMF than the
temperate Argentinean grasslands and pastures analyzed.
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Local environmental conditions and the spatial distance between sites are also impor-
tant drivers of AMF community structure [117–119]. In line with this, Hazard et al. [120]
demonstrated that landscape-scale distribution of AMF taxa is driven by the local environ-
ment, especially by abiotic factors, including pH, rainfall, and soil type [120,121]. In our
study, pH was the only edaphic-environmental factor that showed a moderate correlation
(p = 0.0235) with species richness. This correlation was negative, meaning that the richness
of AMF decreases as pH increases.

Soil fungi tolerate large ranges of soil pH values compared to other microorganisms,
such as bacteria. This is attributable to both individual fungal taxa drastically differing
in their optimal pH range and many fungal species being capable of withstanding more
than five pH units of difference [122]. Soil fungi generally display higher diversity in
lower-pH environments [122,123]). This could be attributed to increased competition with
soil bacteria in higher-pH soils rather than a direct effect of pH itself [122,124]. Thus, to
some degree, the impact of pH on soil fungal assemblages may be regarded as an indirect
effect of plant community composition [125,126].

Several case studies have also shown that soil pH importantly influences the com-
munity composition of AMF [127–130]) and of fungal communities in general [131]. Ex-
periments showing that liming can strongly modulate AM fungal spore number and root
colonization suggest that pH may have an important direct influence on AMF growth and
performance [132–134]. Given the limited evidence of dispersal limitation and larger spatial
resolution of climatic variables, it seems probable that soil pH is the most important abiotic
determinant of relative abundance at the local scale [135].

4. Conclusions

Our results demonstrating the important role of pH as driver of AMF diversity dis-
tribution between grassy ecosystems in Argentina and Brazil are consistent with those
previously reported for bacteria and other fungi [136] and for protists [137], although both
studies identified precipitation as an important additional driver. Moreover, pH has been
found as the shaper of AMF diversity worldwide [120,121,131,133–135], in agreement with
the AMF community’s behavior analyzed in South America for grasslands and pastures
in this work. At the same time, it is clear that there remain unmeasured factors that may
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be important drivers of AM fungal performance or may underlie associations with other
variables, such as those identified here [135,138].

The excessive use of fertilizers and pesticides is a global threat that affects ecosystems
worldwide and particularly in South America, decreasing the plant associated biodiversity.
Pastures grazed and products from cows (the basis for milk and cheese production) [56]
are also affected by agricultural inputs, especially, tropical pastures of Urochloa spp., which
are commonly established in Brazil. However, these vegetation types can allocate frequent
AMF species, such as Acaulospora mellea, Claroideoglomus etunicatum, Dentiscutata heterogama,
Funneliformis geosporus, Scutellospora calospora, among others (Table 1), that counteract those
effects benefiting plants and soils. Exclusive AMF species are generally found in pastures
or under forest. Most of those species include taxa of Acaulosporaceae (Acaulospora) and
Glomeraceae (Glomus and Rhizophagus), Gigaspora, Diversispora and Scutellospora. Thus,
the management of AMF by the introduction of AMF inoculum into the soil of interest
can diminish the utilization of agrochemicals, which are dangerous to human populations
and to the environment. Sales et al. [139] showed that farm inoculation of native AMF
species belonging to the genus Gigaspora (Gigaspora margarita and Gigaspora sp.) in the
field improved a C4 grass (sugarcane) cultivation in Brazil. Moreover, possible solutions to
the main problems caused by climate change in different grasslands, pastures, crops, and
vineyards will be elucidated, especially regarding the symbiosis with AMF.

Traditionally, it is believed that forests are more diverse than grasslands; neverthe-
less, new findings showed that grasslands present high microbial diversity. Among these
microbial communities, AMF diversity is higher in grasslands globally [140]. In general,
AMF diversity was not significantly different between South American grasslands and
pastures. The native grasslands have been under the effect of grazing for ca. 500 years since
the European conquest of the continent, and in Pampa grasslands livestock production
had its beginnings in 1536 and 1573, when the first horses and cows were introduced,
respectively [51,141,142]. Additionally, in Andean regions, grazing by South American
camelids is more ancient since the pastoral systems began earlier than the Spanish conquest
of the territory [143]. It has been proposed that grassy ecosystems in Africa and North and
South America have become resilient to grazing after being exposed to this disturbance for
long periods of time [144], as could be the case for the grasslands and pastures studied. Fur-
thermore, at the landscape scale, grazing has been associated with the spatial heterogeneity
loss [145,146]. Thus, grazing effects may be associated with the homogenization of the
landscape and increase of the resilience [144–146], which could be reflected in the apparent
similarity of the associated microbial communities, such as the AMF, in soils also previously
recorded for mountain grasslands and pastures in South America [71,88,147]. Therefore, the
AMF communities inhabiting these environments could be adapted to grazing by means of
similar AMF diversity to cope with a sustainable functionality and with the prevalence of
resilient and tolerant AMF families, such as Glomeraceae and Acaulosporaceae, as in the
case of the Argentinean and Brazilian grasslands and pastures.

We demonstrated differential distribution of AMF families between grasslands and
pastures; although the main families with the higher numbers of species (20 to 30 species)
were recorded in both grassy ecosystems (Acaulosporaceae, Gigasporaceae, and Glomer-
aceae), the number de AMF species per family showed differences between grasslands
and pastures. Among AMF taxa, pastures maintain predominantly Acaulosporaceae as
indicator of tolerance to the continuous grazing stress and as an ancestral guild. Sur-
prisingly, in grasslands, Glomeraceae was the main family by its richness, functioning as
ruderal and like a rhizophilic guild, and Gigasporaceae, a competitive and edaphophilic
family [94,116,148], also maintained fewer species than the pastures. In addition, some
families were completely absent among pastures, such as Pacisporaceae, Perviscutaceae
and Scutellosporaceae. Surprisingly, up to now, their ecosystem functions, life strategies, or
the guild they belong to are unknown. Thus, a new gap comes out in the information on
the diversity of AMF at the level of ecosystem functioning that needs to be explored and
investigated to contribute to the knowledge of these fungi and their interactions with their
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hosts in grasslands and pastures. It is important to highlight that the grassy ecosystems
in general are named “grasslands” in sensu lato [140], without discriminating between
pastures (grazed ecosystems with anthropogenic intervention, e.g., sowing of exotic species,
thinning of shrubs, etc.) or grasslands sensu stricto (natural grasslands) as they were
defined in this work. Future research focused on AMF diversity and functional ecology in
grasslands and pastures should consider the land use histories of each grassy ecosystem
to be analyzed, since these significantly influence the diversity of AMF; see [149] and
references therein.

In South America, especially in Argentina, the natural grasslands are under pres-
sure in a harsh process of desertification, and its vulnerability is strongly affected by the
reduced areas for conservation [16,76,79,150]. Taking into account the ESs awarded by
grasslands [32,48], together with the high productivity in meat and milk provided by
these grassy ecosystems [51,146,151,152], involvement of AMF in grasslands and pastures
management urgently call for sustainable use of these valuable and unique ecosystems.
Recently, the capacity of amendments involving native AMF species in restoring grasslands
in North America has been demonstrated [153]; in tall prairies, the invasive weed popula-
tions were reduced by means of low densities of native AMF inoculum application, and an
AMF restoration effect also persisted over time, establishing a native AMF community in
the grassland due to positive feedback from host plants (predominantly native grasses and
legumes) and inoculated native AMF [153]. Moreover, North American native grasslands
are invaded by an exotic grass, Setaria faberi; in greenhouse bioassays Koziol et al. [154]
showed that the inoculation with native AMF plus ex-arable soil experimental treatments
increase the abundance of native plants, plants in the late successional grassland stage, and
total plant diversity also were greatest, together with the increment of native seedlings
establishment; furthermore, this native plant’s population improvement was concomitant
with the reduction in the invasive S. faberi [154]. In addition, Gou et al. [155] demonstrated
that inoculation with AMF in agroecosystems significantly reduced the nutrient losses
induced by soil erosion and proposed the use of AMF inoculation as a sustainability sup-
port among these and other environments. This type of inoculation study, with native
inoculants applied as amendments in the field and in greenhouses in the short, medium,
and long term in grassy ecosystems, with and without grazing, does not exist in South
America. Therefore, our results on the differential native AMF diversity between South
American grasslands and pastures and the pH effect on native AMF communities in these
grassy systems are an important starting point to elaborate microbial amendments with
possibilities of being applied to restore these ecosystems from plant invasions, erosion,
and degradation to which are exposed and to promote sustainable production in South
American grassy ecosystems.
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