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Abstract: Soil nitrogen (SN) and soil phosphorus (SP) contents support several ecosystem services
and define the forest type distribution at local scale in Southern Patagonia. The quantification of
nutrients during forest surveys requires soil samplings and estimations that are costly and difficult
to measure. For this, predictive models of soil nutrients are needed. The objective of this study
was to quantify SN and SP contents (30 cm depth) using different modelling approaches based on
climatic, topographic and vegetation variables. We used data from 728 stands of different forest
types for linear regression models to map SN and SP. The fitted models captured the variability of
forest types well (R2-adj. 92–98% for SN and 70–87% for SP). The means were 9.3 ton ha−1 for SN
and 124.3 kg ha−1 for SP. Overall, SN values were higher in the deciduous forests than those in the
mixed evergreen, while SP was the highest in the Nothofagus pumilio forests. SN and SP are relevant
metrics for many applications, connecting major issues, such as forest management and conservation.
With these models, the quantification of SN and SP stocks across forests of different protection status
(National Law 26,331/07) and national/provincial reserve networks is possible, contributing to the
determination of nutrient contents at landscape level.

Keywords: soil nutrient contents; native forests; land use planning; vegetation productivity; forest
structure; linear regression

1. Introduction

Soil functions (e.g., production of biomass, acting as a sink/source) are key for food
production, climate regulation and adaptation, nutrient sequestration, water filtering and
biodiversity conservation [1]. Consequently, soils are directly linked to some of the United
Nations Sustainable Development Goals [2,3]. In this context, accurate and detailed spatial
soil information at landscape level is essential for monitoring, land use planning and
environmental modelling [4], which can be influenced by parent material, topography,
climate, vegetation, time and anthropogenic activities [5]. The knowledge of spatial soil
variation is necessary to define management and conservation proposals in the context of
sustainable land use and climate change [6,7].
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Soil organic carbon (SOC), soil nitrogen (SN) and soil phosphorus (SP) are essential
nutrients for plant growth and play a major role in the nutrient cycle of forest ecosys-
tems [3,8–10]. Nitrogen also contributes to greenhouse gases and global climate change
in combination with carbon emissions [11]. Organic and inorganic soil phosphorus are
important for plant growth [12], where a small portion of the phosphorus is soluble and
available for plants [13]. Therefore, SP deficiency is one of the main limitations in many
natural forests [14], being scarce in many agricultural and forest soils [12,15,16].

Soil mapping techniques mostly depend on ground-based surveys and rarely provide
information about the spatial distribution at adequate resolution over the landscape [17].
Besides, mapping soil spatial variations by traditional field surveys is expensive and time-
consuming at large scales [3,4]. The simplest approach to predict the spatial distribution
of nutrient stocks is to allocate the average sampling values to each map unit of soil
types [10,18,19]. However, this approach results in constant values within each map unit,
reducing the spatial heterogeneity and increasing the error of estimations [20,21]. Therefore,
it is necessary to have other robust methods to predict soil properties at different scales [22],
such as digital soil mapping [7,17] or maps of spatial variations of nutrient stocks using
environmental variables [4,20,23,24]. This last method can be useful in areas with low
data availability, as in Patagonia [25,26]. These methods were designed to overcome the
limitations of the conventional soil mapping approach and to estimate soil properties
based on relationships between soils and environmental variables obtained from terrain
attributes (e.g., digital elevation models) and satellite imagery [7,17,27]. Recent advances
in the mapping of forest structure and functionality for large areas combine field-based
measurements with data from passive and active satellite sensors, including radar [28–30],
at a much lower cost than traditional field inventories [31–33]. Many of the described
methods are largely used in estimating SN and SP [4,5,7,10,34–36]. In contrast to the
advances in biomass and C stock estimations in the above-ground components of forests,
soil components of other nutrients have largely been ignored. While SN and SP content has
been characterized in local studies of Patagonian native forests [37–44], modelling of SN
and SP at regional scale has rarely been attempted, e.g., in Santa Cruz province [42,45,46].
However, the current methods are unable to represent the land forest cover characteristics
at a high accuracy. One alternative is to sort the landscape in more homogeneous units (e.g.,
different forest types) and then combine the different models into one (e.g., Martínez Pastur
et al. [47] modelling the forest biodiversity for different forest types and then combining
the outputs to obtain the regional map).

Soil fertility is a key factor for provisioning ecosystem service [42,48,49] and for sup-
porting biodiversity in native forests [47]. Soil fertility influences the capacity of forests
to produce timber and forage for both wild and domestic animals [50,51]. Forest manage-
ment affects soil respiration, carbon mineralization, nitrogen cycling and the microbial
community [52,53]. In this context, soil properties, including nutrient stocks, can be greatly
affected by silviculture practices [54,55], depending on forest cover, past disturbances, cli-
matic conditions and harvesting [56,57]. For this, the use of vegetation variables improves
the estimation of nutrient stocks in impacted forests [42,45]. SN and SP are closely related
to soil microbial communities and biomass, and their activity is related to the microenvi-
ronments (e.g., differences in soil moisture and temperature at a microscale) as well as to
the quantity and quality of forest substrates [14,58,59].

Soil mineralization rates are primarily controlled by climate and soil properties [8],
increasing with temperature [60] and rainfall [61,62]. However, soil microbial communities
directly contribute to nutrient mineralization and availability [63]. A comprehensive
understanding of the relative importance of these factors and their impacting pathways
on nutrient changes is lacking in the context of climate change [62]. The latest research
on soil nutrient dynamics suggest that changes in soil microbial biomass under global
change would result in profound consequences on the main ecosystem processes [62,64].
Understanding these soil patterns at landscape level under global change is important for
modelling the biogeochemical cycle and its feedback to climate [65]. Besides, SN and SP are
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not considered in the design of the protection networks. Argentina has a strong protected
area network that covers nearly 12% of the land area but does not equally protect all the
native forest ecosystem types [66]. Most native forests are privately owned, and regulations
are needed to assure forest conservation [67]. Zoning is one of the instruments used by the
Argentinian government to regulate human activities in native forests, and the provinces
are obligated to define land use zones every five years, e.g., Ordenamiento Territorial de
los Bosques Nativos/Land Use Planning of Native Forests (OTBN) defined by the National
Law 26,331/07 [68,69].

In this context, the accurate quantification of SN and SP stocks is important for
assessing the source/sink capacity of soils and to quantify the change rate of soils [21].
Spatially explicit information of soil nutrients thus plays a crucial role in global cycling
studies and climate change effects [10,18,24,62,64]. In addition, nutrient mapping is of great
significance for identifying the spatial characteristics and influencing factors to provide
a reference for agricultural management and ecological conservation [36]. Additionally,
continuous distributions of soil nutrient contents are important for understanding the
role of the different nutrients (e.g., SOC, SN and SP) in the nutrient cycles at landscape
level [3,10,20,70]. The objective of this study was to model SN and SP contents (0–30 cm
depth) in Tierra del Fuego forests (Argentina) using two modelling approaches (global forest
cover vs. individual forest types) based on climatic, topographic and vegetation variables.
We hypothesized that (i) SN and SP estimations at landscape scale based on forests vary
with climate, topography and vegetation, and therefore, it is possible to model them as a
function of the variability of these characteristics; and (ii) the obtained models are more
accurate when they are developed for individual forest types than when they are developed
without considering the dominant forest species cover. We specifically aim to (i) compare
the different model approaches performance for each forest type; (ii) quantify the SN and
SP contents by forest type, protection status (National Law 26,331/07) and national and
provincial reserve networks and compare them with the SOC; and (iii) determine potential
relationships among the nutrient contents with topography and regional climate variables.

2. Materials and Methods

We analyzed the native forests (7292.4 km2) of Tierra del Fuego province (21,263 km2)
located between 52.6◦ and 55.1◦ SL and 63.8◦ and 68.6◦ WL (Figure 1). The forest area
of the province was estimated using the National Forest Inventory [71] and data of the
Global Forest Change [72]. The native forests are dominated by temperate Nothofagus
species, mostly pure stands or mixed with 1–3 species, and include different assemblages of
deciduous and evergreen trees [73]. For the analyses, we considered three categories where
Nothofagus are the dominant genus, growing in pure or mixed stands, based on Martínez
Pastur et al. [26]: (i) NA: N. antarctica forests with >70% basal area (BA) and the remaining
30% or less composed of other associated native tree species; (ii) NP: N. pumilio forests with
>70% BA and the remaining 30% or less composed of other associated native tree species;
and (iii) MIX: Pure evergreen N. betuloides forests or mixed forests associated in different
proportions with other native tree species (N. pumilio, Drimys winteri, Maytenus magellanica).

The climate in the study area is influenced by the oceans, Antarctica and the insularity
that determine a uniform climate regime with a low range of annual temperature (7–10 ◦C)
and rainfalls associated to the orography (500 to 700 mm yr−1) with abundant snowfall
during the winter season [29,30,47]. The parent materials of the soils are metamorphic
rocks modulated by glacial processes. In general, the Nothofagus forest soils are classified
as podzols with loamy texture, massive granular structures, low usable water capacity
and moderate-to-slow internal and external drainage. These soils are characterized by an
organic uppermost layer up to 2 cm thick (O horizon) followed by a mineral layer of less
than 40 cm where most roots develop (mostly A horizon) with a variable proportion of
stony material [26,73].
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Figure 1. Location of the study area indicating the sampled stands (red dots), a 10 km buffer
(pink area) and the main forest types of Tierra del Fuego (yellow: Nothofagus antarctica, light green:
N. pumilio, dark green: mixed evergreen).

We selected stands (>2 ha) from different forest types for soil sampling (Figure 1)
based on their conservation status (e.g., we discarded stands with BA <30–40 m2 ha−1 or
with recent forest harvesting), covering most of the accessible forests of the Grande Island
in the Tierra del Fuego archipelago. In total, we sampled 728 stands (1 stand every 1001 ha
of forest) (Table 1). The sampling effort was not equally distributed among the different
forest type covers (Table 1) given that the timber forests (N. pumilio) were over-sampled
(+29%, 614 stands) and the other forest types were under-sampled (−14%, 95 stands of
N. antarctica and 19 stands of mixed evergreen forests). Some areas were under-sampled
(Figure 1) due to their inaccessibility in the western (mountain areas) and eastern (peatland
areas) areas of the Archipelago.

Table 1. Sampling effort for the modelling, showing the area (km2) of the different forest types
(NA: Nothofagus antarctica, NP: N. pumilio, MIX: mixed evergreen) and number of sampled stands.
Sampling effort compares the percentage of forest area and the percentage of stands at each category,
where (+) indicates over-sampling relative to the extension of each forest type, and (−) indicates
under-sampling.

Forest Type Area
(km2)

Plots
(n)

Sampling
Effort (%)

NA 2014.7 27.6% 95 13.0% −14.6%
NP 4045.1 55.5% 614 84.3% +28.9%

MIX 1232.6 16.9% 19 2.6% −14.3%

Total 7292.4 728

In each stand, soil samples (n = 4 covering > 200 cm2 at each stand) were taken at
0–30 cm depth using a hand soil sampler of known volume (200–300 cm3). From this, we
estimated the soil bulk density (SBD). The calculations were conducted with samples that
were air-dried after removing >2 mm particles (roots, stones, woody debris) following
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the Carter and Gregorich [74] methodology. We performed the chemical analyses using
pooled individual soil samples, maintaining the identity of the soil depth layers, including
(i) soil total nitrogen (SN) by a semi-micro Kjeldahl method [74] and (ii) soil extractable
phosphorus (SP) according to the method of Bray and Kurtz [75]. The nutrient data were
presented as contents for the first 30 cm soil layer (ton ha−1 for SN and kg ha−1 for SP)
using the SBD of each stand.

We used a combination of climate (n = 21), topography (n = 4) and vegetation produc-
tivity measures (n = 4) as predictors for our SN and SP models, which were rasterized at
a 90 × 90 m resolution grid using the nearest neighbor resampling technique on ArcMap
10.0 software [76]. The climatic variables [77] included temperature and precipitation, char-
acterized as annual, monthly and seasonal, as well as global potential evapotranspiration
and global aridity indexes obtained from WorldClim [78]. The topography variables were
defined using the shuttle radar topography mission [79], which produced a high-resolution
digital elevation model. With these images, we defined altitude and aspect and slope; in
addition, we used the soil organic carbon content (SOC, ton ha−1) developed for Patagonian
forests [26]. Finally, we included forest landscape metrics derived from the normalized
difference vegetation index (NDVI) [80], net primary productivity (NPP) [81] and forest
structure variables (dominant height and BA) [30].

Before modelling, the final variables were chosen according to their correlation and
adjustment. We based the selection on the lower Pearson’s correlation index obtained
through paired analyses of each variable. We only included a single independent variable
if the Pearson correlation coefficient was free from collinearity and with a p-value < 0.05.
For prediction of SN and SP stocks, we developed models based on stepwise multiple
regressions. The final selection of the models, including the most powerful independent
variables free from collinearity, was performed after one hundred steps. The robustness of
the regression models of SN and SP stocks was assessed considering (i) the coefficient of
adjustment (R2-adj.); (ii) the standard error of estimation (SEE), which is the average of the
difference between the predicted and observed values; and (iii) the mean absolute error
(MAE), defined as the average difference between the predicted and observed absolute val-
ues (Statgraphics Centurion, Statpoint Technologies, Warrenton, VA, USA). The adjustment
of the models was conducted individually; however, the final performance of the models
was tested together. There is one difference between the SN and SP modelling, due to us
modelling the SN first, and then this variable was also used to model the SP together with
the SOC values.

We tested two different approaches for modelling: (i) GLOBAL: where modelling
was conducted for all the forest area in Tierra del Fuego, and (ii) INDIVIDUAL: where
modelling was conducted for each forest type separately. The approaches were then
integrated into one final map. SEE and MAE were used to test the robustness of the
GLOBAL or INDIVIDUAL approaches based on auto-validation analyses. Finally, we
extrapolated the obtained models to obtain the SN and SP maps across Tierra del Fuego
province (Argentina), integrating the variables into a geographical information system
(GIS) using ArcMap 10.0 software [76], where a mask was applied using the forest cover
previously described.

Based on our final SN and SP maps, we characterized the Tierra del Fuego forests
according to defined categories, which was used as a mask. We calculated SN (million
ton) and SP (thousand ton) stocks as well as the SOC contents (million ton) previously
determined [26], and then we related this to (i) previously defined forest types; (ii) status
protection according to the province land use planning (Law 26,331/07): red (high conser-
vation value forests for ancestral uses, gathering of non-timber forest products, scientific
research, conservation plans, ecological restoration), yellow (medium conservation value
forests for sustainable productive activities and tourism under the guidelines of manage-
ment and conservation plans), green (low conservation value forest where land-use change
is allowed) and unclassified forests [68]; and the existing reserve network according to
the Administración de Parques Nacionales (APN) of Argentina (www.argentina.gob.ar/

www.argentina.gob.ar/parquesnacionales
www.argentina.gob.ar/parquesnacionales
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parquesnacionales accessed on 12 December 2022) (national parks, provincial reserves,
unprotected). For each category and combinations, we calculated the mean SN and SP
values and the standard deviation (SD). Finally, SOC, SN and SP were graphically analyzed
(mean ± SD) based on the comparisons with average mean annual temperature (◦C, TEMP),
mean annual rainfall (mm yr−1, RAINFALL) and elevation (m a.s.l.).

3. Results

The SN adjusted models were robust (R2-adj. > 92%) with acceptable statistics and
errors (Table 2). The SN-GLOBAL model used SOC, precipitation seasonality (BIO15) and
NPP as predictor variables. The INDIVIDUAL models presented higher coefficient of
adjustments (93% to 98%) with lower SEE and MAE. The predictor variables changed with
the forest types: (i) NA presented better adjustment when the annual mean temperature
(BIO1) was combined with SOC and BIO15; (ii) NP showed better adjustment when some
forest structure variables (DH: dominant height and BA) were combined with SOC, annual
precipitation (BIO12) and NDVI; and (iii) MIX displayed better adjustment when forest
variables (DH) were combined with SOC. All the employed variables were significant
(p < 0.05).

Table 2. Linear regression models of soil nitrogen content (SN, ton ha−1) for all the forest cover
(GLOBAL) or for each forest type (NA: Nothofagus antarctica, NP: N. pumilio, MIX: mixed ever-
green). R2-adj. = coefficient of adjustment, F: Fisher test, T: statistic of adjustment of each variable,
p: probability, SEE: standard error of estimation, MAE: mean absolute error (acronyms of the variables
are listed in the text).

SN-GLOBAL

0.0354235 × SOC + 0.224559 × BIO15 − 0.00281924 × NPP
R2-adj. = 92.1% F(p) = 2824.9 (<0.01)
SEE = 2.8 T(p) SOC = 22.2 (<0.01) BIO15 = 9.7 (<0.01)
MAE = 2.1 NPP = −4.6 (<0.01)

SN-NA

0.0610033 × SOC + 3.3065 × BIO1 − 0.939747 × BIO15
R2-adj. = 98.0% F(p) = 1579.0 (<0.01)
SEE = 1.4 T(p) SOC = 15.0 (<0.01) BIO1 = 7.4 (<0.01)
MAE = 1.1 BIO15 = −8.0 (<0.01)

SN-NP

0.106466 × DH + 0.0312037 × BA + 0.0376064 × SOC − 0.00890734 × BIO12 +
2.40688 × NDVI
R2-adj. = 92.9% F(p) = 1609.8 (<0.01)
SEE = 2.6 T(p) DH = 3.9 (<0.01) BA = 4.2 (<0.01)
MAE = 1.9 SOC = 23.1 (<0.01) BIO12 = −6.3 (<0.01)

NDVI = 3.7 (<0.01)

SN-MIX

0.0682924 × DH + 0.0174538 × SOC
R2-adj. = 95.8% F(p) = 208.9 (<0.01)
SEE = 1.9 T(p) DH = 2.2 (0.04) SOC = 7.1 (<0.01)
MAE = 0.9

The SP models were less robust than the SN models (R2-adj. > 70%). However, the
statistics and errors were acceptable for these model types (Table 3). The SP-GLOBAL
model used DH, SN and the precipitation of the wettest quarter (BIO16) as predictor
variables. The INDIVIDUAL models showed higher coefficient of adjustments (71% to
87%) with similar or lower SEE and MAE. The predictor variables changed with the forest
types: (i) NA displayed better adjustment when SN was combined with the temperature
seasonality (BIO4); (ii) NP showed better adjustment when SN was combined with BIO4
and BIO12; and (iii) MIX exposed better adjustment when DH and SOC were combined
with the SLOPE. All the employed variables were significant (p < 0.05).

www.argentina.gob.ar/parquesnacionales
www.argentina.gob.ar/parquesnacionales
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Table 3. Linear regression models of soil phosphorus content (SP, ton ha−1) for all the forest cover
(GLOBAL) or for each forest type (NA: Nothofagus antarctica, NP: N. pumilio, MIX: mixed evergreen).
R2-adj. = coefficient of adjustment, F: Fisher test, T: statistic of adjustment of each variable, p:
probability, SEE: standard error of estimation, MAE: mean absolute error (acronyms of the variables
are listed in the text).

SP-GLOBAL 0.00812562 × DH + 0.00833205 × SN − 0.000885286 × BIO16
R2-adj. = 70.3% F(p) = 574.58 (<0.01)
SEE = 0.08 T(p) DH = 12.8 (<0.01) SN = 10.1 (<0.01)
MAE = 0.06 BIO16 = −8.4 (<0.01)

SP-NA 0.0026018 × SN + 0.00692245 × BIO4
R2-adj. = 83.5% F(p) = 238.6 (<0.01)
SEE = 0.02 T(p) SN = 3.5 (<0.01) BIO4 = 2.8 (<0.01)
MAE = 0.01

SP-NP 0.00840194 × SN + 0.094582 × BIO4 − 0.000500307 × BIO12
R2-adj. = 71.4% F(p) = 512.9 (<0.01)
SEE = 0.09 T(p) SN = 8.2 (<0.01) BIO4 = 8.9 (<0.01)
MAE = 0.06 BIO12 = −7.8 (<0.01)

SP-MIX −0.0014144 × DH + 0.000239921 × SOC + 0.000873535 × SLOPE
R2-adj. = 86.7% F(p) = 39.9 (<0.01)
SEE = 0.02 T(p) DH = −2.4 (0.02) SOC = 5.3 (<0.01)
MAE = 0.01 SLOPE = 2.1 (0.04)

The Nothofagus antarctica forests showed the highest SN average contents (10.25 ton ha−1)
followed by the N. pumilio forests (9.27 ton ha−1), while the mixed evergreen forests grew
in SN-poor soils (5.45 ton ha−1) (Table 4). SP demonstrated a completely different pattern,
where N. pumilio showed a significantly higher content (138.44 kg ha−1) than the other forest
types (46.58–48.84 kg ha−1). Concerning SOC values, based on the modelling proposed by
Martínez Pastur et al. [26], the highest content was in the mixed evergreen forests followed
by the N. pumilio and N. antarctica forests (Table 5), evidencing that the three considered
nutrients (C, N, P) are not totally correlated in the soils of the Tierra del Fuego forests. Auto-
validation of the sampling plots compared with the outputs of the linear regression models
showed lower SEE and MAE values for the INDIVIDUAL modelling approach than those
of the GLOBAL modelling approach (Table 4) both for all the forest cover area and for each
forest type (Nothofagus antarctica, N. pumilio or mixed evergreen). These auto-validations
suggest that the combination of the individual models into one map is better than one
single GLOBAL modelling, highlighting that each forest type has particular soil properties.
For this, the integration of the INDIVIDUAL models was used for the following analyses.

Table 4. Auto-validation of sampling plots (n = 728) and the outputs of the linear regression models
of soil nitrogen (SN, ton ha−1) and soil phosphorus (SP, kg ha−1) contents for all the forest cover
(GLOBAL) or the combination of the models (INDIVIDUAL) for each forest type (NA: Nothofagus
antarctica, NP: N. pumilio, MIX: mixed evergreen). SEE: standard error of estimation, MAE: mean
absolute error.

Model
SN Global Individual SP Global Individual

(ton ha−1) SEE MAE SEE MAE (kg ha−1) SEE MAE SEE MAE

NA 10.25 0.72 1.97 0.01 1.14 48.84 −13.14 27.19 −0.04 16.53
NP 9.27 0.01 2.08 <0.01 1.96 138.44 3.99 66.70 −0.06 65.34

MIX 5.45 −4.72 4.72 −0.03 0.91 46.58 −22.97 58.25 −0.28 16.15

Total 9.30 −0.02 2.14 <0.01 1.82 124.35 1.05 61.32 −0.07 59.38
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Table 5. Forest cover area, soil organic carbon (SOC), soil nitrogen (SN) and soil phosphorus (SP)
contents based on the combination of the individual models, discriminated according to (A) forest
types (NA: Nothofagus antarctica, NP: N. pumilio, MIX: mixed evergreen), (B) land use planning (Law
26,331/07, red: maximum, yellow: medium, green: minimum forest values) and (C) formal protection
network (national parks, provincial reserves, unprotected). Standard deviation is included between
brackets for each category.

Type Class Area
(km2)

SOC
(ton ha−1)

Total SOC
(mill ton)

SN
(ton ha−1)

Total SN
(mill ton)

SP
(kg ha−1)

Total SP
(thousand ton)

(A) NA 2014.7 141.3 (±22.3) 28.5 7.7 (±1.7) 1.56 45.0 (±20.6) 9.1
NP 4045.1 158.7 (±22.8) 64.2 6.9 (±2.1) 2.81 129.8 (±41.6) 52.5

MIX 1232.6 184.5 (±30.6) 22.7 4.9 (±1.1) 0.60 77.2 (±25.0) 9.5

(B) Red 2926.7 165.5 (±28.0) 48.4 5.7 (±1.9) 1.67 97.5 (±39.8) 28.5
Yellow 3845.4 154.7 (±26.6) 59.5 7.7 (±1.7) 2.95 98.9 (±57.8) 38.0
Green 192.8 133.0 (±20.7) 2.6 6.6 (±1.9) 0.13 87.2 (±57.1) 1.7

Unclassified 327.5 151.6 (±27.2) 5.0 6.5 (±2.1) 0.21 86.6 (±46.5) 2.8

(C) National 262.1 143.1 (±15.5) 387 4.8 (±1.3) 0.12 86.6 (±19.2) 2.3
Provincial 643.7 153.4 (±19.9) 9.9 7.3 (±1.8) 0.47 126.7 (±43.3) 8.2

Unprotected 6386.6 159.4 (±28.7) 101.8 6.8 (±2.1) 4.37 94.9 (±51.5) 60.6

Total 7292.4 158.3(±27.9) 115.4 6.8 (±2.1) 4.97 97.4 (±50.9) 71.1

The final maps showed similar trends, but extreme predicted values of SN and SP
were less evident for the INDIVIDUAL modelling approach than the GLOBAL modelling
approach (Figure 2). However, both approaches showed the patterns of the SN and SP
average contents previously described. The total nutrient contents for the Tierra del Fuego
forests totaled 115.4 million tons of carbon, 4.97 million tons of nitrogen and 71.1 thousand
tons of phosphorus (Table 5), where the N. pumilio forests presented the greatest reservoirs.
The most valuable forests (red) according to the land use planning of the province (Law
26,331/07) have greater SOC but the lowest SN values. The yellow category, where forest
management is allowed, showed higher SN and SP values, mostly due to those forests
having a higher offer of provisioning ecosystem services. Regarding the formal protection
network, the unprotected areas displayed the highest SOC contents in the forests and are
the main sinks of the three studied nutrients due to most of the forest area being outside the
protected areas. Despite this, Provincial Reserves house the forests with the greatest SN and
SP contents, highlighting the importance of this conservation strategy that complements
the national initiatives (e.g., national parks).

The soil nutrient contents were affected by forest type, regional climate (e.g., annual
mean temperature and rainfall) and topography (e.g., altitude) (Figure 3). NA grows
at lower altitudes close to the ecotone with the steppe (higher temperatures and lower
rainfall), MIX forests occupy the intermediate altitude landscapes (e.g., middle hillsides
and shores of lakes with intermediate temperatures and higher rainfall), and NP can grow
from sea level to the upper tree-line boundaries (lower temperatures and intermediate
rainfall). In general, SOC was greater at high altitudes (NP-MIX > NA) and SN at low
altitudes (NA > NP-MIX). SP increased with the altitude (NP > MIX > NA). Temperature
also influenced SOC, where higher temperatures resulted in lower SOC (NP-MIX > NA)
and higher SN (NA > NP-MIX) values. The SP content increased when the temperature
decreased (NP > MIX > NA). Finally, rainfall also influenced SOC and SP, which increased
with rainfall values (MIX-NP > NA); however, SN decreased with rainfall (NA > NP > MIX).
These different patterns and behaviors showed that climate and topography also modulate
the nutrient contents, defining the forest types that developed across the landscape.
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(SP, kg ha−1) contents based on the combination of the individual models of each forest type (NA:
Nothofagus antarctica, NP: N. pumilio, MIX: mixed evergreen) related to climate (TEMP: mean annual
temperature, ◦C, and RAINFALL: mean annual rainfall, mm yr−1) and elevation (m a.s.l.). Bars
indicate the standard deviation of each axis.
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4. Discussion

The sampling effort was higher than other soil modelling in the region [25,26,45,46,82].
However, it was not equally distributed among the different forest type covers, mainly due
to accessibility, which was identified as the main trade-off for field surveys in other studies
in Patagonia [83]. The under-sampled areas were located in the mountain (west) and
peatland (east) areas, where no economic activities were conducted [84], and included the
less profitable species in terms of monetary values (e.g., timber or silvopastoral) [50,68,73].
These limitations must be considered when the models are used and must be tested in
future research to improve the proposed models.

Remote sensing data provide a direct representation of the Earth’s surface, and most of
the time, these variables are closely related to soil properties [7,35], increasing the feasibility
to develop models based on direct linear regressions. For example, it was possible to predict
the soil nutrient contents directly with remote sensing data, e.g., it was informed that SN
was closely related to the natural vegetation and the above-ground biomass [36,82], while
SP was more related to the parent material [85]. Different techniques have been used in
the literature to predict soil distribution, e.g., multiple linear regression [10,25,45,46,82,86],
regression kriging [87–89], random forest models [26,35,89], geographically weighted
regression [88], cubist models [90,91] and principal component regressions [92]. These
strategies were successfully implemented in different natural and managed environments
and according to different research objectives, but none showed to be the best one for all
the stated forests and landscapes.

In several studies, vegetation units were not considered as a source of variation.
Here, we tested the influence of forest types as the main variable responsible for soil
property variability. Other studies considered soil types to homogenize the landscape
modelling [10,18,19], but vegetation unit was not usually taken into account. Here, the
individual modelling approach for each forest type was more accurate than considering
globally all the forest types together. This strategy was followed in other studies where
vegetation type had influence over the modelled variables, e.g., potential biodiversity [47]
or phenoclusters [29] in Patagonia. Other studies also suggest improving the prediction
accuracy by introducing new environmental covariates and more stratified sampling in
homogeneous sub-areas [7,93]. Our models showed higher coefficient of adjustments (R2-
adj.) and errors (SEE and MAE) than other local soil modelling variables [25,26,45,46,82]
or than those stated in the literature, e.g., Razakamanarivo et al. [94], Adhikari et al. [20],
Martin et al. [23] and Wang et al. [10].

The SN models (global and individuals for all forest types) were closely related to SOC
as a source of both nutrients in forest soils. The second explanatory variable groups were
related to climate (e.g., BIO1, BIO15, BIO12) followed by vegetation proxies (e.g., NPP and
NDVI) and forest structure variables (DH and BA). The SP models (global and individuals
for deciduous forest types) were closely related to SN, while the mixed evergreen forests
were related with SOC. Both variables (SN and SOC) were also related to the biomass input
in the forest ecosystems as was previously stated. The second explanatory variable groups
were related to climate (e.g., BIO16, BIO4, BIO12) followed by one topography variable
(e.g., SLOPE) and some forest structure variables (DH).

Some of these variables, such as vegetation indexes, NPP and climate, are mainly
derived from remote-sensing products. Because of substantial advances, satellites can now
provide products with a high spatiotemporal resolution [3]. Vegetation proxies (NDVI
and NPP) were identified as the main factors associated to SOC and SN [7,10,21,95] due
to the relationship with vegetation productivity and biomass [8,88,96]. Vegetation is one
of the major covariates related to soil nutrients in digital soil mapping [35], especially
in areas with good natural vegetation coverage [21]. A significant positive correlation
has been reported between the topsoil nutrient content and vegetation [97], which was
confirmed with our research. Those findings imply that there was a potential application of
remote-sensing techniques to mapping nutrient distribution in large regions.
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Associated variables, such as temperature and rainfall, are the key climatic factors
that affect the spatial distribution of soil nutrients (SN and SP) [10,98]. These variables
are widely used in the spatial prediction of soil nutrient content [10,99]. In mountain
ecosystems, climatic variables affected the hydrological system and ecological function,
which indirectly exerted an influence on the spatial distribution of SN [10,35]. On the micro-
scale level, an improvement in forest productivity results in more input from organic matter
in the soil leading to an increase in the nutrients in soils (e.g., SOC and SN) [35]. However,
low temperatures and rainfall reduce decomposition rates and, therefore, decrease the
availability of nutrients in the soils [40,41,100]. Climate data and their variance within
periods are a useful covariate to characterize soil properties [101] because this information
provides insights into key soil processes (e.g., dynamics of soil moisture) [3].

Topographic variables are usually good predictive factors in areas with complex
changes in topography for modelling soil nutrient contents [87]. Relief is the main factor
involved in soil formation and soil moisture distribution across the landscape [35]. In
our model, the relief derivative variable (e.g., SLOPE) was important for the SN and
SP estimations, as it was also reported for soil depth modelling and other development
dynamic processes [3]. The influence of this variable was also cited by Wang et al. [10]
and Yang et al. [21], which also can be related to land uses (e.g., agriculture lands) and
microclimate regulation in local areas [102]. For SP, broad-scale studies of parent material
derived from geological maps are reported to be a useful variable [43,103]. In our modelling,
the soils with more phosphorus content were related to geological areas with parent material
containing more phosphate sedimentary rocks [85].

Forest structure variables were useful to predict the soil nutrient contents. The main
variables were dominant height (as a proxy of site quality) and basal area (as a proxy of
tree density) [30,38,44,104]. Both variables can be related to tree biomass, which results in
the main organic source material for soil nutrients [40,41,100].

In this context, our study showed that multiscale interactions among environmental
covariates and soil properties may be considered. Other authors emphasize the importance
of considering different source drivers in the modelling of soil characteristic influence
from micro to global scales, e.g., [3,105]. Finally, validation criteria should be interpreted
carefully because it could be concluded that the best model is not necessarily able to make
the most accurate estimation. Moreover, further studies may still be required to investigate
and suggest new environmental covariates to capture soil variability and distribution at
landscape level [7].

The Tierra del Fuego forests grow in a wide topography, climate and soil condi-
tions [106], where SN and SP are limited for forest development [37]. Nutrient content
was identified as one of the key factors for site quality and stand recovery after impacts
(e.g., beavers) [107,108]. In addition, soil nutrients were proposed as the main factor that
influences the natural dynamic and overstory cover composition (e.g., deciduous and
evergreen) [104]. Canopy tree composition can influence forest soil properties [109], be-
ing greater in the upper soil layers near the roots [110], and can be correlated with site
quality and stand density [108,111]. Mineralization rates under different species also can
change [112], where mixing species can result in increased soil mineralization rates com-
pared with pure species stands [104]. In our study, we found similar average nutrient
contents as those found in other studies [50,82,108,113–116], where deciduous forests pre-
sented more SN (Nothofagus antarctica > N. pumilio) than mixed evergreen forests, and where
SP is greater in N. pumilio stands than the other forest types. Toro-Manríquez et al. [104]
found the same trends, where SP is the main nutrient associated with N. pumilio occurrence.

The distribution maps of SOC and SN showed similar spatial distribution patterns
as those cited by Wang et al. [10]. However, the spatial distribution of SP was related
to the parent rock material as described by Olivero et al. [85]. The spatial distribution
patterns of SN and SP also have a strong relationship with the topographic variables,
where mountainous areas showed lower values and discontinuity, as was cited in other
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studies [117]. Different topography gradients affected the input and loss of soil nutrients
through indirect factors, such as temperature and rainfall [104,118].

For a non-soil scientist, soil maps are difficult to interpret and use for decision-making
in land management [119] because they are mostly based on taxonomic classification rather
than quantifying soil properties. The digital soil mapping developed here facilitates soil
property predictions by integrating soil survey data, geographic information systems, geo-
statistics, topography, remote sensing and high-performance computing [3,17,24]. Because
of the need for better planning strategies and adaptation to climate change, the potential of
soil to store or sequester additional nutrients has received considerable attention during the
last few years [3,24,78,120]. Accurate, broad-extent, fine-resolution information on forest
resources is needed for sustainable management and conservation planning [121–124]
and for scientific researchers [125]. In Argentina, national and provincial governments
are lacking accurate information to quantify emissions (e.g., SOC) and nutrient stocks
(e.g., SP and SN), which is required for both policy formulation and meeting reporting
requirements by international agencies [126,127]. Without detailed information on forest
nutrient dynamics, it is impossible to gauge the effectiveness of both proposed and im-
plemented policies [25,42,128]. Digital soil mapping can be an efficient decision-making
platform (e.g., GIS or web platforms) for implementing proper, sustainable management
practices and identifying areas with high potential for sequestering atmospheric gases or
for protecting soils to avoid nutrient release into the atmosphere [3,23,24,27] or, due to
erosion, non-desirable processes or desertification in Patagonia [129–131].

5. Conclusions

This study showed that easily obtainable remote-sensing data can provide spatially
detailed and reasonably accurate maps of SN and SP in topsoil in naturally forested areas.
We successfully modelled and mapped soil nitrogen (SN) and soil phosphorus (SP) stocks
in the top 30 cm in native forests of Tierra del Fuego (Argentina) at 30 m resolution. The
most important variables predicting SN and SP were vegetation productivity and forest
structure, climate (temperature and rainfall) and slope. The SN and SP distribution was
well explained by vegetation-related variables directly related to forested environments.
The modelling of forest types individually improved the accuracy compared with the global
models, and our final SN and SP maps integrated these subsets and greatly improved the
information about nutrient stocks, which can support (i) the use of nutrient stocks as
predictors for assessment design and modelling at landscape level; (ii) evaluation of the
habitat quality and identification of priority conservation areas; (iii) monitoring to achieve
sustainable forest management; and (iv) zoning of native forests in multiple uses according
to management and conservation criteria. These models can strengthen the national
forest monitoring system, support compliance with national and provincial regulation
and provide information to achieve the international agreements signed by Argentina. In
addition, we developed an approach to obtain accurate SN and SP maps across the entire
province with different forest types, allowing us to characterize the nutrient stocks in the
land use areas (e.g., OTBN, National Law 26,331/07) and protected area network.
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