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Abstract: The second wave of COVID-19 occurred in South America in early 2021 and was mainly
driven by Gamma and Lambda variants. In this study, we aimed to describe the emergence and
local genomic diversity of the SARS-CoV-2 Lambda variant in Argentina, from its initial entry into
the country until its detection ceased. Molecular surveillance was conducted on 9356 samples from
Argentina between October 2020 and April 2022, and sequencing, phylogenetic, and phylogeographic
analyses were performed. Our findings revealed that the Lambda variant was first detected in
Argentina in January 2021 and steadily increased in frequency until it peaked in April 2021, with con-
tinued detection throughout the year. Phylodynamic analyses showed that at least 18 introductions
of the Lambda variant into the country occurred, with nine of them having evidence of onward local
transmission. The spatial—temporal reconstruction showed that Argentine clades were associated
with Lambda sequences from Latin America and suggested an initial diversification in the Metropoli-
tan Area of Buenos Aires before spreading to other regions in Argentina. Genetic analyses of genome
sequences allowed us to describe the mutational patterns of the Argentine Lambda sequences and
detect the emergence of rare mutations in an immunocompromised patient. Our study highlights the
importance of genomic surveillance in identifying the introduction and geographical distribution of
the SARS-CoV-2 Lambda variant, as well as in monitoring the emergence of mutations that could be
involved in the evolutionary leaps that characterize variants of concern.

Keywords: SARS-CoV-2; Lambda; variants; evolution; South America; phylodynamic

1. Introduction

Since the onset of the COVID-19 pandemic, genome sequencing efforts around the
world have monitored the spread and evolution of the SARS-CoV-2 virus. By this means,
the introduction, circulation, and establishment of the SARS-CoV-2 lineages in each country
were studied as well as the identification of specific mutations that impact virulence,
pathogenesis, host range, immune evasion, as well as the effectiveness of diagnostic tests,
vaccines, and therapeutic treatments [1].

Although there is an unprecedented number of genomes available, there still exists a
significant disparity in the distribution of genomic data, especially in regions such as South
America [2]. Until 26 April 2023, 405,692 whole-genome sequences from South America
had been generated and shared in the GISAID database [3], accounting for 0.21% of all re-
ported positive cases of SARS-CoV-2 from the continent. In comparison, regions with
higher coverage include Europe, with 7,700,433 genomes (2.70% coverage), and North Amer-
ica, with 5,458,362 genomes (4.12% coverage) (WHO Coronavirus (COVID-19) Dashboard
https://covid19.who.int/table (accessed on 26 April 2023). Several studies have highlighted
the importance of genomic surveillance by using genomic data to examine the evolution and
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associated spread of dominant variants in specific countries or regions, which may be a key
factor in the global community’s ability to contain and control infectious disease threats [4].

The detection of emerging viral variants of SARS-CoV-2 with characteristics of concern for
public health has had a significant impact on the development of the pandemic [5]. A common
characteristic of these variants is the presence of mutations at the Spike (S) glycoprotein [6];
particularly, the N-terminal domain (NTD), receptor-binding domain (RBD), and the Furin
cleavage site have been identified as hotspots that concentrate amino acid changes. Several
coincident amino acid changes in the SARS-CoV-2 Spike protein have independently emerged
in different viral lineage, evidencing that these changes could confer an adaptive advantage
towards the virus infectivity and easier spread in the population [7].

In late 2020, the Argentine Inter-Institutional SARS-CoV-2 Genomic Consortium (PAIS
Consortium) implemented a molecular surveillance strategy that focused on monitoring
viral variants of concern (VOC) and variants of interest (VOI) in Argentina. This allowed for
monitoring the emergence of new local variants and facilitated genomic and evolutionary
analyses to study their origin and dispersion within the country [8]. During the first half of
2021, the second wave of COVID-19 in Argentina occurred in the context of an ongoing
vaccination campaign that began in December 2020, prioritizing strategic personnel and
high-risk groups such as the elderly. By mid-2021, 20% of the population had received at
least one dose of the COVID-19 vaccine, and only 7% had completed the full vaccination
schedule [9]. Also, throughout 2021, the Argentine government continued with the imple-
mentation of a comprehensive plan for preventive social distancing as a critical strategy to
mitigate the spread of COVID-19. This plan included significant restrictions on the mobility
of people, primarily limiting movement to short distances, with interprovincial travel being
the maximum allowed. International travel was mainly restricted to commercial activities,
with air travel from Buenos Aires City being the primary mode of transportation. Land
travel with neighboring countries was tightly regulated and limited to commercial activities.
The government implemented these measures to reduce the risk of imported cases and
local outbreaks, as well as to limit the transmission of the virus within the country [10].

During the period spanning from October 2020 to April 2022, a comprehensive surveil-
lance program was implemented, involving the analysis of a total of 9356 respiratory
samples collected from diverse regions of Argentina [11,12]. It was determined that all
SARS-CoV-2 variants of global epidemiological importance, except for the Beta variant,
were present and circulating within the country at some point during the study period [8].

Noteworthy, since mid-February 2021, a very rapid growth in the frequency of
genomes carrying the nonsynonymous mutations S_L452Q and S_F490S in the Spike
gene was observed in samples from the Metropolitan Area of Buenos Aires (MABA), which
has been the epicenter of the epidemic in Argentina [11]. The complete genome analysis
showed that these samples belong to the lineage C.37, later designated as a global VOI, and
assigned the WHO label “Lambda” [13]. This variant was detected in several countries
worldwide, but it has spread particularly rapidly and with growing frequency in South
America, mainly in Peru, Argentina, and Chile. Remarkably, while the Alpha variant was
responsible for most COVID-19 cases around the world during the beginning of 2021 [4],
Lambda and Gamma were the most frequently detected variants in Argentina [11].

Here, we describe the emergence, spread, predominance, and decline of the Lambda
SARS-CoV-2 variant in Argentina, and the relationship with global Lambda isolates. This
study provides insights into the understanding of the evolutionary dynamics of a SARS-
CoV-2 viral variant in a geographic region during social distancing measures and ongoing
vaccination strategies.

2. Materials and Methods
2.1. SARS-CoV-2 Sample Collection and Sequencing

Since the start of the pandemic, molecular surveillance of SARS-CoV-2 virus has been
implemented in Argentina by the PAIS Consortium. Fifteen sequencing nodes throughout
the country have sequenced and analyzed the SARS-CoV-2 virus using two strategies: next-
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generation sequencing (NGS) to obtain complete genomes and Sanger sequencing to obtain a
fragment of the Spike protein gene spanning amino acids (aa) 428 to 750, as previously reported
in Torres et al. [11]. These approaches together provide valuable epidemiological information,
allowing lineage distribution and virus genetic diversity to be characterized in near-real time.

During the second wave of COVID-19, an intensive sampling strategy for sequencing
was implemented, which involved randomly selecting a 2.5–10% fraction of the total
positive cases detected weekly in different healthcare centers. This approach enabled the
detection of emerging variants and the tracking of their frequency in various regions of the
country. Regular sampling was conducted at sentinel laboratories, in addition to sporadic
sampling in some locations. These samples were selected for sequencing after positive tests
for SARS-CoV-2 were reported, considering both the Ct value (<30) and the availability of
epidemiological metadata (date of collection and the place of residence of the patients). It
is worth noting that all samples come from individuals who acquired the infection in the
community, since those with a travel history abroad or related to travelers were excluded
from the analyzed cohort. Depending on the sequencing node, libraries preparation and
sequencing were performed either on Illumina and/or Oxford Nanopore Platforms. The
preparation of SARS-CoV-2 genomic libraries was performed using two different strategies:
(1) the Quick protocol [14] with Illumina platform and (2) the Oxford Nanopore sequencing
using the ARTIC Network or Midnight primer scheme [15]. The libraries were sequenced
on the Illumina MiSeq or NextSeq instruments (Illumina, San Diego, CA, USA) and in R9
flow cells on a MinIon device (Oxford Nanopore Technologies, Oxford, UK).

The reads obtained from sequencing on the Illumina platform were initially filtered by
quality, both at the base level and the read level. Subsequently, PCR duplicates, spurious
primer sequences, and reads potentially contaminated from other organisms, particularly
human contamination (using the DeconSeq program [16]), were removed using BBMap [17].
Finally, the quality of the resulting reads was assessed using the FastQC program [18]. The
resulting reads were aligned to the SARS-CoV-2 reference genome (ID EPI_ISL_402124,
hCoV-19/Wuhan/WIV04/2019) using the BWA-MEM software [19]. Finally, the consensus
sequence for each sample was generated in FASTA format by the pile-up command of the
samtools software and the consensus command of bcftools [20].

After sequencing on Oxford Nanopore Technologies (ONT) sequencing platforms, the
raw sequencing data (files in FAST5 format) were converted into DNA sequences, and the
index sequences were trimmed using the Guppy program [21]. The workflow known as
“ARTIC SARS-CoV-2”, developed on the Oxford Nanopore EPI2ME platform [22], was
used to obtain the complete viral genome as a FASTA-formatted sequence. In this protocol,
DNA sequences in FASTQ format were filtered based on sequence length and quality and
then aligned to the reference SARS-CoV-2 genome using minimap2. A specific bed file from
the primer scheme was used to identify regions of the mapped sequences corresponding to
synthetic sequences (primers), and these regions were trimmed to ensure that the sequences
were entirely of biological origin. The retained sequences were used to generate a consensus
sequence, which was further polished using Medaka [23].

A total of 9356 sequences were obtained by the PAIS Consortium, with 3531 obtained
through NGS (complete genomes) and 5825 obtained through Sanger sequencing (fragment
of the Spike protein gene).

2.2. SARS-CoV-2 Genomic Datasets

Different datasets were generated depending on the analyses to be performed. A
schematic representation of the datasets is shown in Figure 1.

To analyze the genomic epidemiology of SARS-CoV-2 variants in Argentina during
the circulation period of the Lambda variant, complete- and partial-genome sequences
obtained by the PAIS Consortium between epidemiological week (EW)-44/2020 and EW-
17/2022 were used. A total of 9356 sequences were analyzed, with 3531 obtained through
NGS (complete genomes) and 5825 obtained through Sanger sequencing (fragment of the
Spike protein gene).
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To analyze the mutational patterns within Lambda whole-genome sequences, all
complete genomes of the Lambda variant obtained by the PAIS Consortium (n = 318) were
combined with SARS-CoV-2 genomes reported by other groups in the GISAID database [3].
The search criteria were set to include genomes with a collection date between EW-44/2020
and EW-17/2022, located in Argentina, and classified as the Lambda variant (lineage C.37)
using the Pangolin COVID-19 Lineage Assigner (accessed on 30 April 2022) [24]. This
dataset comprised all Lambda genome sequences from Argentina throughout the studied
period (n = 1263).

To study the introductions and diversification of Lambda in Argentina, a phylogenetic
analysis was conducted with the 1263 genome sequences of the Lambda variant from
Argentina, along with their most similar sequences (the best ten hits for each sequence)
from a BLAST analysis conducted against the GISAID database (accessed on 30 April 2022),
plus reference sequences from other lineages as outgroup. Sequences <29 Kb were ex-
cluded, except for isolates with 27–29 Kb in length that were kept due to the scarce ge-
nomic data available from some regions. The final dataset included 1731 sequences, with
1688 Lambda sequences.

Finally, to reconstruct the spatiotemporal distribution of the Lambda variant in Ar-
gentina, two subsets were generated by subsampling sequences previously used in the
phylogenetic analysis. This approach was carried out to optimize the computational pro-
cess required for the Markov chain runs and ensure convergence of the analysis. The first
analysis comprised a subset of the sequences (n = 325) used in the previous phylogenetic
analysis of the four main phylogenetic clades of Lambda in Argentina. The selection pro-
cess considered the geographic distribution and collection dates of the sequences. As a
result, redundant sequences were removed if they originated from the same location, had
very similar collection dates, and clustered together within a phylogenetic clade. This
subset was used to estimate the time and location of the most recent common ancestors,
rates of evolution and demographic reconstruction. The geographic distribution of the
Argentine sequences included in this analysis is described in the phylogeographic analysis
(Section 3.4). The second analysis consisted in a different subset of sequences used in the
phylogenetic analysis, focusing on the main transmission cluster in Argentina (n = 243).
This subset was also chosen with consideration for geographic representation and collection
dates to conduct a Bayesian phylogeographic diffusion analysis in discrete space.

We gratefully acknowledge the authors from the originating laboratories responsible
for obtaining the specimens and the submitting laboratories where genetic sequence data
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were generated and shared via the GISAID Initiative, on which part of this research is based.
All genome sequences and associated metadata in these datasets are published in GISAID’s
EpiCoV database. To view the contributors of each individual sequence with details such
as accession number, Virus name, Collection date, Originating Lab and Submitting Lab and
the list of Authors, visit 10.55876/gis8.230503du.

2.3. Phylogenetic Inference

Sequences were aligned using MAFFT v7.475 [25] with the default parameters and
manually edited to exclude the 5′ and 3′ ends (first 54 nt and the last 67 nt, in reference
to isolate hCoV-19/Wuhan/WIV04/2019, EPI_ISL_402124). The best-fitted evolutionary
model was determined using ModelFinder [26] according to the Bayesian Information
Criterion (BIC). Maximum-likelihood phylogenetic reconstruction was performed with the
IQ-TREE COVID-19 release 2.2.0 [27] and clustering confidence was evaluated using the
Ultrafast Bootstrap approximation method (UFBoot, 10,000 replicates) [28] and Shimodaira–
Hasegawa approximate likelihood ratio test (SH-aLRT, 1000 replicates) [29].

To verify the lineage assignment made by Pangolin COVID-19 Lineage Assigner,
maximum-likelihood phylogenetic trees were performed (data not shown), including all
Argentine sequences and reference sequences for several lineages and sublineages obtained
from the PANGO designation list v1.9 [30]).

2.4. Phylodynamic Analysis

A Bayesian coalescent approach was used to co-estimate the temporal and spatial
history of the SARS-CoV-2 C.37 lineage in Argentina. In addition, a discrete phylogeo-
graphic analysis was performed and used to visualize the spatiotemporal spread of the
main transmission cluster in Argentina.

The temporal signal of the datasets was examined by root-to-tip regression using
Tempest v1.5.1 [31] software. Sequences whose genetic divergence and sampling date
were incongruent (according to visual inspection) with the general pattern of the datasets
were discarded, as they could have had sequencing errors, contamination, or misassigned
collection date.

The analyses were carried out using an appropriate substitution model according to
the BIC estimated with ModelFinder in IQ-TREE v2.1 [26,27]. The uncorrelated lognormal
(UCLN) molecular clock model [32], and the Bayesian Skyline coalescent model [33] imple-
mented in the BEAST v1.10.4 software package [34], were used. A discrete phylogeographic
model with an asymmetric substitution matrix over the sampling locations was set, with
all transitions equally probable as a prior.

Three independent Markov chain Monte Carlo (MCMC) chains were run for each
dataset. Results were examined with Tracer v1.7.1 [35] to evaluate the convergence of
parameters (effective sample size ≥200, acceptable mixing without tendencies in traces,
with a burn-in of 10%) and concatenated with LogCombiner [34]. Uncertainty in parameter
estimate was evaluated in the 95% highest posterior density (HPD95%) interval. The
maximum clade credibility tree (MCCT) was summarized using Tree Annotator v1.10.5 [34],
visualized with FigTree v1.4.4 [36], and analyzed further in the SPREAD3 program [37].

2.5. Mutation Analysis

To study the emergence of mutations in Argentina, we traced the profiles of nonsynony-
mous mutations and compared their frequency in the studied population. The mutational
profile of each sequence from lineage C.37 was investigated using the CoVsurver tool avail-
able at the GISAID EpiCoV platform [3] to identify nonsynonymous changes in comparison
with the Wuhan-Hu-4 reference sequence (GISAID: EPI_ISL_402124). All frequencies were
calculated based on the coverage of each position in the genome sequence, and those
positions with less than 50% coverage were excluded from the analysis.
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2.6. Statistical Analysis

The frequencies of detection of VOI, VOC, or mutations and the 95% CIs were esti-
mated with the Wilson/Brown method, implemented in the GraphPad Prism v.9.2 program
(San Diego, CA, USA).

2.7. Data Visualization

The plots were generated using graphical visualization tools at covdb.stanford.edu [38]
(Philip L. Tzou et al., 2022) and/or Microsoft Excel v16.47.1 and edited in Adobe
Illustrator 23.1.1.

3. Results
3.1. The Molecular Epidemiology of Lineage C.37 in Argentina

From October 2020 to April 2022, 9356 respiratory samples positive for SARS-CoV-2
from Argentina were subjected to sequencing, out of which 3531 were obtained through
NGS and the remainder were obtained through Sanger sequencing. In this study, we
analyzed genomic sequences obtained from the six regions of the country [38], but with a
heterogeneous distribution. A high number of genomes from the MABA and Pampeana
regions were sequenced, while in regions such as Cuyo, Northeast, and Northwest, a lower
number of sequences were obtained due to their lower population and, as a consequence, a
lower total number of cases (Figure 2A) [39].
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abundance of each SARS-CoV-2 variant per epidemiological week.

Of note, 82.04% of the samples corresponded to a VOC/VOI: 26.96% Gamma,
21.37% Omicron, 16.10% Delta, 13.24% Lambda, 4.19% Alpha, and 0.18% Mu (Figure 2). In
previous works, we have reported the emergence and evolution of SARS-CoV-2 lineages
during the first and third waves of COVID-19 in Argentina [11,12,40]. In this study, we
have focused on the analysis of the Lambda variant during the second wave of COVID-19
in Argentina that took place during the first half of 2021.

The Lambda variant was first detected in Argentina on 30 January 2021, through the
detection of its characteristic mutations in the Sanger-sequenced region of Spike protein
gene (S_L452Q and S_F490S). Since then, it was detected in 1239 out of 9356 genome
sequences from Argentina with a frequency that increased steadily since February (EW-
5/2021) and reached a value of 31.1% (EW-17/2021, end of April) (Figure 2B and Table S1).
However, the impact of the Lambda variant was heterogenous in each region of the country,
and the highest frequencies were found in the MABA (44.7%, SE 17-18/2021) and Pampeana
regions (27.4%, SE 33-34/2021).
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By the end of October 2021, the Lambda frequency decreased to values below 10%
in accordance with the end of the second wave of COVID-19 and the introduction of the
Delta variant in Argentina. Since then, Lambda was detected only in sporadic cases until
April 2022. Notably, the last detected case occurred during the third wave of COVID-19,
when the Omicron variant had a prevalence above 99% since EW 03-04/2022. The clinical–
epidemiological investigation revealed that this single case was an immunocompromised
individual with an advanced HIV infection. Indeed, a particular set of mutations was
found in the genome sequence, which indicates a highly divergent Lambda variant that
has not yet been reported in databases.

3.2. Phylogenetic Analysis

Argentine sequences were analyzed along with the most similar sequences in the
GISAID database to infer common transmission chains and establish the presence of
circulating viruses. The Argentine sequences included in this analysis were distributed
across regions as follows: 35% Pampeana, 26% Northwest, 15% MABA, 11% Patagonia, 9%
Northeast, and 4% Cuyo.

The introduction and diversification study performed on the Argentine Lambda
genomes revealed a minimum of 18 independent introduction events, 9 of them with
evidence of onward transmission. Most Lambda sequences from Argentina clustered into
four main clades, labeled as 1, 5, 6, and 8, where samples from all Argentine regions were
found (Figure 3). Clades 5, 6, and 8 were associated with specific regions: Clade 5 circulated
mainly in the Northwest region, Clade 6 mostly in the Pampeana region, and Clade 8
between the Patagonia and Pampeana regions. Regarding Clade 1, the largest one, the
861 Argentine sequences were split into several subclades, with few sequences collected
from other countries (mostly the USA, Chile, Spain, and Mexico). Although the basal
relationship between subclades could not be resolved with confidence, highly supported
local groups with viral diversification to different cities could be identified (complete
full-detailed phylogenetic tree is in the Supplementary Materials).

In addition to these major clades, we also identified a number of smaller clades
(2, 3, 4, 7, and 9), as well as 7 singletons which were randomly interspersed with Lambda
sequences mostly from Peru, Chile, and the United States.

Notably, Clade 4 contained the latest Lambda sequence reported in Argentina in
April 2022, PAIS-G1123 (EPI_ISL_13466784). This clade included 5 other sequences from
Argentina, Chile, and the United States, all reported between February and July 2021. As
expected, the branch containing PAIS-G1123 shows a large number of substitutions per site
compared to the rest of the group.

3.3. Mutational Patterns in Argentine SARS-CoV-2 Whole-Genome Sequences

Compared to the reference sequence hCoV-19/Wuhan/WIV04/2019 (GISAID acces-
sion number EPI_ISL_402124), the 1263 genome sequences displayed a total of 1631 amino
acid changes in different viral genes (912 in ORF1a/1b, 268 in S, 121 in N, 114 in ORF3a,
94 in ORF7a, 47 in ORF8, 28 in M, 18 in ORF6, 17 in ORF7b, and 12 in E). In the Argen-
tine sequences, all the C.37 lineage defining amino acid changes [41], shown in grey in
Figure 4A, were found at a frequency higher than 95.9%.

Five amino acid substitutions, with frequency values between 10 and 90% (shown
with colors in Figure 4A), were further analyzed to determine if they could be assigned
to one or more of the Argentine clades identified by phylogenetic inference (in Figure 3,
the nonsynonymous mutations related to each clade are shown). While the amino acid
substitution ORF3a_A110S was observed in several clades with Argentine sequences (clades
1, 7, and 9), the remaining mutations were found to be associated with specific Argentine
clades. For instance, the amino acid substitution nsp3_T217I was only found in Clade 8,
which includes genome sequences mainly from two regions, Pampeana and Patagonia. In
relation to Clade 1, an amino acid replacement was found throughout the clade at position
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N_A119, of which more than 70% corresponded to the N_A119P substitution. In addition,
the Spike_A262S and nsp2_T528I mutations were found as signatures of Subclade 1.1.

The analysis of the complete SARS-CoV-2 genome PAIS-G1123 (EPI_ISL_13466784)
from the patient detected in April 2022 showed a total of 30 nucleotide substitutions, 4 dele-
tions, and 1 insertion compared to the reference sequence hCoV-19/Wuhan/WIV04/2019
(EPI_ISL_402124). Of these, 19 mutations correspond to the constellation of mutations
characteristic of the Lambda variant. Interestingly, this case occurred at a moment of no
circulation of Lambda in our country, suggesting a prolonged infection time that started
months before their detection. Remarkably, compared to the most related genome se-
quences of the Lambda variant, this sequence displayed 13 nonsynonymous mutations,
2 deletions, and 1 insertion distributed in 2 genes: ORF1ab (replicase polyprotein) and
Spike glycoprotein gene (Figure 4B). Of the 13 changes in the Spike protein, 2 were in the
receptor-binding domain, 10 were in the N-terminal domain, and 2 were in the intergenic
region (shown in red text, Figure 4B).
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3.4. Phylogeographic Analyses

A discrete phylogeographic analysis was performed on a subset of Lambda sequences
(n = 325), including the four main Argentine clades that showed local transmission
(clades 1, 5, 6, and 8). The Argentine sequences included in this analysis were distributed
across regions as follows: 26% Pampeana, 24% Northwest, 23% MABA, 11% Patagonia,
10% Northeast, and 6% Cuyo.

The Lambda variant displayed a rate of evolution of 3.88×10−4 substitutions per site
per year (s/s/y) (HPD95% = 3.54× 10−4 − 4.22× 10−4), with an estimated date for its most
recent common ancestor on 13 November 2020 (HPD95% = 15 October to 9 December 2020),
placed in Peru (posterior probability (pp) 1.0).

The demographic reconstruction of the Lambda isolates, represented by the Bayesian
skyline plot, reveals a notable increase in the effective number of infections during the pe-
riod spanning from December 2020 to mid-April 2021, when it reached a plateau continuing
until the last sampling time (Figure 5).

To explore the time/date of the introduction of the viruses that gave rise to the four
main clades that circulated in Argentina, we estimated the time of the most recent common
ancestor (TMRCA) and its location for each clade (Figure 6A).

The TMRCA of Clade 1 was estimated on 5 December 2020 and was in MABA (pp,
posterior probability, 0.84). To evaluate the regional distribution of this clade, which was
the main clade of Lambda in Argentina, a second discrete phylogeographic analysis was
conducted. The reconstruction of the diffusion history of Clade 1 is shown in Figure 6B. The
result suggested an early spread of Lambda from MABA to other provinces that persisted
throughout 2021, with a more limited onward spread among provinces since early May.
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Figure 6. (A) The Bayesian discrete phylogeographic analysis. Maximum clade credibility tree for
the Lambda variant. The branches’ colors represent the MRCA’s location (described in the legend).
The time scale in years is detailed at the bottom. (B) Different stages of phylogeographic history of
Clade 1 under a discrete diffusion model. The lines colors represent the posterior probability support
for each transition rate between locations calculated by the BEAST program and summarized by the
SPREAD3 program (described in the legend). The size of the polygons around a sampling location is
proportional to the number of lineages that maintain that location.
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The TMRCA of Clade 5 was estimated to be on 26 January 2021, and was located in
Peru (pp 0.84). An Argentine sequence with a travel history to Peru was placed basally
to this clade on the tree, so this sequence is likely to share a common ancestor with the
probable source of introduction. Viruses within this transmission cluster were diversified
predominantly in the Northwest region.

The TMRCA of Clade 6 was estimated to be on 16 February 2021, and was located in
Chile (pp 0.92). Viruses in this cluster were distributed among all Argentine regions but
were particularly widespread in the Pampeana region, where transmission was persistent
until December 2021.

The TMRCA of Clade 8 was estimated to be on 20 December 2020. The location of the
MRCA (Most Recent Common Ancestor) was estimated to be in MABA (pp 0.99), from
where viruses within this cluster were mainly distributed between two Argentine regions
(Pampeana and Patagonia), resulting in two highly supported chains of transmission.

4. Discussion

Since the C.37 lineage of SARS-CoV-2 was initially reported in Peru in December
2020 [42], considerable research has been conducted, primarily in Peru, to elucidate the
dispersion and evolutionary dynamics of the Lambda variant during the early stages
of viral circulation [43,44]. However, the transmission and evolutionary dynamics of
this variant in other affected regions remain incompletely characterized. To address this
knowledge gap, our study aimed to comprehensively characterize the emergence and
spread of the SARS-CoV-2 Lambda variant throughout Argentina, from its initial entry into
the country until its detection ceased. Our investigation provides insights into the genetic
and epidemiological features of the Lambda variant, contributing to a more comprehensive
understanding of one of the SARS-CoV-2 variants of interest that had a major impact on
South America, a region that has been less studied during the COVID-19 pandemic in
comparison with higher-income countries.

Our analysis of 9356 SARS-CoV-2-positive respiratory samples revealed a consistent
increase in the frequency of the Lambda variant from February 2021 (EW-5/2021) through
the end of April (EW-17/2021) in Argentina. These findings were consistent with the earlier
emergence of the Lambda variant in Peru, where the first case was detected in November
2020, and its frequency increased until April 2021 [45]. Lambda became the predominant
variant in the Coastal and Andean regions of Peru during the first half of 2021, surpassing
Gamma in almost the entire country for several months, likely because the Lambda variant
held off Gamma expansion initially due to a “founder effect” (having been detected one
month earlier) [44]. In contrast, in Brazil, a low level of Lambda VOI circulation was
found, and Gamma was the dominant variant during early 2021 [46]. Argentina was
the region where these two scenarios converged, as Lambda and Gamma cocirculated
during the first half of 2021, with Gamma having a higher detection frequency. Given that
Argentina shares large borders with other Latin-American countries, commercial contact
with neighboring countries via terrestrial transportation may have led to the introduction
and dissemination of both variants in the country. This phenomenon was also observed
at the borders of the Amazon region of Peru with Brazil, where the circulation of the
Gamma variant predominated in contrast to the rest of Peru [44]. Further information on
the circulation of these variants in neighboring countries of Argentina, such as Bolivia or
Paraguay, may confirm this hypothesis. In contrast, Alpha, which was the prevalent variant
in Europe, had a minimum impact in Argentina, possibly because the closure of air borders
possibly mitigated the epidemiological impact [47,48].

The demographic reconstruction of the Lambda variant showed an increase in the
effective number of infections that corresponded with the increase in Lambda frequency
in our dataset and with the reported cases in the National Surveillance System during the
second wave of COVID-19 in Argentina [39]. In early April 2021, the national government
decided to increase movement restrictions within the country and to cancel all flights
to Latin-American countries due to the epidemiological situation in South America [49].
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This may be reflected in the demographic reconstruction of the Lambda variant, where the
plateau observed at the end of April could indicate a stabilization in the diversification of the
Lambda variant due to increased social distancing and restrictions on foreign travel entry.

The persistence of the Lambda variant’s detection continued until October 2021,
subsequently resulting in a decrease in its frequency to less than 10%. This decline coincided
with the end of Argentina’s second wave of COVID-19 and the emergence of the Delta
variant. The spread of Delta throughout Argentina started in August 2021, later than in
other countries [50–52], and, like neighboring countries, the emergence of Delta did not
lead to an increase in the incidence of COVID-19 cases and deaths (Figure 2). This could be
a consequence of the strict limitations imposed on air travel, which also enabled higher
vaccination rates before the entry and dominance of Delta in the country [53].

Our phylogenetic analyses of all reported Lambda sequences from Argentina indicated
that there were at least 18 introductions into the country. The analyses showed the national
spread of Lambda, as indicated by several large clades of closely related SARS-CoV-2
lineages, which were defined by mixtures of samples from patients living in different
regions of Argentina. Also, smaller clades clustering within specific regions were observed,
providing evidence of local transmission chains of the virus. These findings were consistent
with interprovincial community transmission within the same region, such as that observed
in the Northwest region (Clade 5) and Pampeana region (Clade 6), as movement to other
regions was increasingly restricted since the emergence of Lambda in the country [49].
Clades with highly moderate support, including sequences from Argentina, were observed.
However, the basal relationship between the clades could not be confidently resolved.

The phylogeographic analyses showed that the four main Argentine clades had an
estimated date for their most recent common ancestors between December 2020 and
February 2021; this finding is consistent with the detection of the first sample in the country
for each clade occurring two months later. In clades 5, 6, and 8, the estimated location
was in the neighboring countries, Peru and Chile. Interestingly, sequences from MABA
were observed in all clades, often in basal positions, and given that the Lambda variant
was first detected in MABA, this observation could suggest the significant role played by
the pandemic epicenter of Argentina as the point of entry and subsequent transmission of
the virus across the country. Moreover, in Clade 1, our phylodynamic analysis suggested
an initial diversification in MABA, which subsequently spread to other regions within
Argentina, leading to widespread transmission of the Lambda variant within the country, as
shown in the spatiotemporal reconstruction of the dispersal history of Lambda in Figure 6B.

The Lambda variant is characterized by multiple lineage-specific deletions and amino
acid substitutions in its viral genome, as shown in Figure 4A [41]. Specifically, the spike protein
of the Lambda variant has a unique pattern of eight mutations (G75V, T76I, R246N, ∆247-253,
L452Q, F490S, D614G, and T859N). Interestingly, the amino acid substitution in the L452
position had also been reported in the Delta and Omicron variants [54,55], and it had been
demonstrated that the L452Q mutation conferred increased viral infectivity and resistance
to vaccine-induced antiviral humoral immunity [56]. While L452Q is almost exclusive to
C.37, L452R is present in Delta and former variants of interest Epsilon (B.1.427/B.1.429) and
Kappa (B.1.617.1) and is associated with increased affinity for the human ACE2 receptor [57].
Furthermore, the F490S mutation had been associated with escape from convalescent sera [58].
The 247-253 deletion in the NTD of the Lambda Spike is located in an antigenic site, suggesting
that this deletion might have contributed to immune escape by shortening or fully deleting
neutralizing epitopes or exploiting increased glycosylation [59–62]. Lambda also displays
the nsp6 106–108 deletion, found in VOCs alpha, beta, and gamma [63]. Given that the
mutations present in Lambda and their genomic location are shared in many cases with the
mutations found in the designated variants of concern, a greater epidemiological impact of
the Lambda variant could have been observed if molecular surveillance in Latin America
had been comparable to that of higher-income countries. Additionally, the government’s
implementation of containment measures to prevent the spread of COVID-19 may have
contributed to the decrease in Lambda transmission to other continents.
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Some of the mutations found in Argentine sequences were assigned to one or more
of the Argentine clades identified by phylogenetic inference, such as Clade 1 (N_A119P,
Spike_A262S, and nsp2_T528I), Clade 8 (nsp3_T217I), and clades 1, 7, and 9 (ORF3a_A110S).
In accordance with our results, it has been reported that the genes encoding the nonstruc-
tural protein NSP3 and the structural proteins S and N exhibit the highest number of
mutations in the Lambda sequences isolated from Peru, and that the proteins with some
sites under positive natural selection were ORF3a, ORF8, and S [45].

The Lambda sequence, PAIS-G1123 (EPI_ISL_13466784), was detected in April 2022,
several months after the last Lambda sequence was reported in Argentina and exhibited
14 nonsynonymous mutations, two deletions, and one insertion in comparison to the most
closely related genome sequences of the Lambda variant detected in Argentina. The most
remarkable characteristic of this genome is the acquisition of multiple mutations within
the NTD of the S glycoprotein, including deletions at positions 69–70 and 144. These
deletions have been identified in the Omicron and Alpha variants of concern and have
been associated with an increase in infectivity as a result of enhanced incorporation of
cleaved spike into virions and evasion of antibody response [64,65]. Given that the sample
belonged to an immunocompromised patient, it is likely that the changes in the amino acid
composition of the viral Spike protein were a result of an ongoing interaction between the
persistent virus and the patient’s adaptive immune system, as has been documented in other
comparable clinical cases [66,67]. The emergence of rare mutations in chronically infected
immunocompromised hosts, implying a radical difference in selective pressure compared
to common cases, could be involved in the evolutionary leaps that characterize variants of
concern. Therefore, understanding the evolution of SARS-CoV-2 and the emergence of new
variants through studies is critical in developing effective prevention and control strategies
to minimize the impact of the virus on public health.

This study has contributed to the understanding of the evolutionary trends exhibited
by SARS-CoV-2 and emphasizes the role of genomic surveillance in identifying the emer-
gence and geographical distribution of the SARS-CoV-2 Lambda variant. Furthermore,
it underscores the significance of intercountry interactions, thereby highlighting the im-
portance of implementing monitoring measures, not only at the local but also at border
level. The ecological competition between two viral variants, Lambda and Gamma, within
a vaccinated population raises intriguing questions, as the mutations within these variants
could potentially play a critical role in determining their competitive advantage. Moreover,
the study investigates the emergence of intravariant mutations, along with their occurrence
in immunocompromised patients. These patients serve as reservoirs for viral diversity,
amplifying the significance of mutations observed within their cases. This emphasizes the
imperative need for comprehensive monitoring and a thorough understanding of viral
dynamics in both the general and immunocompromised populations.

We believe that increasing data sharing and research in South America is crucial
to enhance our comprehension of the COVID-19 pandemic in this region. Furthermore,
revealing the virological characteristics of mutations in VOCs and VOIs can establish a
baseline, which is necessary to evaluate the risk of newly emerging SARS-CoV-2 variants
in the future, as well as their impact on therapeutics or vaccination effectiveness.
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