

DR. PAMELA MCELWEE (Orcid ID : 0000-0003-3525-9285) PROF. PETE SMITH (Orcid ID : 0000-0002-3784-1124)

Article type : Research Review

The impact of interventions in the global land and agri-food sectors on Nature's Contributions to People and the UN Sustainable Development Goals

Running Title: Impact of interventions in global land sector

Pamela McElwee¹, Katherine Calvin², Donovan Campbell³, Francesco Cherubini⁴, Giacomo Grassi⁵, Vladimir Korotkov⁶, Anh Le Hoang⁷, Shuaib Lwasa⁸, Johnson Nkem⁹, Ephraim Nkonya¹⁰, Nobuko Saigusa¹¹, Jean-Francois Soussana¹², Miguel Angel Taboada¹³, Frances Manning¹⁴, Dorothy Nampanzira¹⁵, and Pete Smith¹⁴

 ¹ Department of Human Ecology, Rutgers University, New Brunswick, NJ 08840, USA
 ² Pacific Northwest National Laboratory, Joint Global Change Research Institute, College Park, Maryland 20740, USA
 ³ The University of the West Indies, Mona Campus, Mona, Jamaica, West Indies
 ⁴ Industrial Ecology Program, Department of Energy and Process Engineering, Norwegian
 University of Science and Technology (NTNU), Høgskoleringen 1, 7491 Trondheim, Norway
 ⁵ European Commission, Joint Research Centre, 21027, Ispra, VA, Italy
 ⁶ Yu.A. Izrael Institute of Global Climate and Ecology, 20-B, Glebovskaya str, Moscow, 107258,

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> <u>10.1111/GCB.15219</u>

Russia

⁷ Ministry of Agriculture and Rural Development (MARD), No 2 Ngoc Ha Street, Ba Dinh, Hanoi, Vietnam

⁸ Department of Geography, Makerere University, P.O. Box 7062, Kampala, Uganda

⁹ United Nations Economic Commission for Africa, Menelik II Ave., P.O. Box 3001, Addis Ababa, Ethiopia

¹⁰ IFPRI, 1201 Eye Street NW, Washington DC 20005, USA

¹¹ Centre for Global Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan

¹² French National Institute for Agricultural, Environment and Food Research (INRA), 147 rue de l'Université, 75338, Paris Cedex 07, France

¹³ National Agricultural Technology Institute (INTA), Natural Resources Research Centre (CIRN), Institute of Soils, Av. Rivadavia 1439 (C1033AAE), Ciudad Autónoma de Buenos Aires, Argentina

¹⁴ Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UU, UK

¹⁵ Department of Livestock and Industrial Resources, Makerere University, P.O. Box 7062, Kampala, Uganda

Contact information for corresponding author: 1-480-252-0999, pamela.mcelwee@rutgers.edu

Abstract

Interlocked challenges of climate change, biodiversity loss and land degradation require transformative interventions in the land management and food production sectors to reduce carbon emissions, strengthen adaptive capacity, and increase food security. However, deciding which interventions to pursue and understanding their relative co-benefits with and trade-offs against different social and environmental goals has been difficult without comparisons across a range of possible actions. This study examined 40 different options, implemented through land management, value chains, or risk management, for their relative impacts across 18 Nature's Contributions to People (NCP) and the 17 Sustainable Development Goals (SDG). We find that a

relatively small number of interventions show positive synergies with both SDGs and NCPs with no significant adverse trade-offs; these include improved cropland management, improved grazing land management, improved livestock management, agroforestry, integrated water management, increased soil organic carbon content, reduced soil erosion, salinization and compaction, fire management, reduced landslides and hazards, reduced pollution, reduced postharvest losses, improved energy use in food systems, and disaster risk management. Several interventions show potentially significant negative impacts on both SDGs and NCPs; these include bioenergy and bioenergy with carbon capture and storage (BECCS), afforestation, and some risk sharing measures, like commercial crop insurance. Our results demonstrate that a better understanding of co-benefits and trade-offs of different policy approaches can help decisionmakers choose the more effective, or at the very minimum, more benign interventions for implementation.

Key words: sustainable development, Nature's Contribution to People, ecosystem services, mitigation, adaptation, land degradation, food security, sustainable land management, trade-offs

1. Introduction

The world currently faces a series of interrelated problems: climate change, loss of biodiversity and ecosystems, land degradation, food insecurity, and poverty, highlighting the need for transformative solutions that cut across these challenges (IPBES, 2018; IPBES, 2019; Rockström et al., 2009; UN Environment, 2019). Changes in how land is used could tackle some of these problems and co-deliver multiple benefits, such as reduced greenhouse gas emissions, increased adaptive capacity to current and future climate changes, improved land health and quality, and improved access to and productivity of agriculture (Foley et al., 2011; Kanter et al., 2018). However, a major dilemma is how to achieve these multiple benefits without undue adverse side-effects on other societal goals or on natural ecosystems (Guerry et al., 2015; Meyfroidt, 2018; Mirzabaev et al., 2015).

Numerous potential options have been suggested to address these land challenges, including various practices identified within sustainable land management (SLM) (Reed et al., 2015; Sanz et al., 2017). However, deciding which interventions to pursue requires understanding their relative co-benefits with and trade-offs against different social and environmental goals (Sachs et al., 2019), and has been difficult without direct comparisons across a range of possible actions (Iyer et al., 2018). While some interactions can be included in integrated assessment models (van Soest et al., 2019), others are less easily quantified, and need to be understood through different methods, such as expert assessments or literature reviews (Singh et al., 2018).

This study examines 40 of the response options identified in chapter 6 of the recent Intergovernmental Panel on Climate Change (IPCC) Special Report on Climate Change and Land (IPCC, 2019). These options encompassed different land management, value chain or risk management practices commonly proposed to meet a diverse set of land challenges, among them mitigation, adaptation, degradation, and food security (Smith et al., 2020). These 40 options were assessed against their implications for nature, including biodiversity and water, and against their impacts on people, such as poverty reduction efforts or gender equality measures. We do so by evaluating the 40 practices against the 17 UN Sustainable Development Goals (SDGs), as well as 18 Nature's Contributions to People (NCP), a new term used by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019), and defined as "all the contributions, both positive and negative, of living nature (i.e., diversity of organisms, ecosystems and their associated ecological and evolutionary processes) to the quality of life of people" (Díaz et al., 2018) (Table 1). NCPs and ecosystem services are related, but not precisely parallel concepts (Kadykalo et al., 2019). IPBES authors have stressed NCP are a particular way to think of ecosystem services, rather than a replacement for the term. Rather, the concept of NCP was proposed to be a broader umbrella to engage a wider range of scholarship, particularly from the social sciences and humanities, and a larger range of values around ecosystems (Pascual et al., 2017). Both SDGs and NCPs reflect attention to the interconnected relationships between people and ecosystems. The importance of assessing a range of response options and policies against the SDGs in particular was emphasized in the IPCC Special Report on the Impacts of Global Warming of 1.5°C (Roy et al., 2018). For example, negative effects from mitigation options across energy supply and demand and land use were particularly strong for SDG 1 and 2 (zero poverty and no hunger) and SDG 6 and 15 (clear water and sanitation and life on land), while positive effects were noted on SDG 3 (good health) and SDG 7 (affordable and clean energy). However, it is insufficient to judge progress against SDGs alone, as many of the planetary support systems that make sustainable development possible might be degraded through economic development, hence there is a need for indicators of ecosystem change and health well beyond the SDGs specifically focused on ecosystems (e.g. SDG 14 and 15) (Griggs et al., 2013). NCPs thus can be a useful proxy for both impacts on nature and benefits to humans (Ellis, Pascual, & Mertz, 2019).

Response options to land challenges may lead to unexpected adverse side-effects or potential co-benefits with societal goals like SDGs and NCPs (Timko et al., 2018). In defining co-benefits and adverse side-effects, we use the IPCC definitions: co-benefits are "positive effects that a policy or measure aimed at one objective might have on other objectives, thereby increasing the total benefits for society or the environment" while adverse side-effects are "negative effects that a policy or measure aimed at one objective might have on other objectives, without yet evaluating the net effect on overall social welfare" (IPCC, 2019). Both co-benefits and adverse side-effects can be biophysical and/or socio-economic in nature and "are often subject to uncertainty and depend on, among others, local circumstances and implementation practices" (IPCC, 2019). The co-benefits associated with some response options may increase their cost-effectiveness or attractiveness, while adverse side-effects might discourage the use of some options, or at the very least, require identification of ways to manage the trade-offs (Bryan

et al., 2016). However, managing trade-offs and encouraging co-benefits depends on well-implemented and coordinated activities in appropriate environmental contexts, often requiring institutional and enabling conditions for success and participation of multiple stakeholders (McShane et al., 2011; Reed et al., 2019). Therefore, it is important to identify these interactions early in decision-making processes, such as through reviews similar to the one presented here.
 2. Materials and methods Practices available to address the land challenges of climate change mitigation, climate change adaptation, desertification and land degradation and food security were collated from Chapters 2 to 5 of the IPCC Special Report on Climate Change and Land (IPCC, 2019). These

Chapters 2 to 5 of the IPCC Special Report on Climate Change and Land (IPCC, 2019). These practices and options were grouped to be broadly applicable in a global assessment, and details of how each practice category was defined and which specific elements the practice entails are found in Smith et al. (2020), Table 1; for example, "improved cropland management" includes interventions related to crop improvement, nutrient management, tillage, and water management. Once these categories of practices were assigned and defined, an extensive literature review was conducted to gather evidence on the intersections between each of these 40 practices and the 17 SDGs and 18 NCPs. Literature searches were conducted on Web of Science and Google Scholar to provide a sampling of relevant papers and key interactions; given that we had 1400 interactions, we did not do a systematic review for each, but rather focused on the most relevant research papers returned by our searches, based on expert assessment.

Each response option was searched with keywords relating to the NCP and SDG in question (see Table 2 for examples). We used open-ended searches rather than ones with detailed SDG and NCP language in order to create a large literature pool (e.g. search terms included "gender" rather than "Sustainable Development Goal 5" or "gender equity"). Because much of the literature does not yet use the term NCP, we also used terminology related to "ecosystem services" in searches and acknowledge that some of the diverse concepts informing NCP are not yet robust in the literature. Where our initial search did not return key terms in title or abstract, we extended searches to include reference to the body of the paper, to ensure a wide range of papers to initially review for each interaction. Papers varied in terms of scale (from global assessments to local case studies) as well as type of data collected and methods used, given that we drew from a very large pool of scholarly literature incorporating both the natural and social sciences. Authors then applied their expert judgement to review the most relevant papers (e.g.

focusing on most-cited, those with the widest synthesis such as meta-analyses or global scope, and prestige of outlets). These papers were then read carefully to understand the type and intensity of interactions between response options and the NCP or SDG. Key papers and interactions were then entered into a spreadsheet with reviews conducted individually per cell (Supplementary Material Tables S1-S6).

Given the complications involved in multiple sub-goals of some SDGs, as well as inconsistent definitions across some NCPs, our analysis should not be seen as reflecting all possible interactions and reviewing every possible publication, but rather provides an initial broad brush of which interactions appeared most prominent or common in the reviewed literature. The interactions emerging from the literature reviews were then color-coded along a gradient as to low-medium-high positive or negative impact on the NCP/SDG from each specific practice, based on expert evaluation of the literature, such as strength and amount of evidence. Since many interactions could not be quantified, the low to high gradient is meant to be a relative assessment only. Where no interactions appeared in the literature, the cell was left blank.

Some of the SDG and NCP categories assessed may appear similar to each other, such as SDG 13 on "climate action" and NCP 4 on "regulation of climate". However, SDG 13 includes targets for both mitigation and adaptation, so options were weighed by whether they were useful for both. On the other hand, the NCP "regulation of climate" does not include an adaptation component, and refers to specifically to "positive or negative effects on emissions of greenhouse gases and positive or negative effects on biophysical feedbacks from vegetation cover to atmosphere" (Díaz et al., 2018). Thus, we evaluated only the relationship between response options and ecosystem impacts on local to global climate for this category.

Further, in assessing both categories of NCPs and SDGs, we were cognizant that the two are different in both kind and in measurement. NCPs refer to processes, goods and benefits that nature may provide to humans, while SDGs are goals to keep track of the progress expected by UN Parties towards economic, social and environmental sustainability (Butchart, Miloslavich, Reyers, & Subramanian, 2019). In both cases, there are not always clear measurement standards that are widely agreed upon to determine successful provisioning of NCPs or achievement of some of the SDGs (Hák, Janoušková, & Moldan, 2016; McElwee, 2017). Thus, our reviews are meant to provide a relative sense of presence or absence of co-benefits and trade-offs, as more detailed interactions were not possible in a review of this type.

For the evaluation process for NCP, we also considered that NCP are about ecosystems, therefore options which may have overall positive effects, but which are *not* ecosystem-based are not included; for example, improved food transport and distribution could reduce ground-level ozone and thus improve air quality, but this is not an ecosystem-based NCP. Similarly, energy efficiency measures would reduce energy demand, but the 'energy' NCP refers specifically to biomass-based fuel provisioning. This necessarily means that the land management options evaluated have more direct NCP effects than the value chain or governance options, which are less ecosystem-focused.

In evaluating NCP, we have also tried to avoid 'indirect' effects – that is a response option might increase household income, which then could be invested in habitat-saving actions, or dietary change may lead to land sparing, which has benefits for soils. These are *indirect* impacts on an NCP. (The exception is NCP 6, regulation of ocean acidification, which is by itself an indirect impact. Therefore, any action that directly increases the amount of sequestered carbon is noted.) We focused primarily on *direct* effects in the literature: for example, local seed use preserves local landraces, which *directly* contributes to the NCP 'maintenance of options.' Therefore, the interactions we assessed should be considered a conservative estimation of effects; there are likely many more secondary and indirect effects, but they are too difficult to assess, or the literature is not yet complete or conclusive. Further, many NCP may trade-off against one another, as supply of one NCP might lead to less availability of another (Rodríguez et al., 2006); for example, use of ecosystems to produce bioenergy will likely lead to decreases in water availability if mono-cropped high intensity plantations are used (Gasparatos, Stromberg, & Takeuchi, 2011). These interactions and trade-offs *between* NCPs are not mapped directly in our assessment.

For our analysis of SDG interactions, the literature was particularly uneven. Because many land management options only produce indirect or multi-directional effects on SDGs, we indicate where directionality of impacts is mixed or unclear. As a result, the value chain and risk management options appear to offer more direct benefits for SDGs. Further, some SDGs are internally difficult to assess because they contain many targets, not all of which could be evaluated (e.g., SDG 17 is about partnerships, but has targets ranging from foreign aid to debt restructuring to technology transfer to trade openness). Some SDG targets are clear and well defined (such as SDG 1 on eliminating extreme poverty), while other goals are about processes

and interactions which makes targets and indicators more challenging (e.g. SDG 13 on climate action which discusses the need to strengthen resilience and integrate climate policies into multiple sectors, but has no specific mitigation target) (Campbell et al., 2018). We attempted to conduct literature searches for key indicators per SDG but found some more well represented in the literature than others.

Additionally, like NCPs, SDG goals are often interdependent in both positive and negative ways, with both synergies and trade-offs possible as outcomes (Campbell et al., 2018; Pradhan, Costa, Rybski, Lucht, & Kropp, 2017; Singh et al., 2018). For example, achieving SDG 15 on terrestrial ecosystem management might well provide co-benefits with SDG 3 on good health, such as through improved access to forest foods (Rowland, Ickowitz, Powell, Nasi, & Sunderland, 2017), and carbon sequestration to reach SDG 13 on climate action (Timko et al., 2018). On the other hand, achieving some SDGs might make progress on others more difficult; for example, SDG 9 to increase industrialization and infrastructure and SDG 15 to improve life on land may conflict, as more industrialization is likely to lead to increased resource demands with negative effects on habitats (Nilsson et al., 2018). Therefore, a positive association on one SDG measure might be directly correlated with a negative measure on another. The specific caveats on each of these interactions can be found in the supplementary material tables.

3. Results

In the sections below, we provide the primary interactions arising from the literature review and represent them visually in Tables 3-8, while the textual descriptions of interactions and literature reviewed can be found in Tables S1-S6. In all tables, colors represent the direction of impact: positive (blue) or negative (brown), and the relative scale of the impact (dark colors for large impacts to light colors for smaller impacts). The supplementary material tables include brief explanations of directionality of interactions with specific references. Blank cells represent a finding of no evidence of an interaction and/or no literature. In cases where there are both positive and negative interactions and the literature is uncertain about the overall impact, hashing appears in the box. In all cases, many of these interactions are contextual, or the literature only refers to certain co-benefits in specific regions or ecosystems, so readers are urged to consult the supplementary material tables for the specific caveats that may apply.

3.1 Interactions of the options on NCP supply

Tables 3-5 summarize the impacts of the response options on NCP supply. Overall,

several of the assessed response options stand out as having co-benefits across 10 or more NCPs with no adverse impacts on ecosystems: *improved cropland management, agroforestry, increased soil organic carbon content,* and *fire management.* Several options had mostly positive effects for 10 or more NCPs but some multidirectional interactions on others: *improved and sustainable forest management, reduced deforestation and degradation, reforestation and forest restoration, restoration and avoided conversion of coastal wetlands, biodiversity conservation, and <i>use of local seeds.* Examples of co-benefits between response options and NCPs include positive impacts on habitat maintenance (NCP 1) from practices like invasive species management and agricultural diversification. For example, the latter improves resilience through enhanced diversity to mimic more natural systems and provide in-field habitat for natural pest defenses (Lin, 2011), while invasive species management has strong direct links to improved habitats and ecosystem diversity (Richardson & Wilgen, 2004).

Other response options may have strengths in some NCP but require trade-offs with others. For example, afforestation may bring many positive benefits for climate mitigation and biomass energy production but may trade-off with food production and water quantity. Many of the interactions are scale and context dependent; for example, large scale afforestation of monocrop trees on water-scarce croplands would have negative effects (Kreidenweis et al., 2016), while well managed small-scale afforestation on unused or degraded lands could have mostly beneficial effects (Yao & Li, 2010). Several response options, including afforestation, bioenergy and bioenergy with carbon capture and storage (BECCS), and some risk sharing instruments, like commercial crop insurance, can have significant negative consequences across multiple NCPs, but again, are dependent on scale and context. While BECCS may deliver large co-benefits for climate mitigation, it can result in a number of adverse impacts that are significant with regard to water provisioning, food and feed availability, and loss of supporting identities if BECCS competes against local land uses (Calvin et al., 2014; Stoy et al., 2018).

3.2 Interactions of the options with Sustainable Development Goals

Tables 6-8 summarize the impact of the response options on the SDGs. Overall, several response options have co-benefits across 10 or more SDGs with no adverse side-effects on any SDG: *improved grazing land management, agroforestry, integrated water management, reduced post-harvest losses,* and *disaster risk management.* Several options have mostly positive effects for 10 or more SDGs but some multidirectional interactions or one negative on others: *improved*

and sustainable forest management, sustainable sourcing, enhanced urban food systems, management of urban sprawl, and use of local seeds. For example, on the latter option, use of local seeds can bring positive social benefits for poverty and hunger reduction, but may reduce potentials for international trade (SDG 17) (Kloppenburg, 2014). Other response options like enhanced urban food systems and management of urban sprawl are generally positive for many SDG but may trade-off with one, like clean water (SDG 6) or decent work (SDG 8), as they may increase water use or slow economic growth (Badami & Ramankutty, 2015; Brueckner, 2000). Some of the prominent synergies between response options and SDGs in the literature include positive poverty reduction impacts (SDG 1) from activities like improved water management or better management of supply chains, or positive gender impacts (SDG 5) from livelihood diversification or use of local seeds. For example, women play important roles in preserving and using local seeds, which can empower them to take more active roles in agricultural production (Bezner Kerr, 2013; Ngcoya & Kumarakulasingam, 2017).

Other response options may help to deliver some SDGs but create multiple trade-offs with others, such as dietary change. Several response options, including avoidance of grassland conversion, reduced deforestation and degradation, reforestation and forest restoration, afforestation, and restoration and avoided conversion of peatlands potentially have trade-offs across multiple SDGs primarily as they prioritize land health over food production (Crooks, Herr, Tamelander, & Laffoley, 2011). Some response options, such as afforestation, biochar, and bioenergy and BECCS will likely involve trade-offs over multiple SDGs with potentially significant adverse consequences (Bowman & Zilberman, 2013; Burns & Nicholson, 2017; Locatelli, Pavageau, Pramova, & Di Gregorio, 2015).

3.3 Case studies of interactions

The supplementary material tables provide over 1400 specific interactions that were assessed. To provide a flavor of what these review outcomes indicate, we note below for two options what the types and directionality of interactions found in the literature were (Tables 9 and 10). Bioenergy and BECCS and use of local seeds present a contrast, in that the literature on bioenergy/BECCS is mostly based on modelling studies (since this option is in limited operation), while the literature on local seeds is primarily based on local or regional case studies.

For the review of bioenergy/BECCS, we find that the literature on interactions with other land-uses is fairly robust, with concerns about the impacts on important NCPs like habitats and

biodiversity, water quantity, and soil quality reflected in models (Table 9). However, the literature on non-tangible NCPs, like learning or identities, is less direct; there, negative impacts are assumed rather than known, and based on impacts of land use change. For SDGs, we find conflicting evidence of the impact of BECCS on poverty and good health, while negative impacts on food security are strongly implied; such impacts trade-off with the potential for BECCS to make positive contributions to innovation, energy use, and climate mitigation (Table 10). In our review of use of local seeds, we find that the literature on NCP interactions is fairly thin, with a few key studies providing some indications of interactions, while the literature on SDG interactions is wider, with reports noting that use of non-commercial seeds can bring economic and social benefits, particularly in urban settings, and for women (Table 10). In both examples, there remain gaps in the literatures reviewed.

3.4 Identifying patterns of co-benefits and trade-offs

Overall, across both categories of SDGs and NCPs, 15 of 40 options that were evaluated deliver at least some co-benefits with no identified negative side-effects or trade-offs for the full range of NCPs and SDGs (Table 11, blue shading). This includes many agriculture- and soil-based land management options, some ecosystem-based land management options, reduced post-harvest losses, improved energy use in food systems, and disaster risk management. Only five options (afforestation, biochar, avoided peatland conversion, bioenergy and BECCS, and some types of risk sharing instruments, such as crop insurance) have potentially negative impacts on five or more NCP and SDGs combined (Table 11, brown shading). However, this comparison is meant only to give relative sense of potential adverse side-effects, as the caveat stands that one positive co-benefit is not necessarily equal to one negative impact; the magnitude of effects varies widely depending on context.

3.5 Combining NCPs and SDGs with other societal goals

Our findings of co-benefits and adverse side-effects associated with a range of response options should also be combined with attention to how effectively the response options deliver across other key objectives such as climate change mitigation, climate change adaptation, land degradation and desertification, or food security. Smith et al. (2020) assessed the same 40 options against these specific challenges in a quantitative manner and found that nine of the options delivered medium to large benefits for all four land challenges. The options that stood out were *increased food productivity, improved cropland management, improved grazing land*

management, improved livestock management, agroforestry, improved and sustainable forest management, increased soil organic carbon content, fire management and reduced post-harvest losses. Of these nine options, however, our analysis here showed potential adverse side-effects on either the SDGs or NCPs for two options: increased food productivity (associated with potential NCP trade-offs around water and soil quality and beneficial pollinators and harmful pests) and improved and sustainable forest management (associated with the potential for NCP trade-offs around food production and hazard mitigation, and SDG trade-offs around poverty reduction and food production).

Looking only at response options that deliver the highest mitigation benefits, five options out of the 40 have large potential (> 3 GtCO₂e yr⁻¹) without adverse impacts on the other land challenges, according to Smith et al. (2020): *increased food productivity, reduced deforestation and degradation, increased soil organic carbon content, fire management* and *reduced postharvest losses*. Of these, only three (*increased soil organic carbon content, fire management* and *reduced post-harvest losses*) were not associated with some potential negative side-effects on either SDGs or NCPs in our analysis.

Sixteen practices that were evaluated had large climate adaptation potential, positively benefiting more than 25 million people a year, without adverse consequences for other land challenges: *increased food productivity, improved cropland management, agroforestry, agricultural diversification, improved and sustainable forest management, increased soil organic carbon content, reduced landslides and natural hazards, restoration and reduced conversion of coastal wetlands, reduced post-harvest losses, sustainable sourcing, management of supply chains, improved food processing and retailing, improved energy use in food systems, livelihood diversification, use of local seeds*, and *disaster risk management* (Smith et al., 2020). However, of these 16 options, more than half of them (9) do show potential trade-offs with either NCPs or SDGs in our analysis.

4. Discussion

Decisionmakers are increasingly asking for policy options that will help them achieve agreed-upon global goals like the Paris Agreement and the SDGs in an integrated manner (Sachs et al., 2019). Many land challenges in particular can be met with a range of response options readily available, such as reducing the conversion of natural ecosystems or increasing soil carbon content using basic technologies like cover crops and changing tillage and residue management. Assessing these options against their co-benefits and adverse side-effects can help policymakers to account for impacts on both natural and human systems. Our assessment using an extended literature review has been as comprehensive as possible (forty options times 18 NCPs and 17 SDGs) and robust (literature in the thousands of documents) to provide some direction to such policymaking and goal setting. Below we discuss the primary findings, limitations of the study, and some future research directions.

4.1 Identifying co-benefits for people and nature

There are a clear range of potential synergies through co-benefits provided by the assessed response options. For example, there are positive co-benefits between many response options and important SDGs: these include positive poverty reduction impacts (SDG 1) from activities like integrated water management and increased soil carbon, and strengthened good health (SDG 3) from reducing pollution, fire management, and disaster risk management approaches. In some cases, our review has identified some response options that might not have been obvious choices for improvements in SDGs or NCPs at first glance, such as the important role that integrated water management could potentially play for gender equity. By starting our review with response options and actions first, and then comparing them across SDGs and NCPs for co-benefits, some of these interesting and unexpected interactions emerged. However, as many studies have noted, achieving co-benefits requires explicit assessments and agreements on criteria, and an understanding that not all co-benefits can accrue in every context (Hultman, Lou, & Hutton, 2020)

Table 12 indicates the strongest options identified from the assessment for specific SDGs (that is, those for which previous tables 3-8 indicated large positive impacts). However, while this can provide a suggestive template for what the preferred response options for each priority SDG might be, policymakers also need to consider the specific trade-offs that may result, which are indicated in parentheses (indicating where negative impacts were found in the literature reviews).

For NCPs, examples of positive co-benefits include positive ecosystem impacts on habitat maintenance from activities like reduced land conversion across forests, grasslands, wetlands and peatlands and fire management. Table 13 indicates the indicates the strongest options that emerged from the assessment of response options for specific NCPs, again providing the caveat that some of these options come with more trade-offs than others. As the recent

IPBES Global Assessment noted, many NCPs can trade-off with one another, and achieving synthesis across multiple NCPs is an important policy goal (IPBES, 2019).

4.2 Highlighting interactions between SDGs and NCPs

The strong synergies *between* positive co-benefits on both NCPs and SDGs for a number of response options (Table 11) is an important finding. This indicates there are potentially winwins that do not require the degradation of natural capital and ecosystems to achieve poverty and development objectives (Miteva, 2019). For example, pollination services (NCP 2) are essential for crop production necessary to reduce hunger (SDG 2) (Dangles & Casas, 2019). While the literature remains rather thin on many of these interactions, evidence is growing that mutual reinforcement between improved environment management and goals for human well-being are in fact achievable (Schleicher, Schaafsma, & Vira, 2018).

Response options in which there are positive interactions and synergies across both NCPs and SDGs can help deliver on a range of social and ecological benefits. One of these win-win options, agroforestry, is noted in Figure 1. Agroforestry involves the deliberate planting of trees in croplands and silvopastoral systems and is a particularly integrative practice in that it is usually carried out to bring both ecological and social benefits, ranging from improved soil health to increased farm income. The literature reviews noted that agroforestry can contribute to poverty reduction (Leakey & Simons, 1997), reduces food insecurity (Mbow, Van Noordwijk, et al., 2014), and positively contributes to more nutritious diets (Haddad, 2000), as well as mimics natural ecosystem diversity (Jose, 2009), provides habitat for pollinators (Dainese et al., 2019) and increases soil water infiltration capacity (Ilstedt et al., 2007), among other benefits. As a result, our assessment of this practice shows a range of positive benefits for both NCP and SDGs: for climate across 3 NCPs and 1 SDG (Climate Action); benefits for biodiversity across 4 NCPs and 1 SDG (Life on Land); and benefits for humans across 1 NCP (Supporting identities) and 5 SDGs (Figure 1).

However, not all options are as integrative or beneficial as agroforestry. For other response options, there are trade-offs between SDGs and NCPs. For example, some response options stand out as being particularly positive across a range of SDGs, but few NCPs: *management of supply chains, improved food processing and retail,* and *disaster risk management*. Conversely, some options deliver co-benefits for many NCPs but few SDGs: *reduced deforestation and degradation, restoration and avoided conversion of coastal wetlands,*

and restoration and avoided conversion of peatlands. These response options are primarily focused on natural land management options that minimize human impacts and maximize ecosystem functions, while the SDG-focused options are ones that improve access to food and reduce risks to livelihoods, with little attention to benefits for ecosystems.

There are also options that deliver a balanced set of co-benefits across both SDGs and NCPs with minimal side-effects; these include *improved cropland management, improved grazing land management, improved livestock management, agroforestry, nearly all soil management options aside from biochar, fire management, reduced landslides, reduced pollution, and reduced post-harvest losses. These particular options focus on human-dominated systems, seek to improve these in ways that have positive outcomes for both social and ecological components, while also minimizes external risks or improving resilience. Such approaches that recognize socio-ecological complexity in an integrated manner are increasingly important in ecosystem governance (Vasseur et al., 2017), as are evidenced in rising attention to concepts like 'nature-based solutions' and 'ecosystem-based adaptation' (Seddon et al., 2019; Seddon et al., 2020).*

4.3 Making better policy choices to achieve global goals

The Paris Agreement and SDGs both reflect global goals for human and environmental well-being, but there are also potentially serious trade-offs between both of them and with other global objectives, like biodiversity conservation (Sachs et al, 2019; Iyer et al., 2018; von Stechow et al., 2015). There is also concern that we are failing to make progress on many of the SDGs and on Paris Agreement pledges (ECOSOC, 2019). It is possible that one reason for slow progress are conflicts among and between different goals, and hence a closer look at response options could help identify areas where conflicts and trade-offs will need to be managed.

Our analysis can also help focus attention on beneficial options that could be included in Nationally Determined Contributions (NDCs) for the Paris Agreement, where countries note their pledges for mitigation and adaptation and how they intend to meet these goals (Iyer et al., 2018). Recent analysis of these NDCs for their use of 'nature-based solutions' reveals that 77% of NDCs contain at least one quantitative target for ecosystems in general (Seddon et al., 2019), but many NDCs are not specific on what response options might be included to meet that target. Among land-based actions, the forest sector generally receives the most attention in NDCs, as it can make significant contributions to both mitigation and adaptation goals; however, as we note, most options around forests do come with potential trade-offs related to food production and other NCPs that need to be recognized.

Moreover, the analysis presented here and in Smith et al. (2020) notes that significant mitigation benefits with minimal adverse side-effects can also be achieved through attention to better agricultural and food practices (e.g. increased food productivity or increased soil organic carbon). However, there is very little attention in NDCs to these measures, or to demand-side shifts (e.g. reduced post-harvest losses or dietary change) (Roe et al., 2019), which also shows promise in the analysis here. Thus, encouraging future NDC submissions to be explicit about what policies, options and pathways will be used to achieve overall mitigation and adaptation goals could draw on methodological analysis such as that presented here. That is, the use of a trade-off and co-benefit literature review, drawing on multiple case studies, can clarify for policymakers the particular response options that best match their social and environmental goals within a specific geographical and societal context, and which minimize the most serious trade-offs.

Another key point emerging from this analysis is the need for policy coherence to support implementation of the response options, since there are many interactions and potential cobenefits that can be realized from bringing different response options and goals together (Griggs et al., 2014). Increasingly policymakers and researchers are thinking about 'nexus' approaches that encourage integrated planning across sectors, particularly synergies between environmental and social planning (Weitz, Nilsson, & Davis, 2014). The goal of nexus approaches is "improving resource use efficiency and avoiding adverse impacts of single-sector development strategies" (Ringler & Lawford, 2013, 618). Our analysis here supports seeking opportunities for nexus outcomes, where multiple response options could co-deliver across mix of NCPs and SDGs (e.g. water-land-energy-food), while also delivering climate mitigation and adaptation benefits (Karabulut, Udias, & Vigiak, 2019). These integrated and nexus approaches to provide co-benefits and synergies will require frequent assessment and strong engagement of stakeholders, given the complexity of challenges (Raymond et al., 2017; Reed et al., 2019).

4.4 Study limitations, gaps and future research

The literature assessed points to general directions of interactions, but much more information is needed to make more accurate assessments. For nearly all interactions, we could assess only positive or negative trends qualitatively, without the possibility of detailed quantification (e.g. how a doubling of area devoted to one response option would affect an NCP or SDG). Further, because many of the NCPs and SDGs trade-off with one another (e.g. NCP 1 vs NCP 2, or NCP 2 vs SDG 4), simple assessments cannot fully capture the range of all interactions.

The context for any given option also needs to be considered carefully. For example, there are physical spatial limits on where many response options can be applied, for which this analysis was unable to go into contextual detail. Additionally, trying to assess the literature across the global scale has meant that many important, context-specific interactions, (e.g. by location, ecosystem type, or administrative unit) cannot be accounted for. This is complicated by the fact that the literature is skewed towards some regions more than others, depending on the option assessed (e.g. Kuyah et al., 2016). Future assessments could help to clarify where these spatial biases are most relevant for which practices and options.

Further, all land-based options we assessed are scale dependent, and the potential adverse side-effects of practices such BECCS are reflective of large-scale implementation. Such adverse side-effects could be at least partially ameliorated if applied on a smaller share of the land, or if integrated into sustainably managed landscapes (Cacho, Negri, Zumpf, & Campbell, 2018), arguing further for multi-scalar, nexus approaches to policy implementation.

As Tables 3-8 demonstrate, there are also considerable knowledge gaps. Many response options have not been investigated for their impacts on SDGs or NCPs, and thus our literature reviews turned up no data. There are many suggestive relationships that would benefit from further research; for example, interactions of all the response options for their impacts on gender. Given that we know that women make up much of the agricultural workforce in the world, the lack of information on how various farming response options impact on gender dynamics is problematic. For example, we do have studies that show how gender impacts farming (that is, women and men engage in different practices), but we are less clear on the reverse: that is, how do different farming practices result in more or less gender equity (the specific SDG goal). Thus, the directionality of impacts between options and SDGs/NCPs was particularly challenging in reviewing the literature. Further, given how important land management is for the supply of NCPs, we would expect more research to be conducted on the full range of NCPs from different land management practices, but certain NCPs have greater limitations in the literature than others (e.g. there is considerably less information on pollination services, air quality, or hazard

regulation impacts linked to different specific land use practices).

4.5 Conclusions

The world faces a series of interlinked challenges in our land sector: the need for mitigation of greenhouse gases, adaptation to existing and impending climate change, reducing land degradation, and ensuring food security. How to potentially address all the challenges in an integrated manner, without undue impacts on any of these challenges or on socio-environmental systems, is the goal of many countries in their NDCs, adoption of SDGs, and other national policies. Identifying potential options was also the overall goal for many countries in calling for the IPCC Climate Change and Land report.

Our comprehensive assessment concludes that a number of response options can make a valuable contribution to tackling these land challenges and at the same time help in eradicating poverty, provisioning and regulating water, producing food, energy and other materials, and supporting sustainable cities and communities, among other positive benefits associated with NCPs and SDGs. The fact that there are a wide range of policy responses that have the potential to make positive contributions to sustainable development, ecosystem services, and other societal goals, with minimal trade-offs, is good news.

However, as our results suggest, care must be taken to acknowledge and manage the potential trade-offs where they do exist. Our analysis has pointed out that some response options with high mitigation or adaptation benefits do show potentially large adverse impacts on some SDGs or NCPs. Land management-based options that require significant land use change can adversely affect efforts to eradicate poverty and eliminate hunger (Molotoks et al., 2018); such trade-offs were identified with afforestation and BECCS/bioenergy in particular. Recognizing these trade-offs in advance can help policymakers find alternative measures, or at least possibilities to avoid or minimize negative effects, through well-managed implementation, safety-nets, and welfare policies, among other solutions (Trisos et al., 2019). Similarly, social development options that are focused on human improvement to the exclusion of natural systems can have adverse effects on NCPs. Policymakers face strong challenges in trying to balance these competing goals, and use of trade-off analyses derived from extensive literature reviews, as we have done here, is one way to help identify these pitfalls.

Further, our analysis also has highlighted the many important synergies between SDG goals and NCP supply. Some options to tackle land and climate challenges do in fact provide a

balanced set of co-benefits across both SDGs and NCPs. What these balanced options have in common is that they acknowledge the integration of socio-ecological systems, rather than having primary objectives that are predominantly environmental or social. However, many of the positive co-benefits that are possible will not happen automatically, and are dependent on institutional and enabling conditions for success (IPCC, 2019). All too often, land and climate policies are not planned in an integrated manner, as examination of many existing NDCs reveals, and when synergies are not managed for explicitly, this can result in lost opportunities. Nexus approaches to socio-environmental systems and 'nature-based solutions' that have an explicitly integrated human/ecosystem benefit model are two approaches identified here that show promise.

Thus, how response options and policies are designed and delivered will play an important role in determining how beneficial they are in supporting SDG and NCP goals, and future research on the implementation successes and failures of these options is sorely needed (Independent Group of Scientists appointed by the Secretary-General, 2019). Ensuring that policymakers can anticipate adverse impacts and positive co-benefits in advance, and potentially choose the most appropriate response options for their particular contexts and challenges, will require more assessments such as these, and increased attention to co-benefit and trade-off interactions in the overall literature.

Acknowledgements

Work for this paper was undertaken as part of the IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, and we thank the support provided by the Technical Support Units for Working Groups I, II and III. Particular thanks are due to Renee van Diemen of WGIII. Additional funding and support for McElwee's involvement in the IPCC process was provided by Dean Robert Goodman of the School of Environmental and Biological Sciences, Rutgers University. Cherubini acknowledges the support of the Norwegian Research Council through the projects BIOPATH and MITISRESS. Nkonya was supported by the CGIAR Research Program on Water, Land and Ecosystems. The authors have no conflict of interest to declare.

References

Adhikari, J. (2014). Seed sovereignty: analysing the debate on hybrid seeds and GMOs and bringing about sustainability in agricultural development. *Journal of Forest and Livelihood*, *12*, 33–46. Retrieved from

https://www.forestaction.org/app/webroot/vendor/tinymce/editor/plugins/filemanager/files/J FL VOI 12 %281%29/Adhikari.pdf

- Altieri, M.A., Funes-Monzote, F. R., & Petersen, P. (2012). Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. *Agronomy for Sustainable Development*, 32, 1–13. https://doi.org/10.1007/s13593-011-0065-6
- Badami, M. G., & Ramankutty, N. (2015). Urban agriculture and food security: a critique based on an assessment of urban land constraints. *Global Food Security*, 4, 8–15. https://doi.org/10.1016/J.GFS.2014.10.003
- Bezner Kerr, R. (2013). Seed struggles and food sovereignty in northern Malawi. Journal of Peasant Studies, 40, 867–897. https://doi.org/10.1080/03066150.2013.848428
- Bisht, I. S., Mehta, P. S., Negi, K. S., Verma, S. K., Tyagi, R. K., & Garkoti, S. C. (2018).
 Farmers' rights, local food systems, and sustainable household dietary diversification: a case of Uttarakhand Himalaya in north-western India. *Agroecology and Sustainable Food Systems*, 42, 77–113. https://doi.org/10.1080/21683565.2017.1363118
- Bonsch, M., Popp, A., Biewald, A., Rolinski, S., Schmitz, C., Weindl, I., ... Humpenöder, F. (2015). Environmental flow provision: implications for agricultural water and land-use at the global scale. *Global Environmental Change*, *30*, 113–132.
 https://doi.org/10.1016/j.gloenvcha.2014.10.015
- Bowman, M.S., & Zilberman, D. (2013). Economic factors affecting diversified farming systems. *Ecology and Society*, 18, art33. https://doi.org/10.5751/ES-05574-180133
- Bradford, K.J., Dahal, P., Van Asbrouck, J., Kunusoth, K., Bello, P., Thompson, J., & Wu, F. (2018). The dry chain: reducing postharvest losses and improving food safety in humid climates. *Trends in Food Science and Technology*, *71*, 84–93. https://doi.org/10.1016/j.tifs.2017.11.002
- Brueckner, J.K. (2000). Urban sprawl: diagnosis and remedies. *International Regional Science Review*, 23, 160–171. https://doi.org/10.1177/016001700761012710
- Bryan, B.A., Runting, R.K., Capon, T., Perring, M.P., Cunningham, S.C., Kragt, M.E., ...

Wilson, K.A. (2016). Designer policy for carbon and biodiversity co-benefits under global change. *Nature Climate Change*, *6*, 301–305. https://doi.org/10.1038/nclimate2874

- Burns, W., & Nicholson, S. (2017). Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response. *Journal of Environmental Studies and Sciences*, 7(4), 527–534. https://doi.org/10.1007/s13412-017-0445-6
- Butchart, S. H., Miloslavich, P., Reyers, B., & Subramanian, S. M. (2019). Chapter 3: Assessing progress towards meeting major international objectives related to nature and nature's contributions to people. In *IPBES Global Assessment on Biodiversity and Ecosystem Services*. Bonn: IPBES. Retrieved from https://www.ipbes.net/system/tdf/ipbes_global_assessment_chapter_3_unedited_31may.pdf ?file=1&type=node&id=35279
- Cacho, J. F., Negri, M. C., Zumpf, C. R., & Campbell, P. (2018). Introducing perennial biomass crops into agricultural landscapes to address water quality challenges and provide other environmental services. *Wiley Interdisciplinary Reviews: Energy and Environment*, 7, e275. https://doi.org/10.1002/wene.275
- Calvin, K., Wise, M., Kyle, P., Patel, P., Clarke, L., & Edmonds, J. (2014). Trade-offs of different land and bioenergy policies on the path to achieving climate targets. *Climatic Change*, 123, 691-704. https://doi.org/10.1007/s10584-013-0897-y
- Campbell, B.M., Hansen, J., Rioux, J., Stirling, C.M., Twomlow, S., & Wollenberg, E. (2018).
 Urgent action to combat climate change and its impacts (SDG 13): transforming agriculture and food systems. *Current Opinion in Environmental Sustainability*, *34*, 13–20.
 https://doi.org/10.1016/j.cosust.2018.06.005
- Cibin, R., Trybula, E., Chaubey, I., Brouder, S. M., & Volenec, J. J. (2016). Watershed-scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model. *GCB Bioenergy*, 8, 837–848. https://doi.org/10.1111/gcbb.12307
- Claassen, R., Carriazo, F., Cooper, J.C., Hellerstein, D., & Ueda, K. 2011. Grassland to cropland conversion in the Northern Plains: The role of crop insurance, commodity, and disaster programs. Washington DC: Economic Research Service Report Summary, US Department of Agriculture. Retrieved from

https://www.ers.usda.gov/webdocs/publications/44876/7477_err120.pdf?v=0 Clarke, L.E., Jiang, K., Akimoto, K., Babiker, M., Blanford, G., Fisher-Vanden, K., ... van

Vuuren, D.P. (2014). Assessing transformation pathways. In *Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* (pp. 413–510). Geneva: IPCC. Retrieved from

https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc wg3 ar5 chapter6.pdf

- Coomes, O.T., McGuire, S. J., Garine, E., Caillon, S., McKey, D., Demeulenaere, E., ...
 Wencélius, J. (2015). Farmer seed networks make a limited contribution to agriculture?
 Four common misconceptions. *Food Policy*, *56*, 41–50.
 https://doi.org/10.1016/J.FOODPOL.2015.07.008
- Cooper-Ellis, Sarah, David R. Foster, Gary Carlton, and Ann Lezberg. (1999). Forest response to catastrophic wind: Results from an experimental hurricane. *Ecology* 80(8): 2683. https://doi.org/10.2307/177250
- Crooks, S., Herr, D., Tamelander, J., & Laffoley, D. (2011). Mitigating climate change through restoration and management of coastal wetlands and near-shore marine ecosystems: challenges and opportunities. Washington D.C: World Bank. Retrieved from https://openknowledge.worldbank.org/bitstream/handle/10986/18318/605780REPLACEM1 0of0Coastal0Wetlands.pdf?sequence=1&isAllowed=y
- Dangles, O., & Casas, J. (2019). Ecosystem services provided by insects for achieving sustainable development goals. *Ecosystem Services*, 35, 109–115. https://doi.org/10.1016/j.ecoser.2018.12.002
- Dainese, M., Martin, E. A., Aizen, M. A., Albrecht, M., Bartomeus, I., Bommarco, R., ...
 Steffan-Dewenter, I. (2019). A global synthesis reveals biodiversity-mediated benefits for crop production. *Science Advances*, 5(10), eaax0121. https://doi.org/10.1126/sciadv.aax0121
- Demailly, K.E., & Darly, S. (2017). Urban agriculture on the move in Paris: the routes of temporary gardening in the neoliberal city. ACME: An International E-Journal for Critical Geographies, 16(2), 332–361. Retrieved from https://hal.archives-ouvertes.fr/hal-01972331/
- Díaz, S., Pascual, U., Stenseke, M., Martín-López, B., Watson, R.T., Molnár, Z., ...Shirayama, Y. (2018). Assessing nature's contributions to people. *Science*, 359, 270–272. https://doi.org/10.1126/science.aap8826

Doney, S.C., Fabry, V.J., Feely, R. A., & Kleypas, J.A. (2009). Ocean acidification: the other

CO2 problem. *Annual Review of Marine Science*, *1*, 169–192. https://doi.org/10.1146/annurev.marine.010908.163834

- Dooley, K., & Kartha, S. (2018). Land-based negative emissions: risks for climate mitigation and impacts on sustainable development. *International Environmental Agreements: Politics, Law and Economics*, 18, 79–98. https://doi.org/10.1007/s10784-017-9382-9
- ECOSOC. (2019). Special edition: progress towards the Sustainable Development Goals -Report of the Secretary-General. New York: UN Economic and Social Council.
- Ellis, E. C., Pascual, U., & Mertz, O. (2019). Ecosystem services and nature's contribution to people: negotiating diverse values and trade-offs in land systems. *Current Opinion in Environmental Sustainability*, 38, 86–94. https://doi.org/10.1016/j.cosust.2019.05.001
- Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., ...Zaks, D. (2011). Solutions for a cultivated planet. *Nature*, 478, 337-342. https://doi.org/10.1038/nature10452
- Fuss, S., Jones, C. D., Kraxner, F., Peters, G. P., Smith, P., Tavoni, M., ... Yamagata, Y. (2016). Research priorities for negative emissions. *Environmental Research Letters*, 11, 115007. https://doi.org/10.1088/1748-9326/11/11/115007
- Gasparatos, A., Stromberg, P., & Takeuchi, K. (2011). Biofuels, ecosystem services and human wellbeing: putting biofuels in the ecosystem services narrative. *Agriculture, Ecosystems & Environment*, 142, 111–128. https://doi.org/10.1016/j.agee.2011.04.020
- Gladwin, C., Peterson, J. & Uttaro, R. (2002.) Agroforestry innovations in Africa: Can they improve soil fertility on women farmers' fields? *African Studies Quarterly*, *1&2*, 245-269.
 Retrieved from http://asq.africa.ufl.edu/files/Gladwin-Peterson-Uttaro-Vol6-Issue-12.pdf
- Goodwin, B.K. and Smith, V.H. (2003). An expost evaluation of the Conservation Reserve, federal crop insurance, and other government programs: Program participation and soil erosion. *Journal of Agricultural and Resource Economics*, 28, 201-216.
- Grey, S., & Patel, R. (2015). Food sovereignty as decolonization: some contributions from Indigenous movements to food system and development politics. *Agriculture and Human Values*, 32, 431–444. https://doi.org/10.1007/s10460-014-9548-9
- Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Ohman, M. C., Shyamsundar, P., S.,...Noble, I. (2013). Policy: Sustainable development goals for people and planet. *Nature*, 495, 305–307. https://doi.org/10.1038/495305a

- Griggs, D., Stafford Smith, M., Rockström, J., Öhman, M. C., Gaffney, O., Glaser, G.,
 ...Shyamsundar, P. (2014). An integrated framework for sustainable development goals. *Ecology and Society*, 19, art49. https://doi.org/10.5751/ES-07082-190449
 - Guerry, A.D., Polasky, S., Lubchenco, J., Chaplin-Kramer, R., Daily, G.C., Griffin, R., ...Vira, B. (2015). Natural capital and ecosystem services informing decisions: From promise to practice. *Proceedings of the National Academy of Sciences*, *112*, 7348–7355. https://doi.org/10.1073/pnas.1503751112
 - Haddad, L. (2000). A conceptual framework for assessing agriculture–nutrition linkages. *Food and Nutrition Bulletin*, *21*(4), 367–373.
 - Hák, T., Janoušková, S., & Moldan, B. (2016). Sustainable Development Goals: A need for relevant indicators. *Ecological Indicators*, 60, 565–573.
 https://doi.org/10.1016/j.ecolind.2015.08.003
 - Hammer, K., & Teklu, Y. (2008). Plant genetic resources: selected issues from genetic erosion to genetic engineering. *Journal of Agriculture and Rural Development in the Tropics and Subtropics*, 109. Retrieved from https://jarts.info/index.php/jarts/article/viewFile/72/65
 - Hejazi, M., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V., ... Kim, S. (2014).
 Long-term global water projections using six socioeconomic scenarios in an integrated assessment modelling framework. *Technological Forecasting and Social Change*, *81*, 205–226. https://doi.org/10.1016/j.techfore.2013.05.006
 - Helicke, N.A. (2015). Seed exchange networks and food system resilience in the United States. *Journal of Environmental Studies and Sciences*, *5*, 636–649. https://doi.org/10.1007/s13412-015-0346-5
 - Hof, C., Voskamp, A., Biber, M.F., Böhning-Gaese, K., Engelhardt, E.K., Niamir, A., ...
 Hickler, T. (2018). Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. *Proceedings of the National Academy of Sciences*, *115*, 13294–13299. https://doi.org/10.1073/pnas.1807745115
 - Hollis-Hansen, K., Vermont, L., Zafron, M.L., Seidman, J., & Leone, L. 2019. The introduction of new food retail opportunities in lower-income communities and the impact on fruit and vegetable intake: a systematic review. *Translational Behavioral Medicine*, *9*, 837-846 https://doi.org/10.1093/tbm/ibz094

Howard, P.H. (2015). Intellectual property and consolidation in the seed industry. Crop Science,

55, 2489. https://doi.org/10.2135/cropsci2014.09.0669

- Hultman, N., Lou, J., & Hutton, S. 2020. A review of community co-benefits of the clean development mechanism (CDM). *Environmental Research Letters*, 15, 1053002 https://doi.org/10.1088/1748-9326/ab6396
- Humpenöder, F., Popp, A., Bodirsky, B. L., Weindl, I., Biewald, A., Lotze-Campen, H., ... Stevanovic, M. (2018). Large-scale bioenergy production: how to resolve sustainability trade-offs? *Environmental Research Letters*, 13, 024011. https://doi.org/10.1088/1748-9326/aa9e3b
- Ilstedt, U., Malmer, A., Verbeeten, E., & Murdiyarso, D. (2007). The effect of afforestation on water infiltration in the tropics: a systematic review and meta-analysis. *Forest Ecology and Management*, 251, 45–51. https://doi.org/10.1016/j.foreco.2007.06.014
- Immerzeel, D.J., Verweij, P.A., van der Hilst, F. and Faaij, A.P.C. (2014). Biodiversity impacts of bioenergy crop production: a state-of-the-art review. *GCB Bioenergy*, 6, 183-209. doi:10.1111/gcbb.12067
- Independent Group of Scientists appointed by the Secretary-General. (2019). *Global Sustainable* Development Report 2019: The Future is Now – Science for Achieving Sustainable Development. New York: UN.
- IPBES. (2018). Summary for policymakers of the thematic assessment report on land degradation and restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (R. Scholes, L. Montanarella, A. Brainich, N. Barger, B. ten Brink, M. Cantele, B. Erasmus, J. Fisher, T. Gardner, & T. G. Holland, eds.). Bonn, Germany: IPBES Secretariat. Retrieved from https://ipbes.net/assessment-reports/ldr
- IPBES. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (Diaz, S., Settele, J., and Brondizio, E., eds). Bonn, Germany: IPBES Secretariat. Retrieved from
 - https://www.ipbes.net/system/tdf/spm_global_unedited_advance.pdf?file=1&type=node&id =35245
- IPCC. (2019). Climate Change and Land: An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse. Geneva: Intergovernmental Panel on Climate Change. Retrieved from

https://www.ipcc.ch/srccl-report-download-page/

- Isakson, S. R. (2009). No hay ganancia en la milpa: The agrarian question, food sovereignty, and the on-farm conservation of agrobiodiversity in the Guatemalan highlands. *Journal of Peasant Studies*, 36(4), 725–759. https://doi.org/10.1080/03066150903353876
- Iyer, G., Calvin, K., Clarke, L., Edmonds, J., Hultman, N., Hartin, C., McJeon, H., Aldy, J., & Pizer, W. (2018). Implications of sustainable development considerations for comparability across nationally determined contributions. *Nature Climate Change*, *8*, 124–129. https://doi.org/10.1038/s41558-017-0039-z
- Jactel, H., Bauhus, J., Boberg, J., Bonal, D., Castagneyrol, B., Gardiner, B., ... Brockerhoff, E.
 G. (2017). Tree diversity drives forest stand resistance to natural disturbances. *Current Forestry Reports*, *3*, 223–243. https://doi.org/10.1007/s40725-017-0064-1
- James, S. J. J., & James, C. (2010). The food cold-chain and climate change. Food Research International, 43, 1944–1956. https://doi.org/10.1016/j.foodres.2010.02.001
- Jones, A.D., Shapiro, L.F., & Wilson M.L. (2015). Assessing the potential and limitations of leveraging food sovereignty to improve human health. *Frontiers in Public Health*, *3*, 263 https://doi.org/10.3389/fpubh.2015.00263
- Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: an overview. *Agroforestry Systems*, 76, 1–10. https://doi.org/10.1007/s10457-009-9229-7
- Kadykalo, A. N., López-Rodriguez, M.D., Ainscough, J., Droste, N., Ryu, H., Ávila-Flores, G.,
 ... Harmáčková, Z. V. (2019). Disentangling 'ecosystem services' and 'nature's contributions to people.' *Ecosystems and People*, *15*, 269–287.
 https://doi.org/10.1080/26395916.2019.1669713
- Kanter, D. R., Musumba, M., Wood, S. L. R., Palm, C., Antle, J., Balvanera, P., ... Andelman, S. (2018). Evaluating agricultural trade-offs in the age of sustainable development. *Agricultural Systems*, 163, 73–88. https://doi.org/10.1016/j.agsy.2016.09.010
- Karabulut, A. A., Udias, A., & Vigiak, O. (2019). Assessing the policy scenarios for the Ecosystem Water Food Energy (EWFE) nexus in the Mediterranean region. *Ecosystem Services*, 35, 231–240. https://doi.org/10.1016/j.ecoser.2018.12.013
- Keding, G. B., Schneider, K., & Jordan, I. (2013). Production and processing of foods as core aspects of nutrition-sensitive agriculture and sustainable diets. *Food Security*, 5, 825–846. https://doi.org/10.1007/s12571-013-0312-6

- Keitt, T. H. (2009). Habitat conversion, extinction thresholds, and pollination services in agroecosystems. *Ecological Applications*, *19*, 1561–1573. https://doi.org/10.1890/08-0117.1
- Kiptot, E., & Franzel, S. (2012). Gender and agroforestry in Africa: a review of women's participation. *Agroforestry Systems*, 84, 35–58. https://doi.org/10.1007/s10457-011-9419-y
- Kiptot, E., Franzel, S. & Degrande, A. (2014). Gender, agroforestry and food security in Africa. *Current Opinion in Environmental Sustainability*, 6, 104-109.
- Kloppenberg, J. (2010). Impeding dispossession, enabling repossession: biological open source and the recovery of seed sovereignty. *Journal of Agrarian Change*, 10, 367–388. https://doi.org/10.1111/j.1471-0366.2010.00275.x
- Kloppenburg, J. (2014). Re-purposing the master's tools: the open source seed initiative and the struggle for seed sovereignty. *The Journal of Peasant Studies*, 41, 1225–1246. https://doi.org/10.1080/03066150.2013.875897
- Kreidenweis, U., Humpenöder, F., Stevanović, M., Bodirsky, B. L., Kriegler, E., Lotze-Campen, H., & Popp, A. (2016). Afforestation to mitigate climate change: Impacts on food prices under consideration of albedo effects. *Environmental Research Letters*, *11*, 085001. https://doi.org/10.1088/1748-9326/11/8/085001
- Kuyah, S., Öborn, I., Jonsson, M., Dahlin, A.S., Barrios, E., Muthuri, C. ... & Sinclair, F.L. (2016). Trees in agricultural landscapes enhance provision of ecosystem services in Sub-Saharan Africa. *International Journal of Biodiversity Science, Ecosystem Services & Management*, 12, 255-273, DOI: 10.1080/21513732.2016.1214178
- Leakey, R. R. B., & Simons, A. J. (1997). The domestication and commercialization of indigenous trees in agroforestry for the alleviation of poverty. *Agroforestry Systems*, *38*, 165–176. https://doi.org/10.1016/b978-0-12-805356-0.00005-2
- Leitgeb, F., Schneider, S., & Vogl, C. R. (2016). Increasing food sovereignty with urban agriculture in Cuba. *Agriculture and Human Values*, 33, 415–426. https://doi.org/10.1007/s10460-015-9616-9
- Lin, B. B. (2011). Resilience in agriculture through crop diversification: Adaptive management for environmental change. *BioScience*, *61*, 183-193. https://doi.org/10.1525/bio.2011.61.3.4
- Locatelli, B., Pavageau, C., Pramova, E., & Di Gregorio, M. (2015). Integrating climate change mitigation and adaptation in agriculture and forestry: opportunities and trade-offs. *Wiley Interdisciplinary Reviews: Climate Change*, 6, 585–598. https://doi.org/10.1002/wcc.357

- Louwaars, N. P. (2002). Seed policy, legislation and law. *Journal of New Seeds*, *4*, 1–14. https://doi.org/10.1300/J153v04n01_01
- Mazzeo, J., & Brenton, B. (2013). Peasant resistance to hybrid seed in Haiti: the implications of humanitarian aid on food security and cultural identity. In H. Garth (Ed.), *Food and Identity in the Caribbean* (pp. 121–137). https://doi.org/10.5040/9781350042162.ch-008
- Mbow, C., Van Noordwijk, M., Luedeling, E., Neufeldt, H., Minang, P. A., & Kowero, G. (2014). Agroforestry solutions to address food security and climate change challenges in Africa. *Current Opinion in Environmental Sustainability*, 6, 61–67. https://doi.org/10.1016/j.cosust.2013.10.014
- McElwee, P. (2017). The metrics of making ecosystem services. *Environment and Society*, *8*, 96-124. https://doi.org/10.3167/ares.2017.080105
- McGuire, S., & Sperling, L. (2016). Seed systems smallholder farmers use. *Food Security*, 8, 179–195. https://doi.org/10.1007/s12571-015-0528-8
- McMichael, P., & Schneider, M. (2011). Food security politics and the millennium development goals. *Third World Quarterly*, 32, 119–139. https://doi.org/10.1080/01436597.2011.543818
- McMichael, A. J., Powles, J. W., Butler, C. D., & Uauy, R. (2007). Food, livestock production, energy, climate change, and health. *The Lancet*, 370, 1253–1263. https://doi.org/10.1016/S0140-6736(07)61256-2
- McShane, T.O., Hirsch, P.D., Trung, T.C., Songorwa, A.N., Kinzig, A., Monteferri, B., ...
 O'Connor, S. (2011). Hard choices: Making trade-offs between biodiversity conservation and human well-being. *Biological Conservation*, *144*, 966–972.
 https://doi.org/10.1016/j.biocon.2010.04.038
- Meyfroidt, P. (2018). Trade-offs between environment and livelihoods: Bridging the global land use and food security discussions. *Global Food Security*, 16, 9–16. https://doi.org/10.1016/j.gfs.2017.08.001
- Mirzabaev, A., Guta, D., Goedecke, J., Gaur, V., Börner, J., Virchow, D., ... von Braun, J. (2015). Bioenergy, food security and poverty reduction: trade-offs and synergies along the water–energy–food security nexus. *Water International*, 40, 772–790. https://doi.org/10.1080/02508060.2015.1048924
- Miteva, D. A. (2019). The integration of natural capital into development policies. Oxford Review of Economic Policy, 35, 162–181. https://doi.org/10.1093/oxrep/gry029

- Molotoks, A., Stehfest, E., Doelman, J., Albanito, F., Fitton, N., Dawson, T. P., & Smith, P. (2018). Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. *Global Change Biology*, *24*, 5895–5908. https://doi.org/10.1111/gcb.14459
 - Ng, T. L., Eheart, J. W., Cai, X., & Miguez, F. (2010). Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to simulate its water quality effects as a bioenergy crop. *Environmental Science & Technology*, 44, 7138–7144. https://doi.org/10.1021/es9039677
 - Ngcoya, M., & Kumarakulasingam, N. (2017). The lived experience of food sovereignty: gender, indigenous crops and small-scale farming in Mtubatuba, South Africa. *Journal of Agrarian Change*, 17, 480–496. https://doi.org/10.1111/joac.12170
 - Nilsson, M., Chisholm, E., Griggs, D., Howden-Chapman, P., McCollum, D., Messerli, P., ... Stafford-Smith, M. (2018). Mapping interactions between the sustainable development goals: lessons learned and ways forward. *Sustainability Science*, *13*, 1489–1503. https://doi.org/10.1007/s11625-018-0604-z
 - Park, C. M. Y., White, B., & Julia. (2015). We are not all the same: taking gender seriously in food sovereignty discourse. *Third World Quarterly*, *36*, 584–599. https://doi.org/10.1080/01436597.2015.1002988
 - Pascual, U., Balvanera, P., Díaz, S., Pataki, G., Roth, E., Stenske, M., ... Yagi, N. (2017.)
 Valuing nature's contributions to people: the IPBES approach. *Current Opinion in Environmental Sustainability*, 26-27, 7–16. https://doi.org/10.1016/j.cosust.2016.12.006
 - Popp, A., Dietrich, J. P., Lotze-Campen, H., Klein, D., Bauer, N., Krause, M., ... Edenhofer, O.
 (2011). The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. *Environmental Research Letters*, *6*, 034017. https://doi.org/10.1088/1748-9326/6/3/034017
 - Popp, A., Lotze-Campen, H., Leimbach, M., Knopf, B., Beringer, T., Bauer, N., & Bodirsky, B. (2011). On sustainability of bioenergy production: integrating co-emissions from agricultural intensification. *Biomass and Bioenergy*, 35, 4770–4780. https://doi.org/https://doi.org/10.1016/j.biombioe.2010.06.014
 - Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E., ... Van Vuuren, D.
 P. (2017). Land-use futures in the shared socio-economic pathways. *Global Environmental Change*, 42, 331–345. https://doi.org/10.1016/j.gloenvcha.2016.10.002

- Pradhan, P., Costa, L., Rybski, D., Lucht, W., & Kropp, J. P. (2017). A systematic study of Sustainable Development Goal (SDG) interactions. *Earth's Future*, 5, 1169–1179. https://doi.org/10.1002/2017EF000632
- Raymond, C., Frantzeskaki, N., Kabisch, N., Berry, P., Breil, M., Nita, M., ... Calfapietra, C. (2017). A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. *Environmental Science & Policy*, 77, 15-24. https://dx.doi.org/10.1016/j.envsci.2017.07.008
- Reed, M.S., Stringer, L. C., Dougill, A. J., Perkins, J. S., Atlhopheng, J. R., Mulale, K., & Favretto, N. (2015). Reorienting land degradation towards sustainable land management: Linking sustainable livelihoods with ecosystem services in rangeland systems. *Journal of Environmental Management*, 151, 472–485. https://doi.org/10.1016/j.jenvman.2014.11.010
- Reed, J., Barlow, J., Carmenta, R., van Vianen, J., & Sunderland, T. (2019). Engaging multiple stakeholders to reconcile climate, conservation and development objectives in tropical landscapes. *Biological Conservation*, 238, 108229. https://doi.org/10.1016/j.biocon.2019.108229
- Richardson, D. M., & Wilgen, B. W. Van. (2004). Invasive alien plants in South Africa: how well do we understand the ecological impacts? *South African Journal of Science*, 100(1–2), 45–52. Retrieved from https://journals.co.za/content/sajsci/100/1-2/EJC96214
- Ringler, C., & Lawford, R. (2013). The nexus across Water, Energy, Land and Food (WELF): potential for improved resource use efficiency? *Current Opinion in Environmental Sustainability*, 5, 617–624. https://doi.org/10.1016/J.COSUST.2013.11.002
- Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F.,...Foley, J.A. (2009). A safe operating space for humanity. *Nature*, 461, 472–475. https://doi.org/10.1038/461472a
- Rodríguez, J. P., Beard, T. D., Bennett, E. M., Cumming, G. S., Cork, S. J., Agard, J., ... Peterson, G.D. (2006). Trade-offs across space, time, and ecosystem services. *Ecology and Society*, 11, 28. https://doi.org/10.5751/ES-01667-110128
- Roe, S., Streck, C., Obersteiner, M., Frank, S., Griscom, B., Drouet, L., ...Lawrence, D. (2019). Contribution of the land sector to a 1.5 °C world. *Nature Climate Change*, *9*, 817-828. https://doi.org/10.1038/s41558-019-0591-9

Rowland, D., Ickowitz, A., Powell, B., Nasi, R., & Sunderland, T. (2017). Forest foods and

healthy diets: Quantifying the contributions. *Environmental Conservation, 44,* 102-114. https://doi.org/10.1017/S0376892916000151

- Roy, J., Tschakert, P., Waisman, H., Halim, S., Antwi-Agyei, P., Dasgupta, P., ... Rodriguez, A. (2018). Sustainable development, poverty eradication and reducing inequalities. In *Global Warming of 1.5 °C an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change.* Geneva: IPCC. Retrieved from http://www.ipcc.ch/report/sr15/
- Sachs, J.D., Schmidt-Traub, G., Mazzucato, M., Messner, D., Nakicenovic, N., & Rockstrom, J. 2019. Six transformations to achieve the Sustainable Development Goals. *Nature Sustainability*, 2, 805-814. https://doi.org/10.1038/s41893-019-0352-9
- Sadler, R.C., Gilliland, J.A., & Arku, G. 2013. A food retail-based intervention on food security and consumption. *International Journal of Environmental Research and Public Health*, 10, 3325–3346. https://doi.org/10.3390/ijerph10083325
- Santilli, J. (2012). *Agrobiodiversity and the law: regulating genetic resources, food security and cultural diversity.* New York: Earthscan.

Sanz, M. J., Vente, J., Chotte, J.L., Bernoux, M., Kust, I., Ruiz, M., ... Akhtar-Schuster, M. (2017). Sustainable Land Management contribution to successful land-based climate change adaptation and mitigation. A Report of the Science-Policy Interface. Bonn: UN Convention on Desertification. Retrieved from https://www.unccd.int/sites/default/files/documents/2017-

09/UNCCD_Report_SLM_web_v2.pdf

Schleicher, J., Schaafsma, M., & Vira, B. (2018). Will the Sustainable Development Goals address the links between poverty and the natural environment? *Current Opinion in Environmental Sustainability*, 34, 43–47. https://doi.org/10.1016/j.cosust.2018.09.004

Seddon, N., Sengupta, S., García-Espinosa, M., Hauler, I., Herr, D., & Rizvi, A. R. (2019). Nature-based Solutions in Nationally Determined Contributions: Synthesis and recommendations for enhancing climate ambition and action by 2020. Gland: WWF.

Seddon, N., Daniels, E., Davis, R., Chausson, A., Harris, R., Hou-Jones, X., Huq, S....Wicander, S. (2020). Global recognition of the importance of nature-based solutions to the impacts of climate change. *Global Sustainability*, *3*, 1–12. https://doi.org/10.1017/sus.2020.8

- Singh, G.G., Cisneros-Montemayor, A.M., Swartz, W., Cheung, W., Guy, J.A., Kenny, T.A., ...
 Ota, Y. (2018). A rapid assessment of co-benefits and trade-offs among Sustainable
 Development Goals. *Marine Policy*, *93*, 223–231.
 https://doi.org/10.1016/j.marpol.2017.05.030
 - Sinha, E., Michalak, A. M., Calvin, K. V., & Lawrence, P. J. (2019). Societal decisions about climate mitigation will have dramatic impacts on eutrophication in the 21st century. *Nature Communications*, 10, 939. https://doi.org/10.1038/s41467-019-08884-w
 - Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., ... Yongsung, C. (2016). Biophysical and economic limits to negative CO2 emissions. *Nature Climate Change*, 6, 42–50. https://doi.org/10.1038/NCLIMATE2870
 - Smith, P., Haszeldine, R. S., & Smith, S. M. (2016). Preliminary assessment of the potential for, and limitations to, terrestrial negative emission technologies in the UK. *Environ. Sci.: Processes Impacts*, 18, 1400–1405. https://doi.org/10.1039/C6EM00386A
 - Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G., Korotkov, V., ...Arneth, A. (2020). Which practices co-deliver food security, climate change mitigation and adaptation, and combat land-degradation and desertification? *Global Change Biology*, 26, 1532-1575. https://doi.org/10.1111/gcb.14878
 - Stathers, T., Lamboll, R., & Mvumi, B. M. (2013). Postharvest agriculture in changing climates: its importance to African smallholder farmers. *Food Security*, *5*, 361–392. https://doi.org/10.1007/s12571-013-0262-z
 - Stoy, P.C., Ahmed, S., Jarchow, M., Rashford, B., Swanson, D., Albeke, S., ... Poulter, B.
 (2018). Opportunities and trade-offs among BECCS and the food, water, energy, biodiversity, and social systems nexus at regional scales. *BioScience*, *68*, 100–111. https://doi.org/10.1093/biosci/bix145
 - Timko, J., Le Billon, P., Zerriffi, H., Honey-Rosés, J., de la Roche, I., Gaston, C., ... Kozak, R.
 A. (2018). A policy nexus approach to forests and the SDGs: tradeoffs and synergies. *Current Opinion in Environmental Sustainability*, *34*, 7–12. https://doi.org/10.1016/j.cosust.2018.06.004
 - Tirado, M. C., Clarke, R., Jaykus, L. A., McQuatters-Gollop, A., & Frank, J. M. (2010). Climate change and food safety: a review. *Food Research International*, 43, 1745–1765. https://doi.org/10.1016/j.foodres.2010.07.003

- Trisos, C. H., Alexander, S. M., Gephart, J. A., Gurung, R., McIntyre, P. B., & Short, R. E. (2019). Mosquito net fishing exemplifies conflict among Sustainable Development Goals. *Nature Sustainability*, *2*, 5–7. https://doi.org/10.1038/s41893-018-0199-5
 - UN. 2018. Global indicator framework for the Sustainable Development Goals and targets of the 2030 Agenda for Sustainable Development. New York: UN. Retrieved from https://unstats.un.org/sdgs/indicators/Global%20Indicator%20Framework_A.RES.71.313% 20Annex.pdf
 - UN Environment. (2019). Global Environment Outlook GEO-6: Healthy Planet, Healthy People. P. Ekins, J. Gupta, & P. Boileau, eds. Nairobi: UN Environment https://doi.org/10.1017/9781108627146
 - Upreti, B. R., & Upreti, Y. G. (2002). Factors leading to agro-biodiversity loss in developing countries: the case of Nepal. *Biodiversity and Conservation*, 11, 1607–1621. https://doi.org/10.1023/A:1016862200156
 - van Niekerk, J., & Wynberg, R. (2017). Traditional seed and exchange systems cement social relations and provide a safety net: a case study from KwaZulu-Natal, South Africa. *Agroecology and Sustainable Food Systems*, 41, 1–25. https://doi.org/10.1080/21683565.2017.1359738
 - van Soest, H.L, van Vuuren, D.P., Hilaire, J., Minx, J.C., Harmsen, M.J.H.M., Krey, V., Popp, A., Riahi, K., & Luderer, G. (2019). Analyzing interactions among Sustainable Development Goals with Integrated Assessment Models. *Global Transitions*, *1*, 210-225. https://doi.org/10.1016/j.glt.2019.10.004
 - Vasseur, L., Horning, D., Thornbush, M., Cohen-Shacham, E., Andrade, A., Barrow, E., ... Jones, M. (2017). Complex problems and unchallenged solutions: Bringing ecosystem governance to the forefront of the UN Sustainable Development Goals. *Ambio*, 46, 731-742. https://dx.doi.org/10.1007/s13280-017-0918-6
 - Vermeulen, S.J., Campbell, B.M., & Ingram, J.S.I. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37, 195–222. https://doi.org/10.1146/annurev-environ-020411-130608
 - von Stechow, C., McCollum, D., Riahi, K., Minx, J. C., Kriegler, E., van Vuuren, ... Edenhofer, O. (2015). Integrating global climate change mitigation goals with other sustainability objectives: A synthesis. *Annual Review of Environment and Resources*, 40, 363–394.

https://doi.org/10.1146/annurev-environ-021113-095626

- Weitz, N., Nilsson, M., & Davis, M. (2014). A nexus approach to the post-2015 agenda: Formulating integrated water, energy, and food SDGs. SAIS Review of International Affairs, 34, 37–50. https://doi.org/10.1353/sais.2014.0022
- Wittman, H. (2011). Food sovereignty: a new rights framework for food and nature? *Environment and Society*, 2, 87–105. https://doi.org/10.3167/ares.2011.020106
- Wright, C. K., & Wimberly, M. C. (2013). Recent land use change in the Western Corn Belt threatens grasslands and wetlands. *Proceedings of the National Academy of Sciences*, 110, 4134–4139. https://doi.org/10.1073/pnas.1215404110
- Yang, R., & Hanson, P.M. (2009) Improved food availability for food security in Asia-Pacific region. Asia Pacific Journal of Clinical Nutrition, 18, 633-7.
- Yao, S., & Li, H. (2010). Agricultural productivity changes induced by the Sloping Land Conversion Program: An analysis of Wuqi County in the loess plateau region. *Environmental Management*, 45(3), 541–550. https://doi.org/10.1007/s00267-009-9416-3

a. Sustainable Development Goals	Explanation (UN, 2018)
SDG 1: No poverty	End poverty in all its forms everywhere
SDG 2: Zero Hunger	End hunger, achieve food security and improved
	nutrition and promote sustainable agriculture
SDG 3: Good health and well-being	Ensure healthy lives and promote well-being for all at
	all ages
SDG4: Quality education	Ensure inclusive and equitable quality education and
	promote lifelong learning opportunities for all
SDG5: Gender equity	Achieve gender equality and empower all women and
	girls
SDG 6: Clean water and sanitation	Ensure availability and sustainable management of
	water and sanitation for all
SDG7: Affordable and clean energy	Ensure access to affordable, reliable, sustainable and
	modern energy for all
SDG 8: Decent work and economic growth	Promote sustained, inclusive and sustainable economic
	growth, full and productive employment and decent
	work for all
SDG9: Industry, innovation and infrastructure	Build resilient infrastructure, promote inclusive and
	sustainable industrialization and foster innovation
SDG10: Reduced inequalities	Reduce inequality within and among countries
SDG 11: Sustainable cities and communities	Make cities and human settlements inclusive, safe,
	resilient and sustainable
SDG 12: Responsible production and	Ensure sustainable consumption and production
consumption	patterns
SDG 13: Climate action	Take urgent action to combat climate change and its
	impacts
SDG 14: Life below water	Conserve and sustainably use the oceans, seas and
	marine resources for sustainable development
SDG 15: Life on land	Protect, restore and promote sustainable use of
	terrestrial ecosystems, sustainably manage forests,
	combat desertification, and halt and reverse land
]	degradation and halt biodiversity loss
SDG 16: Peace, justice, and strong	Promote peaceful and inclusive societies for

institutions	sustainable development, provide access to justice for
	all and build effective, accountable and inclusive
	institutions at all levels
SDG 17: Partnerships for the goals	Strengthen the means of implementation and revitalize
	the global partnership for sustainable development

b. Nature's Contributions to People	Explanation (IPBES, 2019)
NCP 1: Habitat creation and maintenance	The formation and continued production, by
	ecosystems, of ecological conditions necessary or
	favorable for living beings important to humans
NCP 2: Pollination and dispersal of seeds and	Facilitation by animals of movement of pollen among
other propagules	flowers, and dispersal of seeds, larvae, or spores of
	organisms beneficial or harmful to humans
NCP 3: Regulation of air quality	Regulation (by impediment or facilitation) by
	ecosystems, of atmospheric gasses; filtration, fixation,
	degradation, or storage of pollutants
NCP 4: Regulation of climate	Climate regulation by ecosystems (including regulation
	of global warming) through effects on emissions of
	greenhouse gases, biophysical feedbacks, biogenic
	volatile organic compounds, and aerosols
NCP 5: Regulation of ocean acidification	Regulation, by photosynthetic organisms of
	atmospheric CO2 concentrations and so seawater pH
NCP 6: Regulation of freshwater quantity,	Regulation, by ecosystems, of the quantity, location
flow and timing	and timing of the flow of surface and groundwater
NCP 7: Regulation of freshwater and coastal	Regulation – through filtration of particles, pathogens,
water quality	excess nutrients, and other chemicals - by ecosystems
	of water quality
NCP 8: Formation, protection and	Formation and long-term maintenance of soils
decontamination of soils and sediments	including sediment retention and erosion prevention,
	maintenance of soil fertility, and degradation or storage
	of pollutants
NCP 9: Regulation of hazards and extreme	Amelioration, by ecosystems, of the impacts of
events	hazards; reduction of hazards; change in hazard
	frequency
NCP 10: Regulation of organisms detrimental	Regulation, by ecosystems or organisms, of pests,

to humans			pathogens, predators, competitors, parasites, and											
			potentially harmfu	ıl organisms										
NCP 11: En	ergy		Production of bio	mass-based fuels, such as b	oiofuel									
			crops, animal was	te, fuelwood, and agricultu	ral residue									
NCP 12: Fo	od and feed		Production of foo	d from wild, managed, or										
			domesticated orga	inisms on land and in the o	cean;									
			production of feed	1										
NCP 13: Ma	aterials and assi	stance	Production of mat	erials derived from organis	sms in									
			cultivated or wild	ecosystems and direct use	of living									
			organisms for dec	oration, company, transpor	rt, and									
			labor											
NCP 14: Me	edicinal, bioche	mical and genetic	Production of mat	erials derived from organis	sms for									
resources			medicinal purpose	es; production of genes and	genetic									
			information											
NCP 15: Le	arning and insp	iration	Opportunities for	developing capabilities to p	prosper									
			through education	, knowledge acquisition, a	nd									
			inspiration for art	and technological design (e.g.									
			biomimicry)											
NCP 16: Ph	ysical and psyc	hological	Opportunities for physically and psychologically											
experiences			beneficial activities, healing, relaxation, recreation,											
1			leisure, and aesthe	etic enjoyment based on clo	ose contact									
			with nature											
NCP 17: Su	pporting identit	ties	The basis for relig	gious, spiritual, and social-c	cohesion									
			experiences; sense	e of place, purpose, belongi	ing,									
			rootedness or con	nectedness, associated with	different									
			entities of the livit	ng world; narratives and										
			myths, rituals and	celebrations; satisfaction c	lerived									
			from knowing that	t a particular landscape, sea	ascape,									
			habitat or species	exist										
NCP 18: Ma	aintenance of op	otions	Capacity of ecosystems, habitats, species or genotypes											
			to keep human options open in order to support a later											
			good quality of lif	Ĩe										
Table 2: Ex	amples of sear	ch terms and lite	rature found dur	ing review										
Cell	Search terms	Examples of types	Description of	Basis for expert]									
	Source tor ins	of literature	interaction in	assessment										
		of neer weare	Sunnlementary											

Table 2: Examples of search terms and literature found during review

	Cell	Search terms	Examples of types	Description of	Basis for expert
1			of literature	interaction in	assessment
				Supplementary	

				Material	
	Agroforestry	"agroforestry"	Meta-analysis for	Increased use of	Literature mostly
	& SDG 5	+ "gender" or	Africa (Kiptot,	agroforestry can	regional (Africa) but
	(Gender	"women*"	Franzel &	benefit female	high agreement in
	equity)		Degrande, 2014).	farmers as it	studies; however,
	1 07			requires low	shows that women have
			Field studies, East	overhead	positive benefits on
			Alfica (Gladwin et	(Gladwin et al.,	agroforestry rather than
			al., 2002)	2002), but land	agroforestry having
Ò				tenure issues must	benefits on gender
				be paid attention	equity. Final
				to (Kiptot &	assessment: Medium
				Franzel, 2012;	positive impacts
				Kiptot et al. 2014)	
	Risk sharing	"risk sharing"	National studies of	Commercial cron	Literature all from US
	instruments	or "insurance"	US based on	insurance often	but generally in
	& NCP 1	or "risk	economic	encourages habitat	agreement that cron
	(Habitat	spreading" +	modelling	conversion.	insurance has small
	creation)	"environmental	(Goodwin & Smith	Wright &	negative impact on
	creation	impact" or	2003: Claasen et	Wimberly (2013)	habitat due to
		"ecosystem	al 2011)	found half million	association with cron
		impact"	u., 2011)	ha decline in	expansion <i>Final</i>
		F	Regional (upper	grasslands in the	assessment: Low
			Midwest) data	Upper Midwest of	negative impacts
			from land cover	the US 2006-2010	0 1
			study (Wright &	due to crop	
			Wimberly, 2013)	conversion driven	
				by higher prices	
				and access to	
				insurance.	
	Reduced	"Reduced	General literature	Localized hazards	Literature mostly about
	deforestation	deforestation"	review (Jactel et	like drought	impact of hazards on
	and	or "REDD" or	al 2017: Locatelli	floods and dust	diverse natural forests
	degradation	"forest	et al., 2015)	storms can be	rather than direct effect
	& NCP 9	maintenance"	, ,	ameliorated by	of REDD on hazards
Y	(Regulation	+ "hazard*" or		diverse tree cover,	per se; reducing

and extreme events) and extreme events al., 2009) and extreme events al., 2009, Jacetel extreme events al., 2007; Locatelli et al., 2017; Locatelli et al., 2017; Locatelli et al., 2017; Locatelli et al., 2017; Locatelli et al., 2015) and retailing and retailing and retailing arr food food processing arr food food process		of hazards	"extreme	Field experiments	which would be	deforestation of forest
events) events events) events		and extreme	event*"	(Cooper-Ellis et	encouraged by	areas leading to
Improved food processing and retailing & SDG 2 (Zero hunger)"food processing" or "God retails" or "food chain*" + 2013)Field-based case studies (Sadler et al., 2017; Locatelli et al., 2015)Improving storage global coverage but little quantification of the direct impacts of the direct impacts of thunger)Improving *God processing and retailism or "food hunger)"food processing" or "mainutrition"Field-based case studies (Sadler et al., 2013; Stathers, Lamboll & Myumi 2013)Improving storage researed mathematication of the direct impacts of improved with poor maagement al., 2019)Litterature has good the direct impacts of improved with poor maagement al., 2019)General literature reviews in multiple disciplines James, 2010; Keding, Schneider, & Jordan, 2013; Tirado et al., 2012)With poor maagement assessed in literature (e.g. Yang & Hanson al., 2010). Tirado et al., 2010; Netwich an lead to food deficiencies, e.g. Tirado et al., 2010; Vermeulen, Campbell, et al., 2012; Holis- Hansen et al.Contamination of food chains can contribute to more final assessment: Medium positive impacts		events)		al., 2009)	reduced	improvement in hazard
Improved food processing and retailing & SDG 2 (Zero hunger)"food processing chain*" + "malnutrition"Field-based case studies (Sadler et al., 2013; Stathers, Lamboll & Myumi 2013)Improved rosessing en reduce food waste and health irisks associated improved (Hollis-Hansen et al., 2019)Improving storage global coverage but improved with poor management hunger specifically. Increases in food (Bradford et al., 2013)Field-based case and processing en reduce food with poor management processing indirectly may reduce food (Bradford et al., 2018; James & James, 2010; Keding, Schneider, & Jorda, 2013; Tirado et al., 2013; Tirado et al., 2010, Keding, Schneider, & Jorda, 2013; Tirado et al., 2012)(Cooper-Ellis et al., 2017; Locatelli et al., 2018; James & gractices assessed in literature processing and supply chains can consumers and ingroved matrixin of food chains (which an lead to food deficiencies, e.g. Tirado et al., 2012; Hollis- Hansen et al.benefit. Also is not a aprimary goal for most REDD programs. Final assessement: Medium positive impactsThrowing to processing to avoid supply chains can consumers and ingroved mutrition (Keding al., 2013; Tirado et al., 2012)Final assessment: Medium positive impactsThrowing to processing to avoid supply chains can consumers and ingroved mutrition (Keding al., 2013; Tirado et al., 2013; Tirado et al., 2012)Final assessment: Medium positive impacts					deforestation	regulation is implied
Improved food processing and retailing & SDG 2 (Zero hunger)"food processing" or "food retail*" or "food & SDG 2 (Zero hunger)Field-based case studies (Sadler et al., 2013; Stathers, Lamboll & Myumi Systematic iterature review (Hollis-Hansen et al., 2019)Improving storage global coverage but inter during or with goor management management hunger) systematic iterature review (Hollis-Hansen et al., 2019)Improving storage global coverage but inter during on management and retailing on management disciplines (Bradford et al., 2018; James & James, 2010; Keding, Schneider, & Jordan, 2013; Tirado et al., 2013; Tirado et al., 2010; Keding, Schneider, & Jordan, 2013; Tirado et al., 2012)Interases and contribute to more food reaching consumers and improved food processing and supply chains ean contribute to more food reaching entral used to food deficiencies, e.g. Tirado et al., 2012; Hollis- Hansen et al.USDContamination of food chains (which can lead to food deficiencies, e.g. Tirado et al., 2012; Hollis- Hansen et al.contamination of food chains (which can lead to food deficiencies, e.g. Tirado et al., 2012; Hollis- Hansen et al.					(Cooper-Ellis et	benefit. Also is not a
Improved food processing and retailing"food processing" or "food retail*" al., 2013; Stathers, al., 2013; Stathers, al., 2013; Stathers, 2013)Improving storage and processing and retailing & SDG 2 (Zero hunger)Field-based case studies (Sadler et al., 2013; Stathers, 2013)Improving storage and processing and retailing or "food thain*"+ 2013)Literature has good global coverage but interature fisks associated waste and health tiks associated with poor management processing retailing on management hunger specifically. practices Interature review (Hollis-Hansen et al., 2019)Improved management practices (Bradford et al., 2013; Tirado et al., 2014; James & James, 2010; Stathers et al., 2013; Tirado et al., 2014; James & James, 2010; Stathers et al., 2013; Tirado et al., 2014; James Al James, 2010; Stathers et al., 2013; Tirado et al., 2010; Vermeulen, Campbell, et al., 2012)REDD programs. Final assessed in literature food retaing or the direct impacts of improved soradi assessed indirect masses indirect mass					al., 2009; Jactel et	primary goal for most
Improved food processing and retailing & SDG 2"food etail*" or "food chain*" + "hunger" or "malnutrition"Field-based case studies (Sadler et al., 2013; Stathers, Lamboll & Myumi 2013)Improving storage and processing can reduce food waste and health the direct impacts of improved processing/retailing on hunger)Literature has good global coverage but literature review (Hollis-Hansen et al., 2019)Improving storage and processing can reduce food with poor management practices (Bradford et al., 2018; James & James, 2010; Stathers et al., 2013; Tirado et al., 2010; Vermeulen, Campbell, et al., 2012)Improving storage and processing reside and processing risks associated with poor management practices (Bradford et al., 2018; James & James, 2010; Stathers et al., 2013; Tirado et al., 2010).Literature review (Hollis-Hansen et al., 2010)Improved (Fradford et al., 2018; James & James, 2010; Keding, Schneider, & Jordan, 2013; Tirado et al., 2010; Vermeulen, Campbell, et al., 2012)Improved processing and supply chains can contribute to more for dreaching e.g. Tirado et al. 2010).Improved processing to avoid contamination of food chains (which can lead to food dreinceices, e.g. Tirado et al. 2010).Vermeulen, Campbell, et al., 2012;Vermeulen, Campbell, et al., 2013; Vermeulen, Campbell, et al., 2012;Huise- Hansen et al.Hedium positive improvedVermeulen, Campbell, et al., 2012; Hunsen et al.Improved processing and untrition (Keding al., 2013; Vermeulen, Campbell, et al., 2013; Vermeulen, Cam					al., 2017;	REDD programs. Final
Improved food processing and retailing & SDG 2"food feid processing" or "food retail*"Field-based case studies (Sadler et al., 2013; Stathers, Lamboll & Myumi 2013)Improving storage and processing and processing and retailing & SDG 2Literature has good global coverage but little quantification of waste and health the direct impacts of management practicesImprovid management practicesInterature processing/retailing on management practicesInterases in food availability (which 2018; James & James, 2010; Stathers et al., 2013; Tirado et al., 2012)Dister set al., assessed in literature food retains (which can lead to food deficiencies, e.g. Tirado et al., 2012)Processing and supply chains can containstation of food chains (which can lead to food deficiencies, e.g. Tirado et al., 2013; Vermeulen, Campbell, et al., 2012)Processing to avoid contamination of food chains (which can lead to food deficiencies, e.g. Tirado et al., 2013; Vermeulen, Campbell, et al., 2012; Hultis- Hasen et al.Improved management hunger)Interature specifically. hunger)					Locatelli et al.,	assessment: Small
Improved food processing"food processing" or "food retail*" and retailing & SDG 2 (Zero hunger)"field-based case studies (Sadler et al., 2013; Stathers, Lamboll & Myumi 2013)Improving storage and processing can reduce food waste and health risks associated with poor management practices (Bradford et al., 2019)Literature has good global coverage but little quantification of the direct impacts of improved with poor management practices (Bradford et al., 2013; Tirado et al., 2010; Stathers et al., 2013; Tirado et al., 2013; Tirado et al., 2012)Literature food unger specifically. Increases in food availability (which assessed in literature reviews in multiple disciplines (Bradford et al., 2013; Tirado et al., 2010; Nermeulen, Campbell, et al., 2012)Improving storage can reduce food with poor management practices (Bradford et al., 2010; Stathers et al., 2010; Stathers et al., 2009, along with the importance of processing and supply chains can contamination of food contamination of food 					2015)	positive impacts
food processing and retailing & SDG 2 (Zero hunger)processing' or "food retail*" and retailing & SDG 2 (Zero "malnutrition"studies (Sadler et al., 2013; Stathers, 2013)and processing can reduce food waste and health risks associated with poor management practicesglobal coverage but little quantification of the direct impacts of management practicesWith poor (Hollis-Hansen et al., 2019)Systematic literature review (Hollis-Hansen et al., 2019)with poor management practicesprocessing/retailing on hunger specifically. Increases in foodWith goor (Bradford et al., 2013; Tirado et al., 2010; Vermeulen, Campbell, et al., 2012)with poor management processing and supply chains can continuit on of food consumers and inproved rocessing and supply chains can containtion of food consumers and inproved inproved processing al., 2013; Vermeulen, Campbell, et al., 2012; Hollis- Hansen et al.motor specifically. hunger)Final assessment: (Adium positive al., 2012; Hollis- Hansen et al.containtaiton of food consumers and inproved processing et al., 2012; Hollis- Hansen et al.global coverage but hunger between the direct impacts		Improved	"food	Field-based case	Improving storage	Literature has good
Processing and retailing ware tailing \$SDG 2"food chain*" +al., 2013; Stathers, Lamboll & Myunican reduce food waste and healthlittle quantification of the direct impacts of improved&SDG 2 (Zero hunger)chain*" +2013)with poor managementprocessing/retailing on hunger specifically.hunger)"malnutrition"Systematic literature review (Hollis-Hansen et al., 2019)with poor managementncreases in food (Bradford et al., 2018; James & James, 2010;Ceneral literature reviews in multiple disciplinesGeneral literature reviews in multiple disciplines2013; Tirado et al., 2010).(e.g. Yang & Hanson al., 2010).James, 2010; Keding, Schneider, & Jordan, 2013; Tirado et al., 2010; Vermeulen, Campbell, et al., 2012)Jordan, 2013; rimado et al., 2010; Vermeulen, Campbell, et al., 2012; Hollis- Hansen et al.processing not sessement:		food	processing" or	studies (Sadler et	and processing	global coverage but
and retailing & SDG 2or "food chain*" +Lamboll & Myumi 2013)waste and health risks associatedthe direct impacts of improved(Zero hunger)"hunger" or "malnutrition"Systematic itterature review (Hollis-Hansen et al., 2019)with poor management practicesprocessing/retailing on hunger specifically. Increases in food availability (which all, 2018; James & 2018; James & 2013; Tirado et al., 2013; Tirado et al., 2019, 2009), along with the importance of processing and supply chains can contribute to more chains (which can lead food reaching consumers and e.g. Tirado et al., 2012)Improved processing and supply chains can contribute to more chains (which can lead food reaching e.g. Tirado et al., 2010; Final assessment: mutrition (Keding consumers and al., 2013; improved food reachingMedium positive importance of processing to avoid contribute to more chains (which can lead food reaching al., 2013; improved mutrition (Keding al., 2013; improved improted improved mutrition (processing	"food retail"	al., 2013; Stathers,	can reduce food	little quantification of
& SDG 2 (Zero hunger)chain** + "hunger" or "malnutrition"2013)risks associatedimproved"Systematic literature review (Hollis-Hansen et al., 2019)Systematic literature review (Hollis-Hansen et al., 2019)management practiceshunger specifically. Increases in food availability (which 2018; James & 2013; Tirado et al., 2013; Tirado et al., 2010).Increases in food availability (which assessed in literature disciplines013/General literature reviews in multiple disciplinesGeneral literature disciplines2013; Tirado et assessed in literature 2013; Tirado et al., 2010).(e.g. Yang & Hanson al., 2010).2009), along with the Improved food yercessing and supply chains can contribute to more food reaching to food deficiencies, e.g. Tirado et al., 2010; Vermeulen, Campbell, et al., 2012)processing to avoid consumers and al., 2013; triado et al. 2010).1014Campbell, et al., 2012; Hollis- Hansen et al.Final assessment: mutrition (Keding al., 2013; triado et al.		and retailing	or "food	Lamboll & Myumi	waste and health	the direct impacts of
(Zero hunger)"hunger" or "malnutrition"Systematic literature review (Hollis-Hansen et al., 2019)with poor management practicesprocessing/retailing on hunger specifically. Increases in food availability (which availability (which disciplinesGeneral literature reviews in multiple disciplinesGeneral literature reviews in multiple disciplines2018; James & 2013; Tirado et al., 2010).hunger) is variable most assessed in literature (general literature reviews in multiple disciplines(Bradford et al., 2018; James & James, 2010;2009), along with the importance of processing and supply chains can contribute to more food reaching to food deficiencies, e.g. Tirado et al., 2010; Vermeulen, Campbell, et al., 2012)more et al.Vermeulen, Campbell, et al., 2012; Hollis- Hansen et al.Final assessment: market Medium positive		& SDG 2	chain*"+	2013)	risks associated	improved
hunger)"malnutrition"by otniant literature review (Hollis-Hansen et al., 2019)management practices (Bradford et al., 2018; James & James, 2010;hunger specifically. Increases in food availability (which 2018; James & James, 2010;General literature reviews in multiple disciplines (Bradford et al., 2018; James & 1013; Tirado et al., 2010).(Bradford et al., 2013; Tirado et al., 2010).assessed in literature 2009), along with the importance of processing and supply chains can contribute to more food reaching to food deficiencies, e.g. Tirado et al., 2010; Vermeulen, Campbell, et al., 2012)contribute to more food reaching to food deficiencies, e.g. Tirado et al., 2010; to food deficiencies, e.g. Tirado et al., 2010; improved final assessment: Medium positive al., 2013; to food deficiencies, e.g. Tirado et al., 2010; to food deficiencies, e.g. Tirado et al., 2010; improved final assessment: Medium positive impacts		(Zero	"hunger" or	Systematic	with poor	processing/retailing on
The Halling Hamsen et al., 2019)practices (Bradford et al., 2018; James & James, 2010;Increases in food availability (which indirectly may reduce James, 2010;General literature reviews in multiple disciplines2018; James & James, 2010;James, 2010; Varmeulen, Campbell, et al., 2012)Stathers et al., 2009), along with the importance of processing and supply chains can contribute to more food reaching consumers and improvedJordan, 2013; Final assessment: Medium positive impacts2012)2012)Stathers et al., (Campbell, et al., 2012; Hollis- Hansen et al.Stathers et al., (Campbell, et al., 2012; Hollis-		hunger)	"malnutrition"	literature review	management	hunger specifically.
With the state(Bradford et al., 2018; James & James, 2010;availability (which indirectly may reduce hunger) is variable most assessed in literature (e.g. Yang & Hanson al., 2010).0018; James & (Bradford et al., 2018; James & James, 2010;Improved food processing and supply chains can contribute to more food reaching consumers and improved food reaching clampbell, et al., 2012)availability (which indirectly may reduce hunger) is variable most assessed in literature (e.g. Yang & Hanson al., 2010).0018; James & James, 2010; Keding, Schneider, & Jordan, 2013; Tirado et al., 2010; Vermeulen, Campbell, et al., 2012)Improved food processing and supply chains can contribute to more food reaching consumers and improved nutrition (Keding al., 2013; Vermeulen, Campbell, et al., 2012; Hollis- Hansen et al.Improved role al., 2010; Final assessment: Medium positive impacts				(Hollis-Hansen et	practices	Increases in food
General literature reviews in multiple disciplines (Bradford et al., 2018; James & James, 2010;2018; James & James, 2010; Stathers et al., 2013; Tirado et al., 2010).indirectly may reduce hunger) is variable most assessed in literature (e.g. Yang & Hanson al., 2010).Wermeulen, Campbell, et al., 2012)Consumers and improved food reaching al., 2013; Tirado et al., 2010; Vermeulen, Campbell, et al., 2012)Processing and supply chains can contribute to more food reaching al., 2013; Tirado et al., 2010; Vermeulen, Campbell, et al., 2012)Stathers et al., 2009), along with the importance of processing to avoid contamination of food chains (which can lead to food deficiencies, e.g. Tirado et al. 2010). Final assessment: Medium positive impactsWermeulen, Campbell, et al., 2012; Hollis- Hansen et al.Medium positive impacts				al., 2019)	(Bradford et al.,	availability (which
General literature reviews in multiple disciplinesJames, 2010; Stathers et al., 2013; Tirado et al., 2010).hunger) is variable most assessed in literature (e.g. Yang & Hanson 2009), along with the importance of processing and supply chains can & Jordan, 2013;c.g. Yang & Hanson (e.g. Yang & Manson 2009), along with the importance of processing to avoid contamination of food chains (which can lead to food deficiencies, e.g. Tirado et al. 2010).Vermeulen, Campbell, et al., 2012)consumers and improvede.g. Tirado et al. 2010).Vermeulen, Campbell, et al., 2012)Final assessment: Medium positive impactsVermeulen, Campbell, et al., 2012; Hollis- Hansen et al.Vermeulen, Campbell, et al., 2012; Hollis- Hansen et al.					2018; James &	indirectly may reduce
Stathers et al., disciplinesStathers et al., 2013; Tirado et al., 2010).assessed in literature (e.g. Yang & Hanson al., 2010).2018; James & James, 2010; Hansen, 2010; Keding, Schneider, & Jordan, 2013; Tirado et al., 2010; Vermeulen, Campbell, et al., 2012)Stathers et al., 2013; Tirado et processing and supply chains can contribute to more consumers and al., 2013; to food deficiencies, e.g. Tirado et al. 2010).Vermeulen, Campbell, et al., 2012)consumers and improved final assessment: nutrition (Keding al., 2013; impactsVermeulen, Campbell, et al., 2012; Hansen et al.Medium positive impacts				General literature	James, 2010;	hunger) is variable most
Histophnes2013; Tirado et al., 2010).(e.g. Yang & Hanson 2009), along with the importance of processing and supply chains can contribute to more firado et al., 2010;(e.g. Yang & Hanson 2009), along with the importance of processing to avoid contamination of food chains (which can lead to food reaching e.g. Tirado et al. 2010).Vermeulen, Campbell, et al., 2012)consumers and improved al., 2013;e.g. Tirado et al. 2010).Vermeulen, Campbell, et al., 2012)consumers and improved al., 2013;e.g. Tirado et al. 2010).Vermeulen, Campbell, et al., 2012)consumers and improved al., 2013;impacts				reviews in multiple	Stathers et al.,	assessed in literature
Image:				disciplines	2013; Tirado et	(e.g. Yang & Hanson
2018; James & James, 2010;Improved food processing and supply chains can contribute to moreimportance of processing to avoid& Jordan, 2013;contribute to more food reachingcontamination of food chains (which can lead to food deficiencies, e.g. Tirado et al. 2010).Vermeulen, Campbell, et al., 2012)consumers and improvede.g. Tirado et al. 2010).Wermeulen, Campbell, et al., 2012)final assessment: mutrition (Keding al., 2013;Medium positive impactsVermeulen, Campbell, et al., 2012;Vermeulen, Hansen et al.Medium positive impacts				(Bradford et al.,	al., 2010).	2009), along with the
James, 2010; Keding, Schneider, & Jordan, 2013;processing and supply chains can contribute to more food reaching consumers and improvedprocessing to avoid contamination of food chains (which can lead to food deficiencies, e.g. Tirado et al. 2010).Vermeulen, Campbell, et al., 2012)consumers and improvede.g. Tirado et al. 2010).Vermeulen, Campbell, et al., 2012)mutrition (Keding al., 2013; Vermeulen, Campbell, et al., 2012; Hollis- Hansen et al.Medium positive impacts				2018; James &	Improved food	importance of
Keding, Schneider, & Jordan, 2013;supply chains can contribute to more food reachingcontamination of food chains (which can lead to food deficiencies, e.g. Tirado et al. 2010).Vermeulen, Campbell, et al., 2012)consumers and improvede.g. Tirado et al. 2010).Wedium positive al., 2013; Vermeulen, Campbell, et al., 2012;mutrition (Keding al., 2013; Vermeulen, Campbell, et al., 2012;Medium positive impacts				James, 2010;	processing and	processing to avoid
Contribute to more firado et al., 2010; Vermeulen, Campbell, et al., 2012)contribute to more food reaching consumers and improvedchains (which can lead to food deficiencies, e.g. Tirado et al. 2010). <i>Final assessment:</i> Medium positive impactsVermeulen, Campbell, et al., 2012)nutrition (Keding al., 2013; Vermeulen, Campbell, et al., 2012; Hollis- Hansen et al.Medium positive impacts				Keding, Schneider,	supply chains can	contamination of food
Inrado et al., 2010, Vermeulen, Campbell, et al., 2012)food reaching consumers and improvedto food deficiencies, e.g. Tirado et al. 2010).Imrado et al., 2013, improvedimproved al., 2013;Final assessment: impactsImrado et al., 2012, improvedVermeulen, campbell, et al., 2012; Hollis- Hansen et al.Imrado et al. 2010, improved				& Jordan, 2013;	contribute to more	chains (which can lead
Vermeulen, Campbell, et al., 2012)consumers and improvede.g. Tirado et al. 2010).Redium positive al., 2013;improved nutrition (Keding al., 2013;Medium positive impactsVermeulen, Campbell, et al., 2012; Hollis- Hansen et al.2012; Hollis- Hansen et al.Medium positive impacts				Vermenular	food reaching	to food deficiencies,
Campbell, et al., 2012) improved <i>Final assessment:</i> nutrition (Keding al., 2013; impacts Vermeulen, Campbell, et al., 2012; Hollis- Hansen et al.				Vermeulen,	consumers and	e.g. Tirado et al. 2010).
2012) nutrition (Keding al., 2013; Medium positive impacts Vermeulen, Campbell, et al., 2012; Hollis- Hansen et al. 2012; Hollis- Hansen et al.				Campbell, et al.,	improved	Final assessment:
al., 2013; impacts Vermeulen, Campbell, et al., 2012; Hollis- Hansen et al.				2012)	nutrition (Keding	Medium positive
Vermeulen, Campbell, et al., 2012; Hollis- Hansen et al.					al., 2013;	impacts
Campbell, et al., 2012; Hollis- Hansen et al.					Vermeulen,	
2012; Hollis- Hansen et al.					Campbell, et al.,	
Hansen et al.					2012; Hollis-	
	Y				Hansen et al.	

			2010)	
			2017)	
	I	I	I	1
1				

Articl Accepted A

Integrated response options based on land management	NCP 1. Habitat creation &	maintenance	NCP 2. Pollination and dispersal of seeds and other propagules	NCP 3. Regulation of air quality	NCP 4. Regulation of climate	NCP 5. Regulation of ocean	acidification	NCP 6. Regulation of freshwater	quantity, flow and timing	NCP 7. Regulation of freshwater and	coastal water quality	NCP 8. Formation, protection and	decontamination of soils & sediments	NCP 9. Regulation of hazards &	extreme events	NCP 10. Regulation of organisms	detrimental to humans	NCP 11. Energy	NCP 12. Food and feed	NCP 13. Materials and assistance	NCP 14. Medicinal, biochemical and	genetic resources	NCP 15. Learning and inspiration	NCP 16. Physical and psychological	experiences	NCP 17. Supporting identities	NCP 18. Maintenance of options
Increased food productivity																											
Improved cropland management																											
Improved grazing land management																											
Improved livestock management																											
Agroforestry																											
Agricultural diversification																											
Avoidance of conversion of grassland to cropland																											
Integrated water management																											

Table 3. Impacts on Nature's Contributions to People of integrated response options based on land management

Improved and sustainable									
forest management									
Reduced deforestation and									
degradation									
Reforestation and forest									
restoration									
Afforestation									
								-	
Increased soil organic									
carbon content									
Reduced soil erosion									
Reduced soil salinization									
Reduced soil compaction									
Biochar addition to soil									
Fire management									
Reduced landslides and									
natural hazards									
Reduced pollution including									
acidification									
Management of invasive									
species / encroachment									
Restoration and avoided									
conversion of coastal									
wetlands									

Restoration and	avoided								
conversion of pe	eatlands								
Biodiversity cor	nservation								
				• • •					
Enhanced weath	nering of								
minerals									
Bioenergy and H	BECCS ¹								
			• •			· · ·	Variable	•	•
							impacts, can		
LEGEND							be both		
							positive and		
No data to		Medium	Small		Medium		negative		
establish	Large positive	positive	positive	Small negative	negative	Large negative	depending on		
relationship	impacts	impacts	impacts	impacts	impacts	impacts	context		
No color									

¹ Note that this refers to large areas of bioenergy crops capable of producing large mitigation benefits (> 3 GtCO2 yr⁻¹). The effect of bioenergy and BECCS on NCPs is scale and context dependent, and smaller scale and more sustainable bioenergy would lessen these negative impacts (IPCC 2019).

Nrtic Accepted A

Integrated response options based on value chain management Dietary change	NCP 1. Habitat creation & maintenance	NCP 2. Pollination and dispersal of	seeds and other propagules	NCP 3. Regulation of air quality	NCP 4. Regulation of climate	NCP 5. Regulation of ocean	acidification	NCP 6. Regulation of freshwater	quantity flow and timing	NCP 7. Regulation of freshwater and coastal water mulity	NCP 8. Formation, protection and	decontamination of soils & sediments	NCP 9. Regulation of hazards and	extreme events	NCP 10. Regulation of organisms	detrimental to humans	NCP 11. Energy	NCP 12. Food and feed	NCP 13. Materials and assistance	NCP 14. Medicinal, biochemical and	genetic resources	NCP 15. Learning and inspiration	NCP 16. Physical and psychological	experiences	NCP 17. Supporting identities	NCP 18. Maintenance of options
Reduced post-harvest																										
Reduced food waste (consumer or retailer)																										
Material substitution																										
Sustainable sourcing																										
Management of supply chains																										
Enhanced urban food systems																										
Improved food processing and retail																										

Table 4. Impacts on Nature's Contributions to People of integrated response options based on value chain management

Improved energy use in food systems Variable impacts, can LEGEND be both positive and No data to Medium Medium negative establish Small positive depending on Large positive positive Small negative negative Large negative relationship impacts impacts impacts impacts impacts impacts context No color

Article Accepted

Table 5. Impacts on Nature's Contributions to People of integrated response options based on risk management

Integrated response options based on risk management	NCP 1. Habitat creation &	NCP 2. Pollination and dispersal of	seeds and other propagules	NCP 3. Regulation of air quality	NCP 4. Regulation of climate	NCP 5. Regulation of ocean	NCP 6. Regulation of freshwater	outity, flow and timing	NCP 7. Regulation of freshwater and	coastal water quality	NCP 8. Formation, protection and	decontamination of soils & sediments	NCP 9. Regulation of hazards and extreme events	NCP 10. Regulation of organisms	detrimental to humans	NCP 11. Energy	NCP 12. Food and feed	NCP 13. Materials and assistance	NCP 14. Medicinal, biochemical and	NCP 15. Learning and inspiration	NCP 16. Physical and psychological	experiences	NCP 17. Supporting identities	NCP 18. Maintenance of options
Management of urban sprawl																								
Livelihood diversification																								
Use of local seeds																								
Disaster risk management																								
Risk sharing instruments																								
LEGEND																		Var	iable					
																		imp	acts, ca	n				
No data to		Mediu	ım		Small						Me	ediu	m					be b	ooth					
establish Large posit	ive	positiv	/e		positi	ve	S	mall	negat	tive	ne	gativ	ve	L	arge	negat	tive	posi	itive and	ł				
relationship impacts		impact	ts		impac	ets	in	npac	ts		im	pact	s	in	npac	ets		nega	ative					

This article is protected by copyright. All rights reserved

fic] • epte J

Integrated response options based on land management	GOAL 1: No Poverty	GOAL 2: Zero Hunger	GOAL 3: Good Health and Well- being	GOAL 4: Quality Education	GOAL 5: Gender Equality	GOAL 6: Clean Water and	Sanitation	GOAL 7: Affordable and Clean	Energy	GOAL 8: Decent Work and	Economic Growth	GOAL 9: Industry, Innovation and	Infrastructure	GOAL 10: Reduced Inequality	GOAL 11: Sustainable Cities and	Communities	GOAL 12: Responsible	Consumption and Production	GOAL 13: Climate Action	GOAL 14: Life Below Water	GOAL 15: Life on Land	GOAL 16: Peace and Justice Strong	Institutions	GOAL 17: Partnerships to achieve the Goal
Increased food productivity																								
Improved cropland management																								
Improved grazing land management																								
Improved livestock management																								
Agroforestry																								
Agricultural diversification																								
Avoidance of conversion of grassland to cropland																								
Integrated water management																								
Improved and sustainable forest																								

management									
Reduced deforestation and									
degradation									
Reforestation and forest									
restoration									
Afforestation									
Increased soil organic carbon									
content									
Reduced soil erosion									
Reduced soil salinization									
Reduced soil compaction									
Biochar addition to soil									
Fire management									
Reduced landslides and natural									
hazards									
Reduced pollution including									
acidification									
Management of invasive species									
/ encroachment									
Restoration and avoided									
conversion of coastal wetlands									
Restoration and avoided									
conversion of peatlands									

Accepted Article

Biodiversity cor	nservation							
Enhanced weath	nering of							
minerals								
Bioenergy and H	BECCS ²							
						· · ·	Variable	
							impacts, can	
LEGEND							be both	
							positive and	
No data to		Medium	Small		Medium		negative	
establish	Large positive	positive	positive	Small negative	negative	Large negative	depending on	
relationship	impacts	impacts	impacts	impacts	impacts	impacts	context	
No color								

² Note that this refers to large areas of bioenergy crops capable of producing large mitigation benefits (> 3 GtCO2 yr⁻¹). The effect of bioenergy and BECCS on SDGs is scale and context dependent, and smaller scale and more sustainable bioenergy would lessen these negative impacts (IPCC 2019).

GOAL 9: Industry, Innovation and GOAL 11: Sustainable Cities and Good Health and Well-GOAL 7: Affordable and Clean GOAL 10: Reduced Inequality GOAL 14: Life Below Water Consumption and Production GOAL 4: Quality Education GOAL 8: Decent Work and GOAL 6: Clean Water and GOAL 13: Climate Action GOAL 5: Gender Equality GOAL 15: Life on Land GOAL 12: Responsible Zero Hunger GOAL 1: No Poverty Economic Growth Infrastructure Communities Sanitation ä 3: GOAL Energy GOAL Integrated response options based being on value chain management Dietary change Reduced post-harvest losses Reduced food waste (consumer or retailer) Material substitution Sustainable sourcing Management of supply chains Enhanced urban food systems Improved food processing & retail Improved energy use in food systems

Table 7. Impacts on the UN SDG of integrated response options based on value chain interventions

GOAL 17: Partnerships to achieve

the Goal

GOAL 16: Peace and Justice

Strong Institutions

							Variable
							impacts, can
LEGEND							be both
							positive and
No data to		Medium	Small	Small	Medium		negative
establish	Large positive	positive	positive	negative	negative	Large negative	depending on
relationship	impacts	impacts	impacts	impacts	impacts	impacts	context
No color							

Table 8. Impacts on the UN SDG of integrated response options based on risk management

Integrated response options based on risk management	GOAL 1: No Poverty	GOAL 2: Zero Hunger	GOAL 3: Good Health and	Well-being	GOAL 4: Quality Education	GOAL 5: Gender Equality	GOAL 6: Clean Water and	Sanitation	GOAL 7: Affordable and Clean	Energy	GOAL 8: Decent Work and	Economic Growth	GOAL 9: Industry, Innovation	and Infrastructure	GOAL 10: Reduced Inequality	GOAL 11: Sustainable Cities	and Communities	GOAL 12: Responsible	Consumption and Production	GOAL 13: Climate Action	GOAL 14: Life Below Water	GOAL 15: Life on Land	GOAL 16: Peace, Justice,	Strong Institutions	GOAL 17: Partnerships to	achieve the Goal
Management of urban sprawl																										
Livelihood diversification																										
Use of local seeds																										
Disaster risk management																										
Risk sharing instruments																										

							Variable
							impacts, can
LEGEND							be both
							positive and
No data to		Medium	Small		Medium		negative
establish	Large positive	positive	positive	Small negative	negative	Large negative	depending on
relationship	impacts	impacts	impacts	impacts	impacts	impacts	context
No color							

NCP	Bioenergy and BECCS	Use of local seeds
NCP I Habitat	Can reduce areas of natural habitat with	Use of commercial seeds can contribute to
creation and	negative effects on biodiversity (Hof et	habitat loss through agricultural expansion
maintenance	al., 2018; Immerzeel et al., 2014)	and intensification; local seeds likely
		better (Upreti & Upreti, 2002)
NCP 2 Pollination	If natural habitats are decreased due to	Use of open pollinated seeds is beneficial
and dispersal of	bioenergy expansion, would reduce	for pollinators and creates political will to
seeds and other	natural pollinators (Keitt, 2009)	conserve them (Helicke, 2015)
propagules		
NCP 3 Regulation	The use of BECCS could reduce air	N/A
of air quality	pollution from use of fossil fuels	
	(IPCC, 2018)	
NCP 4 Regulation	Large mitigation potential depending	N/A
of climate	on scale e.g. up to $\sim 11 \text{ GtCO}_2 \text{ yr}^{-1}$	
	(IPCC, 2018; Smith et al., 2020); any	
	local and regional climate effects	
	would be dependent on feedstock, prior	
	land use, scale and location.	
NCP 5 Regulation	Bioenergy and BECCS will reduce	N/A
of ocean	ocean acidification by reducing CO ₂	
acidification	emissions and concentrations (IPCC,	
	2018; Doney, Fabry, Feely, & Kleypas,	
	2009);	
NCP 6 Regulation	Depending on the feedstock, can	Local seeds often have lower water
of freshwater	require water. Models show high risk	demands as they are suited to local
quantity, flow and	of water scarcity if BECCS is deployed	environments (Adhikari, 2014)
timing	on widespread scale (Hejazi et al.,	
	2014; Popp, Dietrich, et al., 2011;	
	Smith et al., 2016) through both	
	increases in water withdrawals (Bonsch	
	et al., 2015; Hejazi et al., 2014) and	
	changes in surface runoff (Cibin,	
	Trybula, Chaubey, Brouder, &	
	Volenec, 2016)	
NCP 7 Regulation	Bioenergy can affect freshwater quality	Likely to contribute to less pollution as
of freshwater and	via changes in nitrogen runoff from	local seeds are usually grown organically
coastal water	fertilizer application. However, the sign	(Adhikari, 2014)

Table 9. Interactions between NCPs for two response options

have happened absent any bioenergy production, with some studies	
production, with some studies	
indicating improvements in water	
quality (Ng, Eheart, Cai, & Miguez,	
2010) and others showing declines	
(Sinha, Michalak, Calvin, & Lawrence,	
2019)	
NCP 8 Formation, Will likely decrease soil quality if Likely to contribute to bette	er soils as local
protection and exotic fast-growing trees used seeds are usually grown org	anically and
decontamination (Humpenöder et al., 2018; Stoy et al., with lower tillage (Adhikari	i, 2014)
of soils and 2018)	
sediments	
NCP 9 Regulation N/A N/A	
of hazards and	
extreme events	
NCP 10 N/A Local seeds often need less	pesticides
Regulation of thereby reducing pest resistance	ance (Adhikari,
organisms 2014)	
detrimental to	
humans	
NCP 11 Energy BECCS and biofuels can contribute up N/A	
to 300 EJ of primary energy by 2100	
(Clarke et al., 2014)	
NCP 12 Food and Large scale deployment of bioenergy Local seeds can lead to mor	re diverse and
feed and BECCS can lead to significant healthy food in areas with s	trong food
trade-offs with food production and sovereignty networks (Bisht	t et al., 2018;
significantly higher food prices given Coomes et al., 2015). Howe	ever local seeds
large-scale land conversion often are less productive that	an improved
(Humpenöder et al., 2018; Popp et al., commercial varieties.	
2017; Smith et al., 2016)	
NCP 13 Materials If bioenergy and BECCS drive land use Local seeds can produce mu	ultifunctional
and assistanceconversion (Humpenöder et al., 2018;materials (Adhikari, 2014).	
Smith et al., 2016; Clarke et al., 2014;	
Popp et al., 2017), it can reduce	
opportunities for production of other	
materials	

Medicinal, conversion (Humpenöder et al., 2018; functions, including producing me	
	dicinals
biochemical and Smith et al., 2016; Clarke et al., 2014; (Hammer & Teklu, 2008)	
genetic resources Popp et al., 2017), it can reduce genetic	
resources	
NCP 15 Learning If bioenergy and BECCS drive land use Passing on seed information is im	portant
and inspiration conversion (Humpenöder et al., 2018; cultural learning process (Coomes	et al.,
Smith et al., 2016; Clarke et al., 2014; 2015)	
Popp et al., 2017), it can reduce	
opportunities for learning and	
inspiration	
NCP 16 Physical If bioenergy and BECCS drive land use N/A	
and psychological conversion (Humpenöder et al., 2018;	
experiences Smith et al., 2016; Clarke et al., 2014;	
Popp et al., 2017), it can reduce	
opportunities for recreation & tourism	
NCP 17 If bioenergy and BECCS drive land use Seeds associated with specific cul	tural
Supportingconversion (Humpenöder et al., 2018;identities for many (Coomes et al.)	, 2015)
identities Smith et al., 2016; Clarke et al., 2014;	
Popp et al., 2017), it can reduce	
culturally significant landscapes	
NCP 18 If bioenergy and BECCS drive land use Food sovereignty movements hav	e
Maintenance ofconversion (Humpenöder et al., 2018;promoted saving of genetic divers	ity of
options Smith et al., 2016; Clarke et al., 2014; crops through on-farm maintenance	æ
Popp et al., 2017), it can reduce genetic (Isakson, 2009)	
diversity	

SDG	Bioenergy and BECCS	Use of local seeds
GOAL 1: No	Bioenergy production could create jobs	Many hundreds of millions of smallholders
Poverty	but could also compete for land with	still rely on local seeds; without them they
	alternative uses (Humpenöder et al.,	would have to find money to buy
	2018; Smith et al., 2016; Clarke et al.,	commercial seeds (Altieri, Funes-Monzote,
	2014; Popp et al., 2017). Therefore,	& Petersen, 2012; Howard, 2015; McGuire
	bioenergy could have positive or	& Sperling, 2016)
	negative effects on poverty rates among	
	smallholders, among other social	
	effects (Dooley & Kartha, 2018; IPCC,	
	2018).	
GOAL 2: Zero	Biofuel plantations may lead to	Local seeds revive and strengthen local
Hunger	decreased food security through	food systems (McMichael & Schneider,
	competition for land. Large scale	2011) and lead to more diverse and healthy
	deployment of bioenergy and BECCS	food in areas with strong food sovereignty
	can lead to significant trade-offs with	networks (Bisht et al., 2018; Coomes et al.,
	food production (Humpenöder et al.,	2015). However local seeds often are less
	2018; Popp, Lotze-Campen, et al.,	productive than improved varieties.
	2011; Smith, Haszeldine, & Smith,	
	2016; IPCC, 2018)	
GOAL 3: Good	BECCS could have positive effects	Local seed use is associated with fewer
Health and Well-	through improvements in air quality	pesticides (Altieri et al., 2012); loss of
being	(IPCC, 2018) but bioenergy and	local seeds and substitution by commercial
	BECCS could have negative effects on	seeds is perceived by farmers to increase
	health and wellbeing through impacts	health risks (Mazzeo & Brenton, 2013),
	on food systems and water (Burns &	although overall literature on links
	Nicholson, 2017; Humpenöder et al.,	between food sovereignty and health is
	2018)	weak (Jones, Shapiro, & Wilson, 2015)
GOAL 4: Quality	N/A	N/A
Education		
GOAL 5: Gender	N/A	Women play important roles in preserving
Equality		and using local seeds (Bezner Kerr, 2013;
		Ngcoya & Kumarakulasingam, 2017) and
		sovereignty movements paying more
		attention to gender needs (Park, White, &
		Julia, 2015)

Table 10. Interactions between SDGs and two response options

	GOAL 6: Clean	Depending on the feedstock, can	Local seeds often have lower water
	Water and	require water. Models show high risk	demands, as well as less use of pesticides
	Sanitation	of water scarcity if BECCS is deployed	that can contaminate water (Adhikari,
		on widespread scale (Hejazi et al.,	2014)
		2014; Popp, Dietrich, et al., 2011;	
		Smith et al., 2016) through both	
		increases in water withdrawals (Bonsch	
		et al., 2015; Hejazi et al., 2014; IPCC,	
		2018) and changes in surface runoff	
		(Cibin, Trybula, Chaubey, Brouder, &	
		Volenec, 2016)	
	GOAL 7:	Bioenergy and BECCS can contribute	N/A
	Affordable and	up to 300 EJ of primary energy by 2100	
	Clean Energy	(Clarke et al., 2014); bioenergy can	
	1	provide clean, affordable energy	
		(IPCC, 2018)	
	GOAL 8: Decent	Access to clean, affordable energy will	Food sovereignty supporters believe
	Work and	help economic growth (IPCC, 2018)	protecting smallholder agriculture provides
	Economic Growth		more employment than commercial
			agriculture (Kloppenberg, 2010), although
			exact numbers unknown
	GOAL 9:	BECCS will require development of	N/A
	Industry,	new technologies (Smith, Haszeldine,	
	Innovation and	& Smith, 2016)	
	Infrastructure		
	GOAL 10:	N/A	Seed sovereignty advocates believe it will
	Reduced		contribute to reduced inequality (Park et
	Inequality		al., 2015; Wittman, 2011) but there is
			inconclusive empirical evidence.
	GOAL 11:	N/A	Seed sovereignty can help sustainable
	Sustainable Cities		urban gardening (Demailly & Darly, 2017)
	and Communities		which can be part of a sustainable city by
			providing fresh, local food (Leitgeb,
			Schneider, & Vogl, 2016)
	GOAL 12:	Switching to bioenergy reduces	Locally developed seeds can both help
	Responsible	depletion of finite resources (IPCC,	protect local agrobiodiversity and can
	Consumption and	2018)	often be more climate resilient than
	Production		generic commercial varieties, leading to
J.			more sustainable production (Coomes et

		al., 2015; Van Niekerk & Wynberg, 2017).
GOAL 13:	Large mitigation potential depending	Local seeds tend to be resilient to different
Climate Action	on scale e.g. up to $\sim 11 \text{ GtCO}_2 \text{ yr}^1$	climate hazards and thus can enhance
	(IPCC, 2018; Smith et al., 2020), but	adaptation (Louwaars 2002; Santilli 2012)
	potentially large negative adaptation	
	effects due to land competition (Dooley	
	& Kartha, 2018; Fuss et al., 2016;	
	Humpenöder et al., 2018).	
GOAL 14: Life	Bioenergy and BECCS will reduce	N/A
Below Water	ocean acidification by reducing CO ₂	
	emissions and concentrations (IPCC,	
	2018; Doney, Fabry, Feely, & Kleypas,	
	2009)	
GOAL 15: Life on	Can reduce areas of natural habitat with	Use of commercial seeds can contribute to
Land	negative effects on biodiversity (Hof et	habitat loss through agricultural expansion
	al., 2018; Immerzeel et al., 2014; IPCC,	and intensification; local seeds likely better
	2018)	(Upreti & Upreti, 2002)
GOAL 16: Peace	N/A	Seed sovereignty is positively associated
and Justice		with strong local food movements, which
Strong		contribute to social capital (Coomes et al.,
Institutions		2015; Grey & Patel, 2015; McMichael &
		Schneider, 2011).
GOAL 17:	N/A	Seed sovereignty could be seen as threat to
Partnerships to		free trade and imports of genetically
achieve the Goal		modified seeds (Howard, 2015;
		Kloppenberg, 2010; Kloppenburg, 2014)

This article is protected by copyright. All rights reserved

Acc

Table 11. Patterns of co-benefits and negative impacts across options

		Positive	Positive	Negative	Negative	Multi-	Multi-
		Co-	Co-	impacts	impacts	directional	directional
		benefits	benefits	for NCPs	for SDGs	NCP	SDG
		for NCPs	for			inter-	inter-
			SDGs			actions	actions
	Increased food productivity	5	11	1		4	1
	Improved erenland	11		-		-	-
Ξ.	management	11	9				
	Improved grazing land	9	10				
	management						
	Improved livestock	7	8				
	management						
	Agroforestry	16	11				
	Agricultural diversification	9	7				1
	Avoidance of conversion of	7	3	1	3		
	grassland to cropland						
	Integrated water management	9	15				
	Improved and sustainable	15	11			3	2
	forest management						
	Reduced deforestation and	14	5		3	4	4
	degradation						
	Reforestation and forest	14	7		2	4	3
	restoration						
	Afforestation	7	5	4	3	6	3
	Increased soil organic carbon	10	8				
	content	10	0				
	Deduced soil engine	7	7				
	Reduced soll erosion	/	1				
	Reduced soil salinization	5	6				
	Reduced soil compaction	6	6				
	Biochar addition to soil	6	2	2	3	1	1
	Fire management	12	5				
	Reduced landslides and	6	6				
	natural hazards						
	Reduced pollution including	7	7				
	acidification						
	Management of invasive	8	7	1			

	species / encroachment						
J	Restoration and avoided conversion of coastal wetlands	14	5			1	4
	Restoration and avoided conversion of peatlands	13	4	3	4		
	Biodiversity conservation	15	7		1	2	6
	Enhanced weathering of minerals	4	2	1	1		
	Bioenergy and BECCS	4	4	11	3	1	3
	Dietary change	7	9		3		
	Reduced post-harvest losses	7	12				
	Reduced food waste (consumer or retailer)	6	10		2		1
	Material substitution	3	5	1	3		1
	Sustainable sourcing	7	12			2	2
	Management of supply chains	3	11		2		
	Enhanced urban food systems	10	14	2	1		
J	Improved food processing & retail	3	10		2		1
	Improved energy use in food systems	3	7				
	Management of urban sprawl	8	12		1		
	Livelihood diversification	2	7				3
	Use of local seeds	11	11		1	1	1
	Disaster risk management	3	15				
	Risk sharing instruments	1	6	8	2		4

Notes: Columns are sums of categories of co-benefits and adverse side-effects from Tables 3-8 and do not indicate magnitude of effect

Blue indicates presence of co-benefits with no noted adverse side-effects.

Brown indicates presence of multiple adverse side-effects across both SDGs and NCPs

Y	SDGs	Response options with large positive impacts for this goal [and
		potential trade-offs (TO)]
	SDG 1: No poverty	Integrated water management, increased soil organic carbon, disaster risk
		management
		High positive impact on this SDG but comes with potential trade-offs: Increased
		food productivity (TO with NCP2, NCP 6, NCP7, NCP8, NCP 10 & SDG 14),
		agricultural diversification (TO with SDG 10), management of supply chains
		(<i>TO with SDG 6 & SDG 7</i>), livelihood diversification (<i>TO with SDG 4, SDG 5, &</i>
		SDG 10)
	SDG 2: Zero Hunger	Agroforestry, integrated water management, increased soil organic carbon,
		reduced soil erosion, reduced salinization, reduced soil compaction, reduced
		post-narvest losses, disaster risk management
		High positive impact on this SDG but comes with potential trade offs: Increased
		food productivity (TO with NCP2 NCP 6 NCP7 NCP8 NCP 10 & SDG 14)
		agricultural diversification (TO with SDG 10) dietary change (TO with SDG 1
		SDG 7 & SDG 14) management of supply chains (TO with SDG 6 and SDG7)
		enhanced urban food systems (<i>TO with NCP 6</i> . NCP 7 & SDG 6)
	SDG 3: Good health	Integrated water management, fire management, reduced pollution, reduced
	and well-being	post-harvest losses, disaster risk management
		High positive impact on this SDG but comes with potential trade-offs: Increased
		food productivity (TO with NCP2, NCP 6, NCP7, NCP8, NCP 10 & SDG 14),
		dietary change (TO with SDG 1, SDG 7 & SDG 14), management of supply
		chains (TO with SDG 6 and SDG7), management of urban sprawl (TO with SDG
		8), livelihood diversification (TO with SDG 4, SDG 5, & SDG 10)
	SDG 4: Quality	Disaster risk management
	education*	
		Medium positive impact on this SDG but comes with potential trade-offs: risk
		sharing instruments (TO with NCP 1, NCP 2, NCP 4, NCP 7, NCP 8, NCP 10,
		NCP 14, NCP 18, SDG 6, SDG 12, SDG 13, SDG 14, SDG 15 & SDG 17)
	SDG5: Gender equity*	Agroforestry, integrated water management, disaster risk management
		Medium positive impact on this SDG but comes with potential trade-offs:

Table 12. Highlighting response options for individual SDGs

		management of supply chains (TO with SDG 6 and SDG7), enhanced urban
		food systems (TO with NCP 6, NCP 7, & SDG 6), use of local seeds (TO with
		NCP 12, SDG 2 & SDG 17)
	SDG 6: Clean water	Integrated water management, increased soil organic carbon, reduced post-
	and sanitation	harvest losses
		High positive impact on this SDG but comes with potential trade-offs: restoration
		of wetlands (NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), restoration of
		peatlands (NCP 11, NCP 12, NCP 13, SDG 1, SDG 2, SDG 7 & SDG 8), dietary
		change (TO with SDG 1, SDG 7 & SDG 14), reduced food waste (TO with SDG 3,
		SDG 5 & SDG 7), management of urban sprawl (TO with SDG 8)
	SDG 7: Affordable	High positive impact on this SDG but comes with potential trade-offs: Bioenergy
	and clean energy	and BECCS (TO with NCP 1, NCP 2, NCP 6, NCP7, NCP 8, NCP 12-18, SDG 1,
		SDG 2, SDG 3, SDG 6, SDG 13 & SDG 15)
	SDG 8: Decent work	Reduced post-harvest losses, disaster risk management
1	and economic growth	
		High positive impact on this SDG but comes with potential trade-offs: reduced
		food waste (TO with SDG 3 SDG 5, & SDG 7), enhanced urban food systems
		(TO with NCP 6 NCP 7 & SDG 6)
	SDG 9: Industry,	Disaster risk management
	SDG 9: Industry, innovation and	Disaster risk management
0	SDG 9: Industry, innovation and infrastructure	Disaster risk management High positive impact on this SDG but comes with potential trade-offs: sustainable
te	SDG 9: Industry, innovation and infrastructure	Disaster risk management High positive impact on this SDG but comes with potential trade-offs: sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of urban
te	SDG 9: Industry, innovation and infrastructure	Disaster risk management High positive impact on this SDG but comes with potential trade-offs: sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of urban sprawl (TO with SDG 8)
ote	SDG 9: Industry, innovation and infrastructure SDG 10: Reduced	Disaster risk management High positive impact on this SDG but comes with potential trade-offs: sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of urban sprawl (TO with SDG 8) High positive impact on this SDG but comes with potential trade-offs: Dietary
ote	SDG 9: Industry, innovation and infrastructure SDG 10: Reduced inequality	Disaster risk management High positive impact on this SDG but comes with potential trade-offs: sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of urban sprawl (TO with SDG 8) High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7 & SDG 14), management of urban sprawl (TO
pote	SDG 9: Industry, innovation and infrastructure SDG 10: Reduced inequality	Disaster risk management High positive impact on this SDG but comes with potential trade-offs: sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of urban sprawl (TO with SDG 8) High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7 & SDG 14), management of urban sprawl (TO with SDG 8)
ente	SDG 9: Industry, innovation and infrastructure SDG 10: Reduced inequality SDG 11: Sustainable	Disaster risk management High positive impact on this SDG but comes with potential trade-offs: sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of urban sprawl (TO with SDG 8) High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7 & SDG 14), management of urban sprawl (TO with SDG 8) Disaster risk management
ente	SDG 9: Industry, innovation and infrastructure SDG 10: Reduced inequality SDG 11: Sustainable cities and communities	Disaster risk management High positive impact on this SDG but comes with potential trade-offs: sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of urban sprawl (TO with SDG 8) High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7 & SDG 14), management of urban sprawl (TO with SDG 8) Disaster risk management
cente	SDG 9: Industry, innovation and infrastructure SDG 10: Reduced inequality SDG 11: Sustainable cities and communities	Disaster risk management High positive impact on this SDG but comes with potential trade-offs: sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of urban sprawl (TO with SDG 8) High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7 & SDG 14), management of urban sprawl (TO with SDG 8) Disaster risk management High positive impact on this SDG but comes with trade-offs: enhanced urban food
cente	SDG 9: Industry, innovation and infrastructure SDG 10: Reduced inequality SDG 11: Sustainable cities and communities	Disaster risk management High positive impact on this SDG but comes with potential trade-offs: sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of urban sprawl (TO with SDG 8) High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7 & SDG 14), management of urban sprawl (TO with SDG 8) Disaster risk management High positive impact on this SDG but comes with trade-offs: enhanced urban food systems (TO with NCP 6, NCP 7, & SDG 6), management of urban sprawl (TO
ccente	SDG 9: Industry, innovation and infrastructure SDG 10: Reduced inequality SDG 11: Sustainable cities and communities	Disaster risk management High positive impact on this SDG but comes with potential trade-offs: sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of urban sprawl (TO with SDG 8) High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7 & SDG 14), management of urban sprawl (TO with SDG 8) Disaster risk management High positive impact on this SDG but comes with trade-offs: enhanced urban food systems (TO with NCP 6, NCP 7, & SDG 6), management of urban sprawl (TO with SDG 8)
ccente	SDG 9: Industry, innovation and infrastructure SDG 10: Reduced inequality SDG 11: Sustainable cities and communities SDG 12: Responsible	Disaster risk management High positive impact on this SDG but comes with potential trade-offs: sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of urban sprawl (TO with SDG 8) High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7 & SDG 14), management of urban sprawl (TO with SDG 8) Disaster risk management High positive impact on this SDG but comes with trade-offs: enhanced urban food systems (TO with NCP 6, NCP 7, & SDG 6), management of urban sprawl (TO with SDG 8) High positive impact on this SDG but comes with trade-offs: enhanced urban food systems (TO with NCP 6, NCP 7, & SDG 6), management of urban sprawl (TO with SDG 8) High positive impact on this SDG but comes with potential trade-offs:
ccente	SDG 9: Industry, innovation and infrastructure SDG 10: Reduced inequality SDG 11: Sustainable cities and communities SDG 12: Responsible production and	Disaster risk managementHigh positive impact on this SDG but comes with potential trade-offs: sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of urban sprawl (TO with SDG 8)High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7 & SDG 14), management of urban sprawl (TO with SDG 8)Disaster risk managementHigh positive impact on this SDG but comes with trade-offs: enhanced urban food systems (TO with NCP 6, NCP 7, & SDG 6), management of urban sprawl (TO with SDG 8)High positive impact on this SDG but comes with trade-offs: enhanced urban food systems (TO with NCP 6, NCP 7, & SDG 6), management of urban sprawl (TO with SDG 8)High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7 & SDG 14), sustainable sourcing (TO
Accepte	SDG 9: Industry, innovation and infrastructure SDG 10: Reduced inequality SDG 11: Sustainable cities and communities SDG 12: Responsible production and consumption	Disaster risk managementHigh positive impact on this SDG but comes with potential trade-offs: sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of urban sprawl (TO with SDG 8)High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7 & SDG 14), management of urban sprawl (TO with SDG 8)Disaster risk managementHigh positive impact on this SDG but comes with trade-offs: enhanced urban food systems (TO with NCP 6, NCP 7, & SDG 6), management of urban sprawl (TO with SDG 8)High positive impact on this SDG but comes with potential trade-offs: Dietary compact on this SDG but comes with potential trade-offs: Dietary (TO with SDG 8)High positive impact on this SDG but comes with potential trade-offs: Dietary (TO with SDG 8)High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7 & SDG 14), sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of supply chains (TO
Accepte	SDG 9: Industry, innovation and infrastructure SDG 10: Reduced inequality SDG 11: Sustainable cities and communities SDG 12: Responsible production and consumption	Disaster risk managementHigh positive impact on this SDG but comes with potential trade-offs: sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of urban sprawl (TO with SDG 8)High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7 & SDG 14), management of urban sprawl (TO with SDG 8)Disaster risk managementHigh positive impact on this SDG but comes with trade-offs: enhanced urban food systems (TO with NCP 6, NCP 7, & SDG 6), management of urban sprawl (TO with SDG 8)High positive impact on this SDG but comes with potential trade-offs: enhanced urban food systems (TO with NCP 6, NCP 7, & SDG 6), management of urban sprawl (TO with SDG 8)High positive impact on this SDG but comes with potential trade-offs: Dietary change (TO with SDG 1, SDG 7 & SDG 14), sustainable sourcing (TO with NCP 12, NCP 17, SDG 2 & SDG 10), management of supply chains (TO with SDG 6 & SDG 7), enhanced urban food systems (TO with NCP 6, NCP 7, &

SDG 13: Climate	Agroforestry, integrated water management, increased soil carbon content,
action (includes	reduced soil erosion, reduced soil salinization, reduced soil compaction, fire
benefits for both	management, reduced post-harvest losses, disaster risk management
mitigation and	
adaptation)	High positive impact on this SDG but comes with potential trade-offs: Increased
	food productivity (TO with NCP2, NCP 6, NCP7, NCP8, NCP 10 & SDG 14),
	agricultural diversification (TO with SDG 10), improved and sustainable forest
	management (TO with NCP 9, NCP 10, NCP 12, SDG 1 & SDG 2), reduced
	deforestation (TO with NCP 11, NCP 12, NCP 17, SDG 1, SDG 2, SDG 7, SDG 8,
	SDG 9, SDG 10 & SDG 17), reforestation/restoration (TO with NCP 6, NCP 9,
	NCP 10, NCP 12, SDG 1, SDG 2, SDG 5, SDG 6 & SDG 10), afforestation (TO
	with NCP 1, NCP 2, NCP 6, NCP 7, NCP 8, NCP 9, NCP 10, NCP 12, NCP 13,
	NCP 18, SDG 1, SDG 2, SDG 5, SDG 6 & SDG 10), biochar (TO with NCP 1,
	NCP 3, NCP 12, SDG 1, SDG 2, SDG 3, SDG 15), restoration of wetlands (TO
	with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), biodiversity conservation (TO
	with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5, SDG 7, SDG 8, SDG 9 & SDG 16),
	management of urban sprawl (TO with SDG 8)
SDG 14: Life below	High positive impact on this SDG but comes with potential trade-offs: restoration
water	of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), biodiversity
	conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5, SDG 7, SDG 8,
	SDG 9, SDG 16)
SDG 15: Life on land	Improved cropland management, improved grazing management,
	agroforestry, integrated water management, increased soil carbon, fire
	management
	High positive impact on this SDG but comes with potential trade-offs: avoided
	grassland conversion (TO with NCP 12, SDG 1, SDG 2 & SDG 8), improved and
	sustainable forest management (TO with NCP 9, NCP 10, NCP 12, SDG 1 &
	SDG 2), reduced deforestation (TO with NCP 11, NCP 12, NCP 17, SDG 1, SDG
	2, SDG 7, SDG 8, SDG 9, SDG 10 & SDG 17), reforestation/restoration (TO
	with NCP 6, NCP 9, NCP 10, NCP 12, SDG 1, SDG 2, SDG 5, SDG 6 & SDG 10),
	restoration of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9),
	restoration of peatlands (TO with NCP 12, SDG 1, SDG 2, SDG 7 & SDG 8),
	biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5,
	SDG 7, SDG 8, SDG 9 & SDG 16), management of urban sprawl (TO with SDG
	8)
SDG 16 [.] Peace and	Disaster risk management

Justice, strong	
institutions	High positive impact on this SDG but comes with potential trade-offs: enhanced
	urban food systems (TO with NCP 6, NCP 7 & SDG 6), use of local seeds (TO
	with NCP 12, SDG 2 & SDG 17)
SDG 17: Partnerships	none
to achieve the goals	

*Only moderate co-benefits were seen in these categories

NCPs Response options with large positive impacts for this contribution [and potential trade-offs (TO)] NCP 1: Habitat creation Agroforestry, integrated water management and maintenance *High positive impact on this NCP but comes with potential trade-offs:* **improved** and sustainable forest management (TO with NCP 9, NCP 10, NCP 12, SDG 1 & SDG 2), reduced deforestation (TO with NCP 11, NCP 12, NCP 17, SDG 1, SDG 2, SDG 7, SDG 8, SDG 9, SDG 10 & SDG 17), reforestation/restoration (TO with NCP 6, NCP 9, NCP 10, NCP 12, SDG 1, SDG 2, SDG 5, SDG 6 & SDG 10), restoration of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), restoration of peatlands (NCP 12, SDG 1, SDG 2, SDG 7, SDG 8), biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5, SDG 7, SDG 8, SDG 9 & SDG 16) NCP 2: Pollination and *High positive impact on this NCP but comes with potential trade-offs:* dispersal of seeds and biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5, other propagules SDG 7, SDG 8, SDG 9 & SDG 16) NCP 3: Regulation of **Reduced soil erosion** air quality *High positive impact on this NCP but comes with potential trade-offs:* management of urban sprawl (TO with SDG 8) NCP 4: Regulation of Agroforestry, increased soil carbon, fire management, reduced post-harvest climate losses High positive impact on this NCP but comes with potential trade-offs: Increased food productivity (TO with NCP2, NCP 6, NCP7, NCP8, NCP 10 & SDG 14), reduced deforestation (TO with NCP 11, NCP 12, NCP 17, SDG 1, SDG 2, SDG 7, SDG 8, SDG 9, SDG 10 & SDG 17), reforestation (TO with NCP 6, NCP 9, NCP 10, NCP 12, SDG 1, SDG 2, SDG 5, SDG 6, SDG 10), afforestation (TO with NCP 1, NCP 2, NCP 6, NCP 7, NCP 8, NCP 9, NCP 10, NCP 12, NCP 13, NCP 18, SDG 1, SDG 2, SDG 5, SDG 6 & SDG 10), biochar (TO with NCP 1, NCP 3, NCP 12, SDG 1, SDG 2, SDG 3, SDG 15), restoration of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), mineral weathering (TO with NCP 7 & SDG 6), bioenergy and BECCS (TO with NCP 1, NCP 2, NCP 6, NCP7, NCP 8, NCP 12-18, SDG 1, SDG 2, SDG 3, SDG 6, SDG 13 & SDG 15), dietary change (TO with SDG 1, SDG 7 & SDG 14), reduced food waste (TO with SDG 3, SDG 5, & SDG 7)

Table 13. Highlighting response options for individual NCPs

NCP 5: Regulation of	Agroforestry, increased soil carbon, fire management, reduced post-harvest
ocean acidification	losses
(note: any action with	
high mitigation	High positive impact on this NCP but comes with potential trade-offs: Increased
potential on NCP 4 is	food productivity (TO with NCP2, NCP 6, NCP7, NCP8, NCP 10 & SDG 14),
assumed to have same	reduced deforestation (TO with NCP 11, NCP 12, NCP 17, SDG 1, SDG 2, SDG
positive impact on	7, SDG 8, SDG 9, SDG 10 & SDG 17), reforestation (TO with NCP 6, NCP 9,
ocean acidification)	NCP 10, NCP 12, SDG 1, SDG 2, SDG 5, SDG 6, SDG 10), afforestation (TO
	with NCP 1, NCP 2, NCP 6, NCP 7, NCP 8, NCP 9, NCP 10, NCP 12, NCP 13,
	NCP 18, SDG 1, SDG 2, SDG 5, SDG 6 & SDG 10), biochar (TO with NCP 1,
	NCP 3, NCP 12, SDG 1, SDG 2, SDG 3, SDG 15), restoration of wetlands (TO
	with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), mineral weathering (TO with
	NCP 7 & SDG 6), bioenergy and BECCS (TO with NCP 1, NCP 2, NCP 6,
	NCP7, NCP 8, NCP 12-18, SDG 1, SDG 2, SDG 3, SDG 6, SDG 13 & SDG 15),
	dietary change (TO with SDG 1, SDG 7 & SDG 14), reduced food waste (TO
	with SDG 3, SDG 5, & SDG 7)
NCP 6: Regulation of	Integrated water management, increased soil carbon, reduced soil
freshwater quantity,	compaction
flow and timing	
	High positive impact on this NCP but comes with potential trade-offs: improved
	and sustainable forest management (TO with NCP 9, NCP 10, NCP 12, SDG 1
	& SDG 2), reduced deforestation (TO with NCP 11, NCP 12, NCP 17, SDG 1,
	SDG 2, SDG 7, SDG 8, SDG 9, SDG 10 & SDG 17), restoration of wetlands (TO
	with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), restoration of peatlands (TO
	with NCP 12, SDG 1, SDG 2, SDG 7 & SDG 8), management of urban sprawl
	(TO with SDG 8)
NCP 7: Regulation of	Integrated water management, increased soil carbon, reduced soil
freshwater and coastal	salinization, reduced compaction, reduced pollution
water quality	
	High positive impact on this NCP but comes with potential trade-offs: Improved
	and sustainable forest management (TO with NCP 9, NCP 10, NCP 12, SDG 1,
	SDG 2), reduced deforestation (TO with NCP 11, NCP 12, NCP 17, SDG 1, SDG
	2, SDG 7, SDG 8, SDG 9, SDG 10 & SDG 17), restoration of wetlands (TO with
	NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9), restoration of peatlands (TO with
	NCP 12, SDG 1, SDG 2, SDG 7 & SDG 8), management of urban sprawl (TO
	with SDG 8)
L	

NCP 8: Formation,	Agroforestry, increased soil carbon, reduced soil erosion, reduced
protection and	salinization, reduced compaction
decontamination of	
soils and sediments	High positive impact on this NCP but comes with potential trade-offs: Improved
	and sustainable forest management (TO with NCP 9, NCP 10, NCP 12, SDG 1,
	SDG 2), biochar (TO with NCP 1, NCP 3, NCP 12, SDG 1, SDG 2, SDG 3, SDG
	15), restoration of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG
	9), restoration of peatlands (TO with NCP 12, SDG 1, SDG 2, SDG 7 & SDG 8),
	biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5,
	SDG 7, SDG 8, SDG 9 & SDG 16), management of urban sprawl (TO with SDG
	8)
NCP 9: Regulation of	Fire management, reduced landslides, disaster risk management
hazards and extreme	
events	High positive impact on this NCP but comes with potential trade-offs: restoration
	of wetlands (TO with NCP 12, SDG 1, SDG 2, SDG 3, & SDG 9)
NCP 10: Regulation of	Agroforestry, increased soil carbon
organisms detrimental	
to humans	High positive impact on this NCP but comes with potential trade-offs:
	agricultural diversification (TO with SDG 10), use of local seeds (TO with NCP
	12, SDG 2 & SDG 17)
NCP 11: Energy	High positive impact on this NCP but comes with potential trade-offs: bioenergy
	and BECCS (TO with NCP 1, NCP 2, NCP 6, NCP7, NCP 8, NCP 12-18, SDG 1,
	SDG 2, SDG 3, SDG 6, SDG 13 & SDG 15)
NCP 12: Food and feed	Improved cropland management, improved grazing land management,
	improved livestock management, agroforestry, integrated water
	management, increased soil carbon, reduced post-harvest losses
	High positive impact on this NCP but comes with potential trade-offs: Increased
	food productivity (TO with NCP2, NCP 6, NCP7, NCP8, NCP 10 & SDG 14)
	agricultural diversification (TO with SDG 10), dietary change (TO with SDG 1,
	SDG 7 & SDG 14), reduced food waste (TO with SDG 3, SDG 5 & SDG 7),
	enhanced urban food systems (TO with NCP 6, NCP 7 & SDG 6), risk sharing
	instruments (TO with NCP 1, NCP 2, NCP 4, NCP 7, NCP 8, NCP 10, NCP 14,
	NCP 18, SDG 6, SDG 12, SDG 13, SDG 14, SDG 15 & SDG 17)
NCP 13: Materials and	High positive impact on this NCP but comes with potential trade-offs: Material
assistance	substitution (TO with NCP1, SDG 2, SDG 9 & SDG 15)
NCP 14: Medicinal,	High positive impact on this NCP but comes with potential trade-offs:
biochemical and	biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5,

	genetic resources	SDG 7, SDG 8, SDG 9 & SDG 16)
	NCP 15: Learning and	High positive impact on this NCP but comes with potential trade-offs:
	inspiration	biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5,
		SDG 7, SDG 8, SDG 9 & SDG 16), use of local seeds (TO with NCP 12, SDG 2 &
		SDG 17)
	NCP 16: Physical and	High positive impact on this NCP but comes with potential trade-offs:
	psychological	biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5,
	experiences	SDG 7, SDG 8, SDG 9 & SDG 16)
	NCP 17: Supporting	High positive impact on this NCP but comes with potential trade-offs:
	identities	biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5,
1		SDG 7, SDG 8, SDG 9 & SDG 16), use of local seeds (TO with NCP 12, SDG 2 &
)		SDG 17)
	NCP 18: Maintenance	High positive impact on this NCP but comes with potential trade-offs:
1	of options	biodiversity conservation (TO with NCP 12, NCP 13, SDG 1, SDG 2, SDG 5,
J		SDG 7, SDG 8, SDG 9 & SDG 16), use of local seeds (TO with NCP 12, SDG 2 &
1		SDG 17)

gcb_15219_f1.tiff

Figure 1. Interactions between NCPs and SDGs within Agroforestry Systems. Note: Circles are key NCPs and squares are key SDGs.