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Accurate identification of species is fundamental to every biological research. While morphological identification is
a time-consuming and skilled technique, straightforward molecular techniques require the availability of a database
of previously sequenced and identified specimens. For most countries of South America, species of noctuids with
available sequences are scarce, mostly restricted to species of economic importance, making molecular identification
untenable. Here we sequenced the mitochondrial DNA ‘barcode’ region of the cytochrome c oxidase subunit I
gene of 34 specimens pertaining to 26 species of South American noctuids, 20 of these for the first time. For all
species, genetic distances were higher for interspecific than for intraspecific relations, supporting the utility of
DNA ‘barcodes’ to identify species. Larger intraspecific divergences occurred in species of Agrotis and Anicla, and
interspecific divergences lower than 2% occurred in about one fifth of the species, all in species of Agrotis, Feltia,
and Anicla. These results will allow identifying these species using DNA ‘barcodes’, either for pest management
or general biological studies. Furthermore, we carried out phylogenetic analyses with those sequences and 158
other sequences of 85 species of noctuids mined from GenBank. These analyses, in every case, grouped species
of the same genus suggesting that the DNA ‘barcodes’ region alone can be useful for lower level phylogeny in
this group, recovering as monophyletic groups such as Copitarsia, Agrotis and Austrandesiita. Conversely, groups
such as Mythimna (Mythimna) and the subgenera of Feltia were not recovered as monophyletic, suggesting the
need for further taxonomic studies in these groups.

Introduction

Species identification is the foundation for all biological research.
However, rapid and accurate species identification is not always possible,
especially in highly diverse groups, as insects, and in species-rich and
understudied regions, as South America. Identifying species through
morphology alone takes time and skilled manpower, and it overlooks
cryptic species. Molecular identification, in contrast, is a rapid tool with
increasingly lower costs, and allows identification of cryptic species.
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Nevertheless, there is growing evidence that both morphological and
molecular methods are equally important and should be integrated to
provide stronger support for delimiting and identifying species (Desalle,
2006; Padial et al., 2010; Silva-Branddo et al., 2009). Outdated taxonomy
and difficulties in species identification in the field can lead to substantial
problems in formulating and developing crop management, trade, and
economic policies. This is particularly true for genera without recent
systematic revisions or with cryptic species.

Noctuidae (Lepidoptera) includes several of the most harmful
agricultural pest species of the order. Most species are included in
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a group referred to as the ‘pest clade’ by Mitchell et al. (2006). This
clade comprises cutworms, armyworms, corn earworms, and many
other pests. Despite their economic importance, many species were
incorrectly identified for decades. Recent systematic studies helped
to solve identity problems within genera of economic importance in
South America such as Agrotis Ochsenheimer (San Blas, 2014, 2015; San
Blas and Barrionuevo, 2013), Feltia Walker (Dias et al., 2017, 2018; San
Blas and Agrain, 2017; San Blas et al., 2019), Leucania Ochsenheimer
(Cocco et al., 2019; Dolibaina et al., 2019), and Spodoptera Guenée
(Brito et al., 2019). Except for Brito et al. (2019), all these studies were
based exclusively on adult morphology.

Accurate species identification of immature stages is even harder.
In South America, most species with known immature stages are those
with economic importance (Angulo et al., 2006), while the vast majority
of other species remain unknown.

This large knowledge gap for species without economic importance
and immature stages of many species, in addition to the current highly
mobile globalized world, climate change, and agricultural practices
changes, may lead to overlook or to delay the detection of changes
in pest diversity in the future (Cannon, 1998; Zhao et al., 2011). As
evidenced by the recent invasion of the Old World cotton bollworm,
Helicoverpa armigera(Hiibner), into the New World (e.g., Czepak et al.,
2013; Tay et al., 2013), whose similarity to the New World H. zea(Boddie)
was likely an important factor for its delayed detection (Specht et al.,
2013, 2021). Hence, the use of tools that help in species identification
regardless of their developmental stage becomes a priority.

Molecular characterization of species proved to be an excellent tool
for species identification, and the most popular sequence used for this
purpose is the mitochondrial DNA ‘barcode’ region of the cytochrome c
oxidase subunit I (COI) (Hebert et al., 2003). The use of DNA ‘barcodes’
was originally proposed and tested for Lepidoptera (Hebert et al., 2003,
2004a) and it has been proven useful for identification of species
in a wide range of taxa, from fungi (Begerow et al., 2010) to birds
(Hebert et al., 2004b). DNA ‘barcodes’ has also been successfully used
to distinguish Noctuidae pest species (Behere et al., 2008; Brito et al.,
2019; Gomez-Rolim et al., 2013; Simmons and Scheffer, 2004; among
many others). Nevertheless, the use of DNA ‘barcodes’ for species
identification requires the availability of a comprehensive database of
previously sequenced and correctly identified specimens.

The molecular characterization of noctuid species occurring in South
America is still incipient. Only widely distributed species and species of
major economic importance, such as species of ChlorideaDuncan [and
Westwood], Chrysodeixis Hiibner, Helicoverpa Hardwick, Rachiplusia
Hampson, and Spodoptera (Arneodo et al., 2015; Gomez Rolim et al.,
2013; Juérez et al., 2012; Michereff-Filho et al., 2021; Specht et al., 2013)
were sequenced and molecularly characterized by DNA ‘barcodes’.
Therefore, most of the species of noctuids endemic to South American
countries, many of them distributed in very specific biomes, such as the
Patagonia, Pampas, and Pantanal, are not molecularly characterized.
The lack of molecular characterization makes molecular identification
of most of the species occurring in these countries unattainable, with
the exception of a small number of widely distributed species. The
lack of a comprehensive database of sequences, in addition to the
aforementioned problems with morphological identification within
many genera, makes it harder to detect invasive pest or emerging new
pests in the region.

This study main objective is to provide molecular characterization
using DNA ‘barcodes’ for several species of Noctuidae of the ‘pest
clade’ occurring in South America, with emphasis on the Argentinean
and Brazilian fauna, and to evaluate the genetic distance between
these species and other noctuids. Also to include these sequences in a
phylogenetic analysis to assess the generic association of the species

and the phylogenetic placement of genera sequenced for the first time.
Ultimately, the aim is to facilitate species identification of specimens
in any stage of development of many pest and several non-pest species
occurring in the region, the first step to further early detection of invasive
species or emerging new pest species in South America.

Materials and methods
Specimens

Thirty-four specimens corresponding to 26 species of 10 genera of
the ‘pest clade’ were sequenced (Table 1). Of these, four specimens of
different species of Leucania were collected in Brazil; the remaining
specimens were collected in Argentina. The specimens deposited at the
Universidad Nacional de La Pampa were captured with a Pennsylvania
light trap, set with a 200w mercury vapor bulb; the other specimens
were actively collected with a light sheet using the same type of light
bulb. A map of collecting points is shown in Fig. 1. Sequenced noctuid
species belonging to the ‘pest clade’ were focused on previously
unsequenced species. Therefore, species of Heliothinae and Spodoptera
were not newly sequenced (Arneodo et al., 2015; Juarez et al., 2012).

To confirm species identities, the genitalia of the 31 males and
the 3 females were dissected, as in Lafontaine (2004) and San Blas
(2014), and compared with the type material and published systematic
accounts (when available) (Dolibaina et al., 2019; Franclemont, 1951;
Pogue, 2014; San Blas, 2014).

Most of the species included in this work were sequenced here for the
first time (Table 1), which means that no public sequences were found
either in GenBank (Sayers et al., 2020) or in the International Barcode
of Life Consortium (iBOL, http://www.ibol.org/). To corroborate the
identification of these species and to carry out a phylogenetic analysis
to access the relationships among species sequenced, 158 additional
DNA ‘barcode’ sequences of 85 species of various genera were mined
from GenBank (Table S1). Species of genera Chloridea, Helicoverpa, and
Spodoptera were included in the analysis to have a representation of
these genera of economic importance included in the “pest clade”, even
though no new sequenced specimens were added. For other mined
sequences, type species of genera and subgenera (if available) of the
species sequenced in this work and also of close genera were selected.
As this is the first time that any species of the genera Tisagronia Kohler,
PseudoleucaniaStaudinger, and Pareuxoa Forbes has been sequenced,
additional sequences of varied genera inside Noctuini were selected
to test possible associations with these genera.

Austrandesiini was erected by Angulo and Olivares (1990) to group
genera occurring mainly in the Neotropical region. Later, it was reduced
to subtribe and considered to have ‘primitive’ character states within
Agrotini (Lafontaine, 2004). Due to recent changes in Noctuoidea
systematics, where Agrotini was reduced to subtribe (Lafontaine and
Schmidt, 2010), Austrandesiini should be reduced to infratribe. Name
suffixes in other ranks within the tribal group are not formally regulated
by the International Code of Zoological Nomenclature, but do have
accepted standard suffixes. As suggested by Dubois (2006), the suffix
-ita is used in this work for the infratribe rank.

DNA extraction and COI sequencing

DNA was extracted from the three right legs of each specimen by
grinding them with liquid nitrogen using a mortar and pestle to access
the DNA material without degradation and then following the protocol
described by Miller et al. (1988). A fragment of the COI gene was amplified
using the generic barcode primers LepF1 (attcaaccaatcataaagatattgg)
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Figure 1 Collection sites in Argentina and Brazil, with provinces or states boundaries.

and LepR1 (ttaacttctggatgtccaaaaaatca). Gene amplification follows
Hebert et al. (2004a).

Products were sequenced by Capillary Electrophoresis Sequencing
(CES) by Macrogen Inc. (South Korea). Both directions were sequenced
and compared directly to make a consensus sequence using BioEdit
program (Hall et al., 2011). After assembling, products were cut to a
final 658 base pair fragment of the COI gene. The same protocol was
used for Brazilian Leucania specimens, performed by Helixxa (Brazil).
Sequences were manually aligned using BioEdit program and submitted
to GenBank.

Analyses

DNA distance was assessed using DNADist v3.5c (Felsenstein,
1993) with F84 model (Kishino and Hasegawa, 1989) as implemented
in BioEdit. The data matrix was constructed with Mesquite v3.61
(Maddison and Maddison, 2019) and the phylogeny was evaluated
using Equally Weighted Maximum Parsimony (MP), Maximum
Likelihood (ML), and Bayesian Inference (BI). Parsimony analysis was
performed in TNT v1.5 (Goloboff and Catalano, 2016; Goloboff et al.,
2008) using ‘New technology Search’ with ‘Driven search’ initial level
90 and finding minimal length 500 times. Most parsimonious trees
recovered were then summarized in a strict rule consensus tree, and

clade robustness was evaluated using 500 replicates of Bootstrap.
The best substitution model for Bl and ML analyses was selected
using PartitionFinder 2, with a greedy search scheme and separated
1st, 2nd, and 3rd codon positions (Lanfear et al., 2012, 2016) and
JModelTest 2 (Darriba et al., 2012). jModelTest confirmed a TIM2 +
G + I model of substitution, but as it is not implemented in either
MrBayes or RAXML, we instead used GTR+ G + 1 (Lecocq et al., 2013)
which was selected as the best model by PartitionFinder. MrBayes
v3.2.7a (Ronquist and Huelsenbeck, 2003) was used to reconstruct
phylogenetic trees under Bl with block for partition as defined by
PartitionFinder. Markov chains were run for 50 million generations
and sampled every 1,000 generations, with eight independent
runs per analysis. The first 25% of trees were discarded as ‘burn-
in’. RAXML-HPC v8.2.12 (Stamatakis, 2014) was used to estimate
the phylogenies, with the ML + Rapid Bootstrap method and 1,000
replicates. All the analyses were performed using online versions
of the software (PartitionFinder, jModelTest, RAXML, and MrBayes)
on the XSEDE platform as implemented in CIPRES Science Gateway
v3.3 (Miller et al., 2010). The phylograms inferred from the ML and
BI analyses were displayed using FigTree v.1.4.4 (Rambaut, 2014).
The aligned sequence data matrices have been deposited in TreeBase
(http://purl.org/phylo/treebase/phylows/study/TB2:526557).
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Results

DNA ‘barcodes’

We obtained the DNA ‘barcodes’ from the 34 specimens and 158
additional sequences mined from GenBank. The sequences contained no
insertions or deletions. After alignment, the sequences were composed
of 658 nucleotides, 232 of which were parsimony-informative. The AT
contents of the sequences was very high (70.4%), especially at the 3rd
codon position (93.6%). Identification was achieved for all 26 species
sequenced, either when analyzed separately or with the addition of
the 85 species mined from GenBank. If we consider all the 111 species
analyzed, 93.69% (104 species) had diagnostic DNA ‘barcodes’ (exceptions
discussed below). These results should be taken with caution due to
the reduced number of samples (2 in most cases) per species analyzed.

Intraspecific divergence

Genetic distance of conspecific specimens sequenced for this study
was lower than 1% in every case (Table 2). Furthermore, distance between
all the 192 sequences and for the great majority of the specimens (91.9%
of the species) was below 1% for intraspecific variation.

Specimens of Peridroma saucia(Hiibner) and Mythimna unipuncta
(Haworth) sequenced for this study showed intraspecific divergence
slightly higher than 1% but lower than 1.5% when compared with the
mined sequences. Conspecific specimens of Agrotis gladiariaMorrison
and Anicla lubricans (Guenée) also showed intraspecific divergence
between 1-1.5%. The four species mentioned before, with intraspecific
distance between 1-1.5%, corresponded to 3.6% of the total species
analyzed. Intraspecific divergence between 1.5-2% was only detected in
Spodoptera frugiperda specimens (0.9% of species). Deep intraspecific
divergence (>2%) was detected only in four species (3.6% of the species):
Agrotis munda Walker, A. obliqua (Smith), A. radians Guenée, and
Anicla ignicans (Guenée).

Interspecific divergence

The genetic distance was equal or higher than 2.8% between all
the species sequenced (Table 2). Distance between the great majority
(79,28% of the species) of the 188 sequences analyzed was higher than
2% for interspecific variation (Table S2).

There are some exceptions to these values, the divergence between
the sequenced specimen of Agrotis ipsilon (Hufnagel) and mined
sequences of A. infusa(Boisduval) (from Australia), showed a divergence
of 1.23%. The three mined sequences of A. ipsilon showed a divergence
lower than 1% with the Argentinean conspecific specimen, but higher
than 1.5% with the sequences of A. infusa. Low interspecific divergence
(1-1.5%) was also detected between Feltia herilis(Grote), F. subgothica
(Haworth), and F. tricosa (Lintner), and some pairs of specimens in
other species of Feltia(Table S2). Slightly higher divergence but below
2% (medium interspecific divergence) was detected in many species
of Agrotis, e.g. between Agrotis cinerea (Denis and Schiffermiiller),
A. gladiaria, A. rileyana Morrison, A. ripae (Hiibner), A. venerabilis
Walker, and A. vetusta(Walker), in Anicla Grote between Anicla infecta
(Ochsenheimer) and A. ignicans (Guenée) and in CopitarsiaHampson
between different specimens of the species of the genus. In summary,
low and medium interspecific divergences accounted for the 20.72%
of the species studied.

Phylogeny

Equally weighted maximum parsimony analysis resulted in 103,800
trees of 2,118 steps. Strict consensus of those trees and trees from ML
and BI analyses grouped the species sequenced for this study either
with conspecific specimens or with their respective congeneric species.
Since relationships were mostly similar between the three analyses,
only the ML tree is shown (Figs. 2 and 3), which had better resolution.
Nevertheless, MP and Bl trees are presented in the supporting information,
as S3 and S4 respectively, and significant differences between the
analyses are highlighted in the text.

Species of the genera Mythimna Ochsenheimer and Leucania
Ochsenheimer were clustered together. The former was divided into
two groups: one strongly supported clade comprising the species of
Mythimna (Pseudaletia) Franclemont (including M. unipuncta, type
species of Pseudaletia) and the other comprising the rest of the species of
Mythimna (including M. turca(L.), type species of Mythimna) forming a
polyphyletic group, with Leucania comma (L.) (type species of Leucania)
nested between them in both ML and Bl analyses. Leucaniawas recovered
only in the MP analysis. The six sequenced South American species of
Leucania constituted a monophyletic group, with strong support only
in the BI analysis.

Copitarsia clade had strong support, but with different positions
among analyses. This genus was recovered the as sister group of Noctuini
in ML; inside Noctuini, sister to EuxoaHiibner in MP; and as sister to all
taxa, except the outgroup, in Bl. Among the species sequenced for this
study, Copitarsia ca. patagonica Hampson was recovered as sister to
all other species of the genus and Copitarsia incommoda(Walker) was
grouped with two specimens from Argentina (EU371496-7) which Pogue
and Simmons (2008) supposed to be arelated to C. naenoides(Butler).

Austrandesiita was weakly supported in the ML and BI analyses.
This was the first time that a gene of the genera Tisagronia, Pareuxoa,
and Pseudoleucania has been sequenced; therefore, there were no
congeneric sequences available to compare with. The Pareuxoa and
Pseudoleucania species were grouped together.

Feltia was divided into two strongly supported clades (except for
MP), one clade with all South American species and another with North
American species. The latter, separated into two low-supported clades
in ML, or a polytomy in the other analyses.

Agrotis species formed a clade in all analyses (except for the inclusion
of Dichagyris socorro(Barnes) in the MP), but with almost no support.
Three clades were consistently recovered in all analyses: 1) Agrotis
robusta(Blanchard), a Southern South American endemic species, and
Agrotis apicalis Herrich-Schaffer, a Central American endemic species;
2) Agrotis ipsilon, a cosmopolitan species, and A. infusa, an Australasian
species; and 3) A. canities(Grote), a Southern South American endemic
species, and A. malefida Guenée, a species distributed throughout the
American continent.

Discussion

Many of the most harmful species for agriculture belong to the
Noctuidae and, within the family, many are grouped in what Mitchell et al.
(2006) called as the ‘pest clade’, which was recovered as a well-supported
clade in later studies (Regier et al., 2017; Zahiri et al., 2010). Even
though these species are of substantial agricultural importance, their
identification is often difficult. Historically, the identification of species
relied on taxonomical keys or consultation with experts. Information
about South American noctuids is still scarce, even though several efforts
were carried out to reveal the real diversity and taxonomy of the species
occurring in the continent. As a result, only few identification keys are
available, most of them outdated and only including pest species of
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Figure 2 The phylogenetic relationships of the specimens sequenced and those mined from GenBank, based on a maximum likelihood analysis. Numbers given above branches
are bootstrap values (>50%). The Feltia + Agrotis clade is shown in more detail in Fig. 3. GenBank accession numbers are provided for newly sequenced specimens
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Figure 3 Continuation of phylogram in Fig. 2. The phylogenetic hypothesis of the Feltia + Agrotis clade based on a maximum likelihood analysis. Numbers given above branches
are bootstrap values (>50%). GenBank accession numbers are provided for newly sequenced specimens.
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particular crops. Therefore, the identification of specimens of species
without economic importance can be rather difficult. Furthermore,
the identification of the immature stages of most species is nearly
impossible, as identification keys are usually based on the morphology
of the adult. Until we gather more information about South American
noctuids, especially about their immature stages, the use of tools other
than morphology for species identification is greatly justified.

DNA ‘barcode’

DNA, especially the ‘barcode’ region of the cytochrome c oxidase
subunit I, has proven to be informative for species identification in a
wide range of taxa of any developmental stage (Hebert et al., 2003;
Huemer et al., 2014; Zahiri et al., 2014). The present study revealed
that 93.69% of the 111 noctuid species analyzed have diagnostic DNA
‘barcodes’. These results supported the utility of these sequences to
identify the great majority of the species studied and they corroborated
our morphological delimitations. Our result is similar to those of
Huemer et al. (2014) who found that 98.8% of the 1,004 Lepidoptera
species studied in Finland and Austria have diagnostic DNA ‘barcodes’
and Zahiri et al. (2014), who recognized diagnostic DNA ‘barcodes’ for
90% of the 1,541 Canadian noctuoid species studied by them.

Deep intraspecific divergence (>2%) was only detected in four species
(three species of Agrotis and one of Anicla), all of them corresponding
to mined sequences. Such strong divergence was detected in similar
proportions in other studies (e.g. Huemer et al., 2014; Zahiri et al., 2014)
and it could be associated with several causes, including taxonomic
problems such as misidentifications or cryptic species. Trying to find the
causes of these deep divergences requires first a detailed morphological
revision of the samples to rule out possible taxonomic problems, which
are inaccessible for examination.

A widely used value to distinguish species is a divergence higher
than 2% (Hebert et al., 2003; Zahiri et al., 2014). We found intraspecific
divergence equal to or lower than 1% and interspecific divergence equal
to or higher than 2% in the great majority of species, but there are
many exceptions that would require further investigation. A divergence
between 1-1.5% was detected between samples of Agrotis gladiaria,
Anicla lubricans, Peridroma saucia, and Mythimna unipuncta. The
last two species correspond to specimens sequenced here and which
will require further morphological and molecular studies of larger
samples to unravel whether it corresponds to a high intraspecific
or low interspecific divergence. Low (1-1.5%) and medium (1.5-2%)
interspecific divergences were detected for 20.72% of the studied species,
allin the species-rich Agrotis, Feltia, and Anicla. Zahiri et al. (2014) also
detected DNA ‘barcode’ sharing and low divergences in many genera,
including Feltia and Agrotis. Low interspecific divergences could be
related to oversplitting of species or evolutionary factors such as recent
speciation events or rapid divergence of species during a radiation
accompanied by small divergences in mitochondrial DNA (Wiemers
and Fiedler, 2007). Integrative taxonomy assists the delimitation of
species boundaries, comprehending as many sources of data as possible,
including morphological characters, reproductive compatibility, host
association, and molecular characters, for example (Desalle, 2006;
Padial et al., 2010; Silva-Brandao et al., 2009). Integrative taxonomy
would allow a better delimitation of South American taxa, including
species-rich genera such as Feltia, Mythimna, Leucania, Copitarsia,
and Pseudoleucania. Morphological species delimitations are not well
established for many species of these genera, especially for species
endemic to South America, as most species of Austrandesiita. Evaluation
of morphological and molecular delimitation of these understudied taxa
would allow more accurate identifications which will in turn be a key
tool in crop management, trade, and economic policies (Rubinoff, 2006).

Phylogeny

Sampling of South American specimens in phylogenetic analysis
has been historically poor, with most molecular studies focused only
on haplotypes and molecular characterization (Arneodo et al., 2015;
Behere et al., 2008; Brito et al., 2019; Juérez et al., 2012; Michereff-
Filho et al., 2021; Simmons and Scheffer, 2004). This is the first time that
species endemic to South America have been sequenced and analyzed ina
phylogenetic context, including South American specimens of the widely
distributed Peridroma saucia, Agrotis ipsilon, and Mythimna unipuncta.

In all of the analyses performed at genus and at species levels,
each species is associated with other species of the same genus and
the relationships between closely related genera, in most cases, are
congruent with recent phylogenetic hypotheses (Fibiger and Lafontaine,
2005; Lafontaine and Schmidt, 2010). We find Mythimna ( Pseudaletia)
as a separate, strongly supported clade, congruent with Sutrisno (2012).
Nevertheless, Mythimna( Mythimna) species do not form a monophyletic
group in any of the analyses, grouped with Leucania commain ML and
BI, which cannot be compared with Sutrisno’s (2012) study because he
did not include any species of Leucania.

Copitarsia genus is monophyletic in every analysis, but its position
is variable: sister to the ingroup in the BI, sister to Noctuini in ML, or
nested within Noctuini in MP analysis. This genus is currently considered
part of the Cuculliinae, but Simmons and Scheffer (2004) mentioned
that a preliminary unpublished analysis with the gene elongation factor
1-alfa indicated that Copitarsia would be phylogenetically related to
Noctuinae (Noctuini as considered here). From our analyses, ML and MP
agree with this relation, although weakly supported. Within Copitarsia,
C. decolora(Guenée), C. corrudaPogue and Simmons, and C. incommoda
form a clade corresponding to the C. decolora complex mentioned
by Pogue (2014) and the turbata-species group (more precisely, the
decolora-species group) proposed by Angulo and Olivares (2003). The
Copitarsia ca. patagonica specimen sequenced here corresponds to a
species in the naenoides-species group (Angulo and Olivares, 2003).
This association is supported by the male genitalia characters, mainly
the two longitudinal shields with recurved indentations on the dorsum
of the uncus vertex and the vesical base without indented shields
(Angulo and Olivares, 2003). This is the first time that a species of
the naenoides-species group has been sequenced. Even though it is a
single specimen, it is basal to the decolora-species group, suggesting
the validity of the group, with different supports values depending
on the analysis.

Austrandesiita, as originally proposed by Angulo and Olivares (1990)
and herein represented by Tisagronia, Pseudoleucaniaand Pareuxoa, is
weakly supported by ML and BI analyses. Lafontaine (2004) expanded
the concept of this group to include other genera such as Peridroma
Hiibner and Anicla, but none of our analyses support it as such.

Feltiais consistently divided into two clades. One clade containing
all South American species, which is congruent with the subterranea-
group of Feltia(Feltia) as proposed by Lafontaine (2004), and the other
clade including the North American species of the genus. Lafontaine
(2004) proposed two subgenera in Feltia: the nominal subgenus and
Feltia( Trichosilia) Hampson, neither of them supported in the analyses.
The monophyly of Feltiais congruent with Lafontaine (2004) but the
subgenera proposed by him are not recovered and the subterranea-
group is consistently placed outside the Feltia(Feltia). In addition, these
results are non-congruent with San Blas (2015), whose morphological
phylogeny resulted in Feltia species from North and South American
grouped in separated clades too, but the latter being the sister to Agrotis.

Our findings in Agrotis support the latest morphological studies
which recovered Agrotis as a monophyletic group (San Blas, 2015).
Furthermore, our result is congruent with systematic studies which
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considered A. malefida and A. robusta as different species (San Blas,
2014, 2015; San Blas and Barrionuevo, 2013), the former sister to A.
canities, both closely related by morphology (San Blas, 2014, 2015),
and A. ipsilon sister to A. infusa, a close relationship already noticed
by Common (1958) due to their morphological similarity.

Molecular characterization using the DNA ‘barcode’ region of the
COI, as demonstrated herein and in many other studies, is reliable to
distinguish and identify species. This method is particularly useful for
identifying poorly-known immature stages of South American species.
In the current state of knowledge, the availability of a molecular
database would be extremely useful in the identification of species.
The advantages are its fastness, specificity, and requirement of only
basic laboratory skills. Nevertheless, when the genetic distance is
between 1-2%, a detailed morphological study is highly recommended.
On balance, molecular methods for identification of these noctuids
are important when skilled taxonomists or basic taxonomic and
morphological information is unavailable, as for immature stages of
most species. To ease future species discovery and identification, more
South American specimens and species — not only economic important
ones — should be sequenced and made available in public repositories,
with the objective of enlarging molecular databases for early detection
of pest species and for taxonomic and biodiversity studies.
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Supplementary material

The following online material is available for this article:
Table S1 - Collection data and accession numbers of sequences mined from GenBank.
Table S2 - Pairwise genetic distances between all 192 sequences analyzed in this study.

Figure S3 - The phylogenetic relationships of newly sequenced specimens and sequences mined from GenBank, based on an equally weighted
maximum parsimony analysis. Numbers given above branches are bootstrap values (>50%).

Figure S4 - The phylogenetic relationships of newly sequenced specimens and sequences mined from GenBank, based on a Bayesian inference
analysis. Numbers given above branches are bootstrap values (>50%).





