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Abstract: Corn (Zea mays L.) nitrogen (N) management requires monitoring plant N concentration
(Nc) with remote sensing tools to improve N use, increasing both profitability and sustainability.
This work aims to predict the corn Nc during the growing cycle from Sentinel-2 and Sentinel-1
(C-SAR) sensor data fusion. Eleven experiments using five fertilizer N rates (0, 60, 120, 180, and
240 kg N ha−1) were conducted in the Pampas region of Argentina. Plant samples were collected
at four stages of vegetative and reproductive periods. Vegetation indices were calculated with new
combinations of spectral bands, C-SAR backscatters, and sensor data fusion derived from Sentinel-1
and Sentinel-2. Predictive models of Nc with the best fit (R2 = 0.91) were calibrated with spectral
band combinations and sensor data fusion in six experiments. During validation of the models in five
experiments, sensor data fusion predicted corn Nc with lower error (MAPE: 14%, RMSE: 0.31 %Nc)
than spectral band combination (MAPE: 20%, RMSE: 0.44 %Nc). The red-edge (704, 740, 740 nm),
short-wave infrared (1375 nm) bands, and VV backscatter were all necessary to monitor corn Nc.
Thus, satellite remote sensing via sensor data fusion is a critical data source for predicting changes in
plant N status.

Keywords: C-SAR backscatter; spectral bands; Sentinel-1; Sentinel-2

1. Introduction

Nitrogen (N) is the most limiting nutrient for corn (Zea mays L.) production, with
fertilization via inorganic fertilizers being one of the most relevant sources [1–3]. Nitrogen
fertilizer requirement is estimated as the difference between soil nutrient supply and crop
demand linked to the target yield [4]. This estimation is not simple, and the optimal fer-
tilizer N rate calculation presents a significant degree of uncertainty [5], mainly linked to
environmental conditions during the crop growing season. Although traditional methods
can adequately estimate fertilizer N needs based on soil analysis at or right before sowing
time [6–9], these methods do not consider seasonal weather conditions [10]. Therefore,
improved techniques for monitoring crop N status should be explored to better inform
decisions on fertilization and adjust crop N needs. The crop N nutrition index (NNI)
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is a diagnostic method based on the characterization of plant biomass (W) and N con-
centration (Nc), which allows for the identification of changes in crop N status during
growing [11]. However, determining the mentioned parameters (W and Nc) is labor-
intensive, time-consuming, and expensive [12]. Hence, it is necessary to explore a novel
method to characterize and address this complex challenge and adapt crop N requirements
more efficiently.

Remote sensing, mainly linked to the utilization of transmittance and spectral re-
flectance proximal sensors, has been evaluated as an appropriate option to monitor corn N
status [13,14]. Proximal sensors collect information close to the crop canopy at distances
of less than 100 cm, for which reflectance or transmittance sensors (chlorophyll meters)
are used [15]. For the proximal reflectance sensor, a critical component of the NNI, Nc,
has been modeled from the utilization of vegetation indices (based on the infrared and
visible regions of the spectrum) [16]. For example, vegetation indices measured from
proximal reflectance sensors such as CropCircleTM and GreenSeekerTM and the SPAD index
from the SPADTM chlorophyll meter have been used to monitor N demand and adjust
fertilization needs in situ [13–18]. Several investigations reported a significant level of
Nc prediction from vegetation indices with red-edge bands, such as normalized differ-
ence red-edge (NDRE) and red-edge vegetation index (RERVI), determined from proximal
sensors [13,14,17]. In addition, model performance has been reported to improve when
using a combination of vegetation indices [13,14]. Past research [18], using the normalized
difference vegetation index (NDVI) and NDRE, developed a combined vegetation index
(canopy chlorophyll content index, CCCI) to predict overall within-canopy N content for
wheat (Triticum aestivum L.). Additionally, the CCCI demonstrated good ability in predict-
ing corn Nc during vegetative stages [14]. More recently, it has been reported that the
simplified CCCI (SCCCI = NDRE/NDVI) successfully predicted leaf Nc [13]. However, the
fundamental drawback of these sensors is their low spatial coverage since they measure
close to, or in contact with, the plant, which is unsuitable for evaluating a whole field and
capturing the spatial variability of Nc [19,20]. Optical sensors onboard satellites are an alter-
native to monitoring the crop N status, allowing the capturing of the corn’s spatio-temporal
variability at the field scale.

Satellite remote sensing tools obtain information on land and water surfaces through
remote observations of electromagnetic radiation reflected or emitted by the Earth’s sur-
face [21]. Remote sensors can be classified as passive (optical) or active (radar). Passive
remote sensing detects solar energy reflected and emitted by the Earth instead of that gen-
erated by a sensor. With remote optical sensors, vegetation indices have been developed to
monitor biophysical parameters related to N management in corn [22,23]. Currently, remote
optical sensors on Sentinel-2 satellite platforms observe the visible spectrum, red-edge,
near-infrared, and short-wave infrared. The spectral (multispectral), radiometric, temporal
(revisit time), and spatial resolutions are high [24]. The European Space Agency (ESA) pro-
vides observations from Sentinel-2 openly and freely. For these reasons, crop monitoring in
precision agriculture with Sentinel-2 has been successful [25]. More recently, the importance
of the red-edge spectrum for monitoring corn chlorophyll content from Sentinel-2 remote
optical sensors has been highlighted [26]. Thus, vegetation indices combining red-edge
bands from remote sensing tools can improve the current monitoring of corn Nc during its
growth cycle. However, these sensors have the disadvantage of not receiving land surface
information in cloudy conditions [21,27]. An alternative is found in C-band Synthetic
Aperture Radar (C-SAR) systems that can relieve Earth surface information at night or
during inclement weather, except in the most severe conditions [21]. Therefore, remote
optical sensors could monitor corn Nc throughout its growth cycle complemented with
C-SAR systems.

The C-SAR sensors emit their energy, making them independent of solar and ground
radiation [21]. The C-SAR system emits a microwave (5.4 GHz) electromagnetic pulse to
measure the time and intensity of the echo reflected from the Earth’s surface (backscat-
ter) [21,28]. The C-SAR system can control the direction of the emitted electric field in
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horizontal (H) and vertical (V) polarizations. In addition, it can receive wave returns on
both H and V channels. The C-SAR backscatters are highly sensitive to plant structural
differences (stalk:leaf ratio, height, wet and dry W, and water content), while optical in-
dices saturate during advanced corn growth stages [28,29]. The C-SAR backscatters have
been used to monitor the biophysical parameters of different crops [30–33], specifically
corn [34–36]. Radar vegetation indices with backscatters were adjusted to dry W in oilseed
rape (Brassica napus L.) [37]. In addition, normalization of C-SAR backscatter to local inci-
dence angle (LIA) has been shown to improve crop monitoring [38]. Currently, the ESA
openly and freely provides active observations from the C-SAR system on the Sentinel-1
satellite platforms. The Sentinel-1 C-band synthetic aperture radar (SAR) instruments
support operation in both single-polarization (HH or VV) and dual-polarization (HH+HV
or VV+VH) modes, with high temporal and spatial resolutions; the exact resolution de-
pends on the operational mode and the observation scene [21]. Therefore, Sentinel-1 and
Sentinel-2 are powerful tools for monitoring growing crops. However, these sensors have
yet to be calibrated for monitoring the Nc throughout the entire crop cycle.

Previous studies have focused on determining corn’s Nc through proximal sen-
sors and monitoring other biophysical characteristics of corn through remote sensing
techniques [13,14,35,39,40]. Recent research has advanced crop monitoring by utilizing
red-edge bands [26] or manipulating C-SAR data from remote sensing [38]. These methods
can provide valuable information for real-time monitoring of crop N status and predicting
Nc during the growing season, which can aid in making informed decisions about fertilizer
application. However, there is still a need to improve the estimation of Nc in corn by
exploring data fusion approaches that integrate Sentinel-1 and Sentinel-2 data. This study
aims to test sensor data fusion of spectral bands and C-SAR backscatters to more accurately
predict the Nc of the entire corn crop cycle, which leads to more precise N fertilization
management for corn and better predictions of crop N needs.

2. Materials and Methods

A conceptual framework was developed to test all options to model corn Nc from
the calculation of vegetation indices (VIs), the combination of spectral bands, and the data
fusion integrating these options with C-SAR backscatters for calibration and then validation
datasets (Figure 1).
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Figure 1. The conceptual framework for testing vegetation indices (VIs) derived from optical sensors,
the combination of spectral bands, and integration of sensor data fusion to model corn nitrogen
concentration (Nc). S-2: spectral bands from Sentinel-2; S-1: C-SAR data from Sentinel-1.

2.1. Description of Field Studies

During the 2020–2021 corn growing season, 11 field experiments were conducted on
four commercial farms (sites) in the Pampas region of Argentina. The Pampas region is one
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of the world’s most productive areas and is characterized by deep Mollisol soils with dark
horizons [41]. The sites were selected and grouped into two subregions with contrasting
soil and climate conditions (Table 1 and Figure 2): (i) northern Pampas (NP) (Site 1 and
Site 2; sub-humid Pampa subregion; Typic Hapludoll/Typic Argiudoll soils; 975 mm mean
annual precipitation; 19.2 ◦C mean annual air temperature) and (ii) south-eastern Pampas
(SEP) (Site 3 and Site 4; humid Pampa subregion; Typic Argiudoll soils; 950 mm mean
annual precipitation; 13.5 ◦C mean annual air temperature) [42]. Soils from the SEP present
a loamy texture and a soil organic matter (SOM) concentration ranging from 50 to 60 g kg−1

on the surface horizon. In contrast, the soils from the NP are characterized by a sandy loam
and silty loam texture and a lower SOM concentration (20 to 30 g kg−1) compared to the
SEP [43].
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Table 1. Corn management characteristics (sowing and harvest date, plant density), soil texture, soil
organic matter (SOM), and nitrate–nitrogen (NO3

−–N) content for 11 experiments.

Site Exp (MZ) Sowing Date Harvest Date Plant Density
Plants m−2

Soil Texture
(0–20 cm)

SOM
(0–20 cm) g kg−1

NO3−–N
(0–60 cm) kg ha−1

1

1(VH) 22 September 23 March 9.0 Sandy loam 3.8 72
2(L) 22 September 23 March 8.0 Loamy sand 2.5 42
3(H) 23 September 23 March 9.0 Sandy loam 3.7 70
4(M) 23 September 23 March 8.5 Sandy loam 3.5 46

2
5(H) 24 September 23 March 8.9 Sandy loam 2.9 48
6(L) 25 September 22 March 7.8 Loamy sand 2.2 34
7(M) 29 September 22 March 8.3 Sandy loam 2.7 36

3
8(H) 7 November 19 May 6.7 Loam 5.9 46
9(L) 7 November 19 May 4.7 Clay loam 5.6 40

4
10(H) 21 November 26 May 4.4 Loam 5.5 78
11(L) 21 November 26 May 3.4 Clay loam 5.5 90

Exp: experiment number, MZ: productive management zones, VH: very high, H: high, M: medium, L: low.

Within each site, each experiment was located in different management zones (MZ)
delimited according to historical yields of the last five years, topography according to
the digital elevation model, water accumulation and slope maps, and the average and
coefficient of variation of the NDVI from the last five summer crops [44] (Figure 2). The
MZ determined varied from two to four depending on the site (i.e., four MZ at Site 1, three
MZ at Site 2, and two MZ at Sites 3 and 4), totaling in 11 experiments.

In each experiment, the experimental design was a randomized complete block with
three replications and five fertilizer N rates of 0, 60, 120, 180, and 240 kg N ha−1. The N
source was urea (46-0-0) applied at corn sowing. Plant density and sowing date in each
field were optimal according to farmer management. Based on soil testing information,
phosphorus, sulfur, potassium, and micronutrients were not limited. The experimental
unit size varied between 60 × 60 and 80 × 80 m, with an area of analysis of 50 × 50 m.

In each experimental unit, plant samples were collected at ground level during corn’s
sixth, tenth, and fourteenth developed leaf and flowering growth stages (V6, V10, V14, and
R1, respectively, [45]) (Table 2). The sampling scheme represented pixels with 10 to 20 m
spatial resolution [24]. Local sampling consisted of 12 individual plants according to the
Elemental Sampling Unit (ESU) scheme of the VALERI methodology [46]. The collected
plants were air-dried in an oven at 60 ◦C, ground, and passed through a 0.5 mm sieve for
chemical analysis. The Nc in corn plants was determined by the Kjeldahl method [47].

Table 2. Dates of sampling, satellite observations, and cumulative precipitation since planting for the
2020–2021 corn season for each experiment by stage.

Exp Sampling
Stage Sampling Date

Satellite Observation Acquisition Cumulative
Precipitation (mm)Sentinel-1 Sentinel-2

1, 2, 3,
and 4

(Site 1)

V6 10 and 11 November 6 and 12 November 7 and 12 November 118
V10 3 and 4 December 30 November and 6 December 27 November and 7 December 153
V14 21 and 22 December 18 and 24 December 17 and 22 December 194
R1 5 and 6 January 5 January 1 January 198

5, 6, and
7 (Site 2)

V6 11 November 6 and 12 November 7 and 17 November 94
V10 4 December 30 November and 6 December 7 and 27 November 114
V14 20 December 18 and 24 December 17 and 22 December 114
R1 6 January 5 January 1 January 163

8 and 9
(Site 3)

V6 14 December 14 December 14 December 25
V10 2 January 1 January 31 December and 3 January 33
V14 23 January 19 and 25 January 23 January 181
R1 4 February 31 January and 6 February 4 February 181

10 and 11
(Site 4)

V6 29 and 30 December 1 January 26 and 30 December 96
V10 22 January 19 and 25 January 20 and 23 January 182
V14 5 February 6 February 4 February 205
R1 20 February 18 and 24 February 22 February 306
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2.2. Remote Sensing Data

In a Geographic Information System (GIS) environment, sampling point locations
were digitized and represented as point entities (shapes). The data from Sentinel-1 and
Sentinel-2 remote sensing observations were transferred to these entities by applying an
appropriate data extraction function. Sentinel-2 observations had an average temporal
resolution of five days and a spatial resolution of 10 or 20 m, depending on the spectral
band. Sentinel-2 observations were obtained at Level-2A Bottom-Of-Atmosphere (BOA)
reflectance. The nomenclature of the spectral bands was B2 (blue, 492 nm, 10 m), B3 (green,
559 nm, 10 m), B4 (red, 665 nm, 10 m), B5 (red-edge 1, 704 nm, 20 m), B6 (red-edge 2, 740 nm,
20 m), B7 (red-edge 3, 780 nm, 20 m), B8 (near-infrared, 833 nm, 10 m), B8A (865 nm, 20 m),
B11 (short-wave infrared spectral range 1, 1375 nm, 20 m), and B12 (short-wave infrared
spectral range 2, 1612 nm, 20 m).

The C-SAR backscatters (Sentinel-1) were in Ground Range Detected (GRD) and in-
terferometric wide-swath (IW) mode. The orbit was downward with an incidence angle
range of 30–45◦. Preprocessing was conducted with the tools available through the ESA
Sentinels Application Platform (SNAP, version: 8.0) software package as established by [48]:
Apply Orbit File–Thermal Noise Removed–Removed GRD Border Noise–Radiometric
Calibration–Multi-looking (4 × 4)–Speckle (Lee 3 × 3)–Range Doppler Terrain Correc-
tion. Vertical–horizontal (VH) and vertical–vertical (VV) backscatters were obtained in dB
normalized by Beta Naught (β0) and at a spatial resolution of 10 m. VH and VV backscat-
tering values were normalized by the local angle of incidence (LIA) proposed by [38] and
represented as VHxLIA and VVxLIA.

When the plant sampling dates did not correspond with the satellite observation dates,
the weighted average of the energy values of the two observations closest to the sampling
date was calculated. In the case of Sentinel-2, this methodology was applied to the spectral
bands. For Sentinel-1, the specific methodology consisted of multiplying the local angle
of incidence (LIA) by the LIA-corrected VH and VV backscatters. The result was the LIA-
corrected VH and VV backscatters in SNAP, and these backscatters were multiplied by LIA,
resulting in the nomenclatures VHxLIA and VVxLIA. Weighed means were calculated on
the sampling date for the four variables (VH, VV, VHxLIA, and VVxLIA). The weighting
was based on the number of days since the sample date.

2.2.1. Traditional Vegetation Indices

Sentinel-2 spectral bands were used to derive those traditional vegetation indices
commonly used in the literature (Table S1 in Supplementary Materials). These indexes
were computed over plant sample locations and at different phenological stages (V6, V10,
V14, and R1).

2.2.2. Combinations of Spectral Bands and C-SAR Backscatters and Data Fusion

The 14 vegetation indices presented in Table 3 are helpful for satellite monitoring of N
in corn [12–14,22] and are referenced in Table S1 of the Supplementary Material. Vegetation
indices were calculated using spectral bands (B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12)
and Sentinel-1 VH and VV backscatters, which were either corrected or not corrected by the
LIA (VHxLIA and VVxLIA). The VH and VV backscatter values were in absolute decibel
values divided by 100, and those of VHxLIA and VVxLIA were also in absolute values
divided by 10,000. This step was necessary to standardize the VH and VV values between 0
to 1 so that they were similar to the scale of the lower-resolution spectral bands. The values
of VHxLIA and VVxLIA were 1000 to 10,000 because they resulted from VH times LIA, i.e.,
43 × 34. Thus, in the vegetation index equations, VH appears as VH/102 and VHxLIA as
VHxLIA/104. This way, backscatter values similar to those of the Sentinel-2 spectral bands
were obtained.
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Table 3. Vegetation indices for a combination of a, b, and c.

Vegetation Index (VI) Equation

VI1 a − b
VI2 a/b
VI3 (a − b)/(a + b)
VI4 (a − b)/(a + b + 0.25) × 1.25
VI5 (a − b)/(a + b + 0.5) × 1.5
VI6 (a − b)/(a + b + 0.75) × 1.75
VI7 (2a + 1 − (

√
((2a + 1)2 − 8 × (a − b)))/2

VI8 (a − b)/(a + b − c)
VI9 (a2 − b × c)/(a2 + b × c)
VI10 100 × (a − b) − 10 × (a − c)
VI11 (a − b) − 0.2 × (a − c) × (a/b)
VI12 (a − b) × (b − c)/(a − c + 0.03)
VI13 (a − b)/(a + b)/(a − c)/(a + c)
VI14 2.5 × (a − b)/(a + 6 × b − 7.5 × c) + 1

Combined VI1-14/VI2-14 (with a, b, and c randomly assigned)

Each spectral band and the C-SAR backscatters were evaluated as variables a, b, and
c of the 14 vegetation index formulas presented in Table 3. All potential combinations
of the available spectral bands and backscatters were considered while creating different
vegetation indices, such as NDVI, SAVI, SR, and others. Furthermore, each vegetation
index was divided by another to obtain combined vegetation indices. In this case, the
divisor index formula utilized random assignment of a, b, and c as spectral bands and
backscatters during each iteration.

The methodology for evaluating and selecting models is shown in Figure 3, and it
employs an iterative function (loop) to process the data. The spectral bands and C-SAR
backscatters were used to calculate the vegetation indices as variables a, b, and c of the for-
mulas in Table 3. For this, a matrix (M) was entered with the type of experiment (calibration
or validation), the observed variable, the spectral bands, and the C-SAR backscatters. The
input data was matrix M = [Nc, B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12, VH/102, VV/102,
VHxLIA/104, VVxLIA/104, experiment]. During each iteration, three columns of M (except
Nc and experiment) were assigned as variables a, b, and c, which were used to calculate the
vegetation indices formulated in Table 3. Combined vegetation indices were also calculated,
dividing each vegetation index by all successor formulas of its numbering in Table 3 by
assigning three columns of M as the variables a, b, and c at random. For example, six
combined vegetation indices were generated from VI8 resulting from the following ratios:
VI8/VI9, VI8/VI10, VI8/VI11, VI8/VI12, VI8/VI13, and VI8/VI14. Figures S1 and S2 of the
supplementary material show detail about this process.

Continuing in the same iteration, after the individual and combined vegetation indices
were calculated, they were compiled together with M in a new matrix called VIs. In the
VIs matrix, the points identified with the calibration experiment id were selected. These
points were assigned to a new matrix called Cal. The Cal matrix (Figure S2) fitted each
vegetation index to the Nc using linear and second-degree polynomial regression models.
The significance of each generated model was then evaluated by determining the p-value of
the regressor parameters, specifically β1 for linear models and both β1 and β2 for quadratic
polynomial models. Further, each model was diagnosed according to the assumptions
of linearity (“RESET”), normality (“Kolmogorov–Smirnov”), homoscedasticity (“Breusch–
Pagan”), and autocorrelation (“Durbin–Watson”). When autocorrelation was significant,
the iterative module “cochrane.orcutt” [49–51] was applied. Models that had significant
β1 and β2 regressor parameters (p-value < 0.05) and exceeded the diagnostic assumptions
were validated in the validation experiments (Figure 3).



Remote Sens. 2023, 15, 824 8 of 17

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 18 
 

 

in Table 3 by assigning three columns of M as the variables a, b, and c at random. For 
example, six combined vegetation indices were generated from VI8 resulting from the fol-
lowing ratios: VI8/VI9, VI8/VI10, VI8/VI11, VI8/VI12, VI8/VI13, and VI8/VI14. Figures S1 and S2 
of the supplementary material show detail about this process. 

 
Figure 3. Workflow for selecting the best vegetation index (VI) for modeling and predicting corn 
plant nitrogen concentration (Nc). MAPE: mean absolute percentage error; e: slightest stored pre-
diction error. 

Continuing in the same iteration, after the individual and combined vegetation indi-
ces were calculated, they were compiled together with M in a new matrix called VIs. In 
the VIs matrix, the points identified with the calibration experiment id were selected. 
These points were assigned to a new matrix called Cal. The Cal matrix (Figure S2) fitted 
each vegetation index to the Nc using linear and second-degree polynomial regression 

Figure 3. Workflow for selecting the best vegetation index (VI) for modeling and predicting corn
plant nitrogen concentration (Nc). MAPE: mean absolute percentage error; e: slightest stored
prediction error.

Proceeding within the same iteration, in each of the five validation experiments, the Nc
prediction error was determined according to the mean absolute percentage error (MAPE),
a metric used to evaluate the predictive performance of the regressor models [52]. The
MAPE values obtained from the five validation experiments were averaged to obtain the
validation MAPE. The MAPE of the calibration set was also calculated. The final MAPE
was calculated as the maximum value between the validation and calibration MAPE values.
Each final MAPE of each vegetation index was compared to the slightest stored prediction
error (e). If the final MAPE was found to be less than the e value, the value of e was
updated to the current MAPE, and the VI associated with the model was recorded as the
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model predictor. This procedure recounted in one iteration was performed in each iteration
(cycles) until all spectral bands and C-SAR backscatters were combined. Thus, by utilizing
the MAPE metric, the modeled Nc was obtained from the vegetation index with the lowest
prediction error at the end of the iteration process. Thus, the best vegetation indices were
selected from all possible combinations of the C-SAR backscatters, spectral bands, and
spectral bands with C-SAR backscatters (sensor data fusion). More details are given in
Figure S2 in the supplementary material.

2.3. Statistical Analysis

The calibration dataset was six experiments at Sites 1 and 4. The validation dataset
was five experiments at Sites 2 and 3. The Nc was modeled with the calibration dataset, and
the calibrated models were validated with the validation dataset. Therefore, the statistical
analysis comprised two parts; the first was to model Nc with linear and quadratic models
from the vegetation indices of six experiments (Sites 1 and 4). The second was to evaluate
the prediction error of the modeled Nc for data from five experiments in contrasting
environments (Sites 2 and 3). The coefficient of determination (R2) and root-mean-square
error (RMSE) were calculated for the calibration experiments. For each experiment’s
validation, RMSE, the RMSE relative to the observed mean (RRMSE), the mean absolute
error (MAE), and the MAPE were determined as statistical metrics of the prediction error.
The errors of the five experiments were then averaged for each prediction error metric. The
analyses were conducted using R software R version 3.6.3 (www.r-project.org, accessed on
1 July 2022).

MAPE (%) =
1
n

n

∑
i=1

|yi − ŷi|
yi

× 100 (1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

RRMSE (%) =
RMSE

ymaximum − yminimum
× 100 (3)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (4)

where yi is of observed Nc, ŷi is the corresponding predicted Nc, n is the number of samples,
and ymaximum and yminimum are the maximum and minimum observed Nc.

3. Results

From the field data collection, the Nc values were normally distributed, and the
averages at V6, V10, V14, and R1 were 3.80, 2.37, 1.58, and 1.21%, respectively. At all sites,
Nc increased with the N rate (Table 4). As the crop developed, Nc changes between the
minimum and maximum N rate increased from 15% in V6 to 74% in R1. In addition,
during V6, V10, and R1, the average corn Nc was higher in the calibration dataset than the
validation dataset (Figure 4).

Nine of the ten traditional vegetation indices that best predicted Nc had the red-edge
band as their constituent feature (Table 5). During calibration, MNDVI was the index with
the best fit to Nc, and RVI2 had the lowest prediction error during validation. Therefore,
despite having problems with residuals, the red-edge vegetation indices demonstrated the
best modeling performance of Nc.

Models with combinations of C-SAR backscatters and traditional vegetation indices
did not pass any of the four assumptions of a regression model. However, the vegetation
indices selected from combinations of spectral bands and sensor data fusion surpassed these
four assumptions by applying the “cochrane.orcutt” module during the corn Nc modeling
(Figure 5). The fit of the calibrated models was high, with R2 values greater than 0.9. In
addition, both selected vegetation indices are developed with red-edge (B5 and B7) and

www.r-project.org
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short-wave infrared spectral range (B11) spectral bands. Moreover, the vegetation index
selected from the sensor data fusion contained VV in its formulation.

Table 4. Plant nitrogen concentration (Nc) for each nitrogen (N) rate, crop growth stage, and
experiment (Exp). Each value represents the average of 3 replicates.

N Rate
(kg ha−1)

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp 10 Exp 11
Nc (%) Nc (%) Nc (%) Nc (%) Nc (%) Nc (%) Nc (%) Nc (%) Nc (%) Nc (%) Nc (%)

V6
0 3.76 d 1 3.42 d 3.71 c 3.70 c 3.57 b 3.64 c 3.48 b 2.95 b 3.07 b 3.26 c 3.38 b
60 4.09 c 4.17 c 4.04 b 4.19 b 3.93 a 3.98 b 3.99 b 2.98 b 3.49 a 3.11 c 3.64 a

120 4.18 bc 4.41 ab 4.23 ab 4.21 b 3.98 a 4.14 a 4.13 ab 3.26 a 3.18 b 3.54 b 3.69 a
180 4.30 ab 4.22 bc 4.32 a 4.19 b 4.08 a 3.92 b 4.28 a 2.86 ab 3.22 b 3.80 a 3.58 a
240 4.44 a 4.48 a 4.31 a 4.60 a 4.03 a 4.04 ab 4.14 ab 3.41 a 3.09 b 3.69 ab 3.66 a

V10
0 2.04 c 2.14 d 2.21 d 2.50 d 1.54 c 1.54 c 1.59 c 2.04 2.45 a 2.01 d 1.85 b
60 2.57 b 2.36 c 2.45 c 2.99 c 2.05 b 2.09 b 2.00 b 2.08 2.08 b 2.29 c 2.00 b

120 2.55 b 2.58 b 2.62 bc 3.06 c 2.08 b 2.33 ab 2.34 a 2.05 2.44 a 2.25 c 2.29 a
180 2.89 a 2.78 b 2.69 b 3.26 b 2.24 ab 2.26 ab 2.52 a 2.12 2.43 a 2.49 b 2.24 a
240 2.82 a 2.86 a 2.90 a 3.46 a 2.33 a 2.42 a 2.37 a 2.20 2.58 a 2.72 a 2.32 a

V14
0 1.41 c 1.34 d 1.42 c 0.82 d 0.96 c 1.20 d 1.07 d 1.21 c 1.29 d 1.05 c 0.95 c
60 1.48 c 1.65 c 1.60 c 1.62 c 1.54 a 1.53 c 1.44 c 1.57 b 1.32 cd 1.26 b 1.21 b

120 1.67 bc 1.94 b 1.94 b 1.83 b 1.34 b 1.81 ab 1.78 b 1.87 a 1.49 c 1.40 b 1.29 ab
180 1.81 ab 1.96 b 1.90 b 1.84 ab 1.73 a 1.68 bc 2.01 a 1.76 ab 1.85 b 1.41 b 1.46 a
240 1.85 a 2.25 a 2.14 a 2.03 a 1.58 a 1.93 a 1.88 ab 1.82 ab 2.08 a 1.62 a 1.33 ab

R1
0 0.81 b 0.95 d 0.99 b 0.97 c 0.66 d 0.66 c 0.68 c 0.89 c 0.92 d 0.98 b 1.08 c
60 0.94 b 1.15 c 1.08 b 1.15 c 0.78 cd 0.87 b 0.83 c 1.12 a 1.04 cd 1.37 a 1.43 b

120 1.18 a 1.21 bc 1.38 a 1.35 b 0.86 bc 1.20 a 1.17 b 1.19 a 1.17 bc 1.43 a 1.43 b
180 1.30 a 1.38 b 1.52 a 1.51 b 1.02 b 1.37 a 1.38 b 1.23 a 1.30 ab 1.49 a 1.56 b
240 1.36 a 1.66 a 1.54 a 1.71 a 1.27 a 1.38 a 1.49 a 1.26 a 1.44 a 1.50 a 1.78 a

1 Means of Nc followed by the same letter within an experiment and growth stage are not significantly different
by LSD test (p < 0.05). For example, the average of ‘a’ is higher than ‘b’ while the average of ‘b’ is higher than ‘c’
and the average of ‘c’ is higher than ‘d’.
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Table 5. Results of calibration and validation of corn nitrogen concentration (Nc) with classical
vegetation indices and ranking position according to the mean absolute percent error (MAPE).

Ranking
Position

Vegetation
Indices

Calibration (n = 360) Validation (n = 300)

R2 RMSE (%Nc) RMSE (%Nc) RRMSE (%) MAE (%Nc) MAPE (%)

1st RVI2 0.76 0.54 0.51 15 0.41 30
2nd MNDVI 0.80 0.48 0.56 17 0.46 31
3rd SRRE 0.75 0.54 0.53 16 0.43 31
4th DCNI 0.73 0.57 0.53 16 0.41 32
5th RVI1 0.69 0.60 0.55 17 0.45 32
6th RERNDVI 0.65 0.64 0.52 16 0.42 32
7th REP 0.75 0.55 0.57 17 0.45 33
8th NDWI 0.53 0.75 0.61 19 0.51 35
9th SCCCI 0.70 0.60 0.62 17 0.49 37

10th NDRE 0.63 0.66 0.65 20 0.51 37

RMSE: root-mean-square error of the error. RRMSE: RMSE relative to the observed mean. MAE: the mean absolute
error. MAPE: the mean absolute percent error. The description of the acronyms of the vegetation indices is in
Table S1 of the supplementary material.
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Figure 5. Plant nitrogen concentration (Nc) in corn modeled with vegetation indices (VI) selected
from (a) the combination of spectral bands and (b) sensor data fusion for the whole crop cycle. VI
suffixes refer to the formula used according to Table 3 (e.g., VI8/12 is VI8 divided by VI12). The
spectral bands from Sentinel-2 were B3 (green, 559 nm), B4 (red, 665 nm), B5 (red-edge 1, 704 nm),
B6 (red-edge 2, 740 nm), B7 (red-edge 3, 780 nm), and B11 (short-wave infrared spectral range 1,
1375 nm); C-SAR backscatter from Sentinel-1 was VV in decibels with absolute values. A and B are
significant models (p-value < 0.001). RMSE: root-mean-square error.

The indices found (Figure 5) were more accurate in predicting Nc in the validation
dataset than the traditional vegetation indices (Table 5). Furthermore, Nc prediction errors
with the sensor data fusion (MAPE: 14%, MAE: 0.24 %Nc; RMSE: 0.31 %Nc, RRMSE: 10%)
were lower than those observed with the optical vegetation index alone (MAPE: 20%, MAE:
0.35 %Nc; RMSE: 0.44 %Nc, RRMSE: 14%) (Figure 6). Thus, the modeling and prediction
of Nc with the vegetation index selected from sensor data fusion were a balance between
variance and bias. This assertion was observed when the calibration metrics were high
(R2: 0.91 and RMSE: 0.33 %Nc), and the prediction metrics in the validation dataset were
also high, with a RRMSE of 10% and MAPE of 14% (Figure 6). Figure 6a,b had differences
in the distribution of points concerning the bisector (line 1:1). For the sensor data fusion,
the points had an error mean distribution closer to zero (bisector) than the optical ones.
The combination of spectral bands underestimated Nc in the 2.5 and 3.5% values, while
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the sensor data fusion had lower overestimation and underestimation of Nc throughout
the growing season of corn. In summary, the models calibrated with vegetation indices
selected from the combination of spectral bands and sensor data fusion presented a proper
fit. Still, the latter was more accurate in predicting Nc during the corn cycle.
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4. Discussion

This study provides new insights on the main benefits for utilizing sensor data fusion,
integrating spectral bands and C-SAR backscatters, for predicting the Nc of corn during
its growing season. The utilization of multiple data sources, as proposed in this study,
represents an innovative approach to improve crop monitoring and management. Moreover,
the developed models presented the advantage of being useful in predicting corn Nc in
different growth stages from V6 to R1.

Previous research evaluated corn monitoring from a single data source or by multi-
plying a vegetation index by plant height [53]. These studies have shown that prediction
errors can be high, particularly when trying to predict during the entire crop cycle of
corn. In contrast, the vegetation index selected from sensor data fusion in this study was
shown to outperform the overall accuracy of traditional vegetation indices, as well as the
prediction accuracy reported in previous research with proximal sensors [13,14,16,53,54].
The complementarity of data from different sensors was crucial for corn Nc monitoring.
Optical sensors are sensitive to chlorophyll activity and C-SAR signals to plant structure
(leaves, stems, and cobs) and soil surface [21,31,34,40,55]. Therefore, sensor data fusion
predicted Nc accurately because it integrated information from different biophysical pa-
rameters associated with corn N status. In addition, using Sentinel-1/2 provides a greater
opportunity to transfer this approach to other regions worldwide.

The accuracy of Nc prediction with the selected vegetation index from the combination
of spectral bands was more significant than that observed with traditional vegetation
indices and those reported for proximal sensors [14,16,56,57]. The high spectral resolution
of Sentinel-2 sensors in the red-edge spectrum (B5, B6, and B7 of 704, 740, and 740 nm)
played a crucial role in these results. Red-edge vegetation indices from proximal sensors
were reported for Nc monitoring [13,14,54]. Additionally, the use of short-wave infrared
(B11 of 1375 nm) was found to be essential for these results; this spectrum is positively
related to leaf water content, a variable associated with corn vigor and N status [58].
Therefore, for data fusion and combining bands, the high spectral resolution of Sentinel-2
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improves Nc monitoring and highlights the need to continue developing new vegetation
indices to target crops’ biophysical and chemical traits more directly.

Limitations of this study are mainly linked to the narrow geographical and crop
genetic scope tested. In addition, limitations linked to the remote sensor (spatial, spectral,
and temporal resolution) tested in this study should also be noted. Future research should
aim to test the results of this study over a wider geographical region and with a wider
range of soils, climates, genotypes, and management conditions. Another relevant point
should focus on technologies for mapping (with high resolution) changes in soil N, with
the goal of developing more precise estimations of soil N supply for crop growth within a
field [59]. Lastly, the rapid changes in genetic improvement and delayed N accumulation
in modern corn genotypes [60,61] highlight the need for future inclusion of hyperspectral
bands in order to advance in N monitoring, which will allow for precise readjustments of
N fertilization and reduce the environmental footprint of this practice in agriculture.

Overall, this study provides a promising approach for improving crop N diagno-
sis through sensor data fusion, specifically a combination of spectral bands and C-SAR
backscatters. It adds to the growing body of literature that suggests remote sensing data
can be used to improve crop monitoring and management, and it highlights the potential
for utilizing multiple data sources to improve crop monitoring and management.

5. Conclusions

Sensor data fusion (C-SAR backscatters and spectral bands) demonstrated the highest
prediction accuracy of corn Nc. In addition, combining spectral bands in an index was
more accurate than other VIs for monitoring Nc. Furthermore, the prediction errors
obtained with sensor data fusion and band combinations were lower than those reported by
previous studies with proximal sensors. The red-edge bands (associated with chlorophyll
content) and short-wave infrared spectral range (associated with leaf water content), and
VV backscatter (associated positively with crop moisture and structure), were crucial for
monitoring corn N status. Therefore, monitoring Nc from satellite remote sensing is a
powerful tool for corn N diagnosis throughout the entire growing cycle. Future research
could improve upon these results with the integration of hyperspectral sensors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15030824/s1, Figure S1: Calculate individual (VI1-14) and
combined (C12-1314) vegetation indices during one iteration using R software; Figure S2: Conceptual-
ization of the iteration function diagram (loop) used to generate, evaluate and select regression models
with vegetation indices; Table S1: Traditional vegetation indices from past investigations [62–83].
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