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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder whose pathophysiology in-
cludes the abnormal accumulation of proteins (e.g., β-amyloid), oxidative stress, and alterations
in neurotransmitter levels, mainly acetylcholine. Here we present a comparative study of the ef-
fect of extracts obtained from endemic Argentinian species of valerians, namely V. carnosa Sm.,
V. clarionifolia Phil. and V. macrorhiza Poepp. ex DC from Patagonia and V. ferax (Griseb.) Höck
and V. effusa Griseb., on different AD-related biological targets. Of these anxiolytic, sedative and
sleep-inducing valerians, V. carnosa proved the most promising and was assayed in vivo. All valerians
inhibited acetylcholinesterase (IC50 between 1.08–12.69 mg/mL) and butyrylcholinesterase (IC50

between 0.0019–1.46 mg/mL). They also inhibited the aggregation of β-amyloid peptide, were able
to chelate Fe2+ ions, and exhibited a direct relationship between antioxidant capacity and phenolic
content. Moreover, V. carnosa was able to inhibit human monoamine oxidase A (IC50: 0.286 mg/mL
(0.213–0.384)). A daily intake of aqueous V. carnosa extract by male Swiss mice (50 and 150 mg/kg/day)
resulted in anxiolytic and antidepressant-like behavior and improved spatial memory. In addition,
decreased AChE activity and oxidative stress markers were observed in treated mouse brains. Our
studies contribute to the development of indigenous herbal medicines as therapeutic agents for AD.

Keywords: Alzheimer’s disease; medicinal plant; acetylcholinesterase; antioxidant; β-amyloid
aggregation; monoamine oxidase; memory; antidepressant

1. Introduction

Valerian is the common name for a perennial herb plant belonging to the family
Caprifoliaceae and native to various regions of America, Europe and Asia [1]. Among ap-
proximately 200 species known so far, Valeriana officinalis L. is the one most commonly used
for medicinal purposes [1]. Reports have shown that some valerian species have been used
for centuries in Europe and North America as mild sedatives and sleep enhancers [2,3].
Analyzing ancient writings and modern pharmacological research on the Valeriana genus,
we have reported pharmacological activity including anxiolytic, antidepressant, antispas-
modic, sedative, antitumor and anti-HIV properties, as well as its use in the treatment
of neurological diseases [4–8]. Previous phytochemical studies on this species led to the
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isolation of flavonoids [9–11], essential oils [12], sesquiterpenoids [13], valepotriates and
acylated iridoids [13,14].

About 81 species of the Valeriana genus are grown in South America, 48 of which have
been found in Argentina [15,16], mainly in the Andes. Although some of these species are
used in folk medicine, pharmacological, phytochemical and botanical information about
most of them, and their quality and efficacy as phytopharmaceuticals or dietary supple-
ments, remains scarce. Therefore, we conducted a comparative study on the phytochemical
composition and potential central nervous system (CNS) effects of hydroalcoholic extracts
of a series of Argentine valerians including Valeriana carnosa Sm., V. clarionifolia Phil. and
V. macrorhiza Poepp. ex DC. from Argentina Patagonia; V. ferax (Griseb.) Höck and
V. effusa Griseb. from the central region of Argentina, and V. officinalis as a reference
plant. All these plants evidenced a high content of phenolic compounds and presented lig-
ands for the benzodiazepine binding site of the GABAA receptor, showing sedative effects
(500 mg/kg, intraperitoneally, i.p.) in mice in the sodium thiopental-induced loss of right-
ing reflex assay. In addition, extracts of V. macrorhiza, V. carnosa and V. ferax induced a
decrease in exploratory behavior, whereas V. clarionifolia produced anxiolytic-like activ-
ity (500 mg/kg, i.p.) in the hole board test. Acute peroral treatment (300 mg/kg and
600 mg/kg, p.o.) showed sedative activity for extracts of V. ferax and anxiolytic properties
for extracts of V. macrorhiza, V. carnosa and V. clarionifolia. These native species were thus ac-
tive in the CNS, and their use as anxiolytics/sedatives and sleep enhancers in folk medicine
was validated [10].

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progres-
sive neuronal degeneration, including personality changes, dysmnesia, emotional dis-
turbances and behavioral abnormalities [17]. AD etiology is not yet fully understood,
although some mechanisms such as oxidative stress [18], low levels of neurotransmit-
ter acetylcholine (ACh) [19] and the aggregation and accumulation of β-amyloid (Aβ)
plaques [20] are thought to play an important pathogenic role. ACh can be hydrolyzed by
the two cholinesterases (ChEs), i.e., acetylcholinesterase (AChE) and butyrylcholinesterase
(BChE). AChE selectively hydrolyzes ACh, while BChE can metabolize several neuroactive
neurotransmitters and peptides, including ACh and acylated ghreline [21]. Cognitive im-
provements in AD patients have been associated with higher levels of BChE inhibition [22],
particularly in spatial, verbal, memory, speed and reaction time tasks. Drugs inhibiting
AChE and/or BChE such as rivastigmine, donepezil, and galantamine are clinically used
to treat AD [23].

Polypharmacology is the development and use of therapeutics acting on multiple
targets of a disease and/or its comorbidities. Indeed, multitarget drugs acting in an interre-
lated network offer potentially higher efficacy and may curve the drawbacks associated
with the use of single-target drugs [24]. A multitarget drug may be a single compound
with multiple activities, a mixture of compounds with single targets, or even a mixture
such as a plant extract. Considering the multifactorial etiology of AD and the number of
potential therapeutic targets, new therapeutic options should be based on a multitarget
approach [25]. Current therapies acting on a single target provide temporary relief but fail
to prevent the progression of AD or slow down neurodegeneration [26,27]. Consequently,
strategies counteracting Aβ aggregation and restoring neurotransmitter levels through
combined inhibition of ChEs and monoamine oxidases (MAOs) may represent a therapeu-
tically feasible approach. MAOs catalyze the oxidative deamination of monoamines such
as serotonin (MAO-A), norepinephrine and dopamine (MAO-B), also generating hydrogen
peroxide, which increases oxidative stress.

Among natural neuroactive products, attention has been drawn to the anxiolytic prop-
erties of the Valeriana genus [28]. V. officinalis [7], V. prionophylla [29] and V. wallichii [30,31]
are not only the most popular herbal medicines in the treatment of anxiety and mild sleep
disorders, but have also shown antidepressant-like activity in some preclinical studies.
Extracts from valerian have also inhibited AChE [32,33], and a possible AD-related thera-
peutic effect of V. amurensis has been reported [34,35]. Moreover, V. carnosa, better known as



Pharmaceuticals 2023, 16, 129 3 of 25

“ñamkulawen”, is one of the five most best-known native species from Argentine Patagonia
in the pharmacopoeia of the local communities and may be the most popular species with
medicinal properties [36]. V. carnosa is locally thought to have “panacea-like properties”,
which gives it a high cultural and symbolic value for the Mapuche community. Further-
more, the reputation and use of V. carnosa have spread to the formal and informal market
for medicinal herbs in urban Patagonia [37].

In this paper, we present a comparative study of the effects of Argentine valerians
on targets related to AD and a more comprehensive in vivo study of the most promising
Argentine Valeriana species—V. carnosa.

2. Results and Discussion
2.1. Plant Material and Extraction

The studies were carried out on roots and rhizomes of Valeriana carnosa Sm., V. clarioni-
folia Phil. and V. macrorhiza Poepp. ex DC., collected in Argentine Patagonia; and V. ferax
(Griseb.) Höck and V. effusa Griseb collected in the center of the country. The collection
of plant material was in accordance with national Argentine guidelines. All plants were
authenticated by Dr. Hernán Bach and voucher specimens were deposited in the herbar-
ium of the Institute of Biological Resources -INTA and in the “Juan Anibal Domínguez”
herbarium, Museum of Pharmacobotany, as previously reported [10] (Table S1). Fresh roots
and rhizomes were washed, dried at room temperature, and protected from light. Part of
these roots and rhizomes was then pulverized, and the resulting powders were subjected
to the extraction and fractionation scheme shown in Figure 1. Powdered dry roots and
rhizomes (50 g) of each plant were suspended in 500 mL of 70% ethanol, and the mixture
was kept at 25 ◦C for 2.5 h with shaking. The filtrate was concentrated to 1/3 of the original
volume to remove most of the ethanol and extracted with an equal volume of petroleum
ether, which was discarded. Two-thirds of the aqueous phase obtained was evaporated
to dryness (aqueous 1 extract) and used for chemical, biochemical, and pharmacological
studies. The other third was slightly concentrated to remove the remaining petroleum
ether and extracted twice with an equal amount of ethyl ether. The two resulting phases
were evaporated to dryness (aqueous 2 and ethylic extracts), and the residues were stored
protected from day-light at –20 ◦C. Replicates of the same batch were evaluated.
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Figure 1. Extraction scheme of the Valeriana species roots and rhizomes.

2.2. Antioxidant Effect of Aqueous 1 Extracts

The results obtained for aqueous 1 extracts of Valeriana effusa, V. ferax, V. macrorhiza,
V. clarionifolia, V. carnosa and V. officinalis on the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-
azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), iron chelation, and thiobarbituric
acid (TBA) reactive substances (TBARS) assays are shown in Table 1. In addition, the total
content of polyphenols (obtained from [10]) is also reported for comparison and discussion.
All species showed good antioxidant capacity against DPPH (EC50 of 0.12± 0.02 mg/mL for
V. carnosa to 0.57 ± 0.02 mg/mL for V. ferax) and ABTS radicals (EC50 of 0.04 ± 0.01 mg/mL
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for V. carnosa to 0.51 ± 0.06 mg/mL for V. officinalis). This effect may be due to the presence
of phenolic compounds in these plant extracts. Indeed, a direct relationship was observed
between the amount of polyphenols and the extracts’ antioxidant capacity (content of
polyphenols of 191.56 ± 8.99 mg galic acid/1 g plant for V. ferax to 890.25 ± 156.05 mg
galic acid/1 g plant for V. carnosa). As phenolic compounds exhibit antioxidant activity
by mechanisms such as hydrogen atom donation to free radicals and reactive oxygen
species (ROS) scavenging, they may stabilize DPPH or ABTS radicals by either absorption
or deactivation through bonding/coordination [38]. ROS are chemically reactive radicals
produced as byproducts of primary metabolism and can trigger serious oxidative damage
in macromolecules. Excessive ROS leads to damage in enzymatic processes and alters the
function of various lipids, proteins, and DNA, which may result in neurodegenerative
diseases, among others. Some phenols can also bind to transition metal ions (especially
iron), often resulting in forms poorly active in promoting free radical reactions [39]. As ev-
ident in the ferrozine assay, all extracts chelated Fe2+ (IC50 of 5.13 ± 0.09 mg/mL for
V. macrorhiza to 1.3 ± 0.11 mg/mL for V. clarionifolia; close to the value obtained for
V. carnosa, 1.71 ± 0.10 mg/mL). The aqueous 1 extract of V. carnosa showed the highest
polyphenols concentration and the lowest IC50 and EC50 values, which makes it the most
active extract as a free-radical scavenger and Fe2+ chelator (Table 1). In addition, all extracts
reduced lipid peroxidation in the in vitro TBARS assay, with V. macrorhiza proving to be the
most active (IC50 of 0.20 (0.13–0.30) mg/mL). Worth pointing out, the aqueous 1 extract of
V. carnosa was not evaluated in the in vitro TBARS assay, as it decomposed in the reaction
assay. So, its ethylic extract was tested instead, proving to be the most active (IC50 of
0.18 (0.11–0.30) mg/mL).

Table 1. Antioxidant capacity of Valeriana species aqueous extracts 1.

Sample
Total Phenols 1 DPPH ABTS Ferrozine TBARS

mg Galic Acid/
1 g Plant

EC50
(mg/mL)

EC50
(mg/mL)

IC50
(mg/mL)

IC50
(mg/mL)

V. effusa 125.52 ± 6.80 0.56 ± 0.04 0.41 ± 0.02 2.59 ± 0.08 25.04 ± 0.79 2

V. ferax 191.56 ± 8.99 0.57 ± 0.02 0.21 ± 0.13 2.10 ± 0.04 5.00 (2.38–10.51) 3

V. macrorhiza 252.85 ± 12.36 0.43 ± 0.02 0.13 ± 0.01 5.13 ± 0.09 0.20 (0.13–0.30) 3

V. clarionifolia 257.36 ± 19.55 0.30 ± 0.01 0.10 ± 0.01 1.3 ± 0.11 1.29 (0.81–2.05) 3

V. carnosa 890.25 ± 156.05 0.12 ± 0.02 0.04 ± 0.01 1.71 ± 0.10 0.18 (0.11–0.30) 3,4

V. officinalis 736.19 ± 34.27 0.32 ± 0.01 0.51 ± 0.06 4.76 ± 0.28 1.76 (1.25–2.48) 3

Trolox 5 ND 0.016 ± 0.006 0.013 ± 0.004 ND ND
EDTA 5 ND ND ND 0.006 ± 0.001 ND

Vitamin E 5 ND ND ND ND 37.73 ± 0.41 2

All values are expressed as mean ± SEM of three independent determinations. ND: Not determined; 1 Data
obtained from [10]; 2 Inhibition (%) at 1 mg/mL; 3 IC50: mean (confidence interval) of three independent
determinations; 4 Data from V. carnosa ethylic extract; 5 Positive controls: trolox (DPPH and ABTS), EDTA
(Ferrozine), vitamin E (TBARS).

The results shown above agree with those reported for other species of the Valeriana
genus. The methanolic and aqueous extracts of Valeriana jatamansi have shown IC50 values
of 0.078 mg/mL and 0.154 mg/mL, respectively, in the DPPH assay. However, the essential
oil of V. jatamansi shows lower free radical scavenging activity (IC50 of 0.876 mg/mL), while
the chloroform extract shows negligible activity. In addition, a linear correlation has been
observed between the antioxidant activity and the content of polyphenols and flavonoids
in the extracts [40]. Moreover, the oils of V. hardwickii (IC50 = 1.10 mg/mL) [41] and
V. officinalis (IC50 of 0.493 mg/mL) [42] show results similar to those of V. jatamansi and the
antioxidant capacity reported for V. wallichii is also directly proportional to its phenolic
content, which seems to be the case for many plant species [43]. Aqueous and alcoholic
extracts (70%) of V. wallichii have been able to scavenge both ABTS and DPPH radicals,
with the hydroalcoholic extract being more active than the aqueous one [44]. In turn,
the ethanolic extract of V. alliariifolia has shown good antioxidant activity against DPPH
(IC50 0.018 mg/mL) and ABTS (IC50 0.024 mg/mL), also exhibiting the highest total pheno-
lic content [45]. All these results suggest that compounds with antioxidant activity in many
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Valeriana species have high to moderate polarity. Other Valeriana species evidence the ability
to chelate Fe2+ with V. officinalis oil showing an IC50 of 0.235 mg/mL [46]. Additionally, the
methanolic extract of V. jatamansi has demonstrated good chelation activity (76%), followed
by aqueous extracts (43%) and essential oils (31%) at a concentration of 0.1 mg/mL. In
contrast, chloroform extracts show poor chelation activity (12%) [40].

2.3. Inhibitory Activity of Extracts against AChE

The results obtained for aqueous 1 and ethylic extracts of valerians in murine recombi-
nant AChE (mAChE) assays and mouse brain homogenates are shown in Table 2.

Table 2. Inhibition of AChE and BChE by Valeriana species extracts.

Sample Extract

AChE
IC50 (mg/mL) 1

mAChE
Inhibition (%) 2

BChE
IC50 (mg/mL) 1

hBChE
Inhibition (%) 2

Mice Brain Recombinant Murine Plasma Recombinant

V. effusa
Aqueous 1 12.69 (5.8–27.7) NA 0.86 (0.61–1.22) 17.2 ± 3.1
Aqueous 2 ND ND 0.65 (0.45–0.92) ND

Ethylic ND 23.5 ± 3.4 0.41 (0.28–0.62) 37.3 ± 3.1

V. ferax
Aqueous 1 5.45 (3.69–8.05) ND 0.53 (0.43–0.65) 18.7 ± 3.1
Aqueous 2 ND ND 0.15 (0.11–0.2) ND

Ethylic ND 31.6 ± 4.1 0.025 (0.017–0.038) 69.5 ± 7.2

V. macrorhiza
Aqueous 1 1.08 (0.49–2.37) NA 0.082 (0.07–0.10) 24.4 ± 2.4
Aqueous 2 ND ND 0.95 (0.57–1.58) ND

Ethylic ND 29.9 ± 5.3 0.045 (0.004–0.005) 78.7 ± 3.9

V. clarionifolia
Aqueous 1 1.29 (0.81–2.05) 26.4 ± 2.7 0.0019 (0.0014–0.0024)

64.3 ± 1.1
IC50 (mg/mL): 0.190

(0.120–0.300)
Aqueous 2 ND ND 0.039 (0.030–0.050) ND

Ethylic ND 32.2 ± 4.4 0.00057
(0.00041–0.00081) 67.9 ± 9.4

V. carnosa
Aqueous 1 6.71 (2.86–15.77) NA 1.46 (0.99–1.14) NA
Aqueous 2 ND ND 2.57 (1.11–6.0) ND

Ethylic 6.92 (2.14–22.41) 37.7 ± 5.8 0.26 (0.16–0.42) 52.6 ± 9.5

V. officinalis
Aqueous 1 3.42 (1.11–10.6) NA 0.15 (0.13–0.18)

88.7 ± 1.4
IC50 (mg/mL): 0.140

(0.110–0.180)
Aqueous 2 ND ND 0.50 (0.33–0.75) ND

Ethylic ND ND 0.0041 (0.0026–0.0067) ND

Tacrine 3 ND IC50 (µM):
0.140 ± 0.008 ND IC50 (µM):

0.023 ± 0.003
1 IC50: mean (confidence interval) of three independent determinations; 2 % Enzyme inhibition: mean ± SEM of
three independent determinations. Aqueous 1 extracts evaluated at 1 mg/mL and ethylic extracts evaluated at
0.5 mg/mL; 3 Positive control: tacrine (mAChE and hBChE). NA: Not active; ND: Not determined.

Ethylic extacts—though not aqueous 1 extracts— inhibited recombinant mAChE at
1 mg/mL. This result suggests that rather nonpolar compounds are responsible for inhibi-
tion and that they are found in small amounts in aqueous extracts. In turn, the aqueous 1
extracts of V. clarionifolia and V. macrorhiza were the most potent AChE inhibitors in mouse
brain homogenates, while the ethylic extracts of V. clarionifolia and V. carnosa inhibited
mAChE. Tacrine, the first centrally acting inhibitor approved for the treatment of AD, was
chosen as the reference compound.

The inhibitory activity of other species in the Valeriana genus against ChEs has been
scarcely documented. Chloroform and ethyl acetate extracts of Valeriana wallichii signif-
icantly inhibit AChE (IC50 0.061 mg/mL) and BChE (IC50 0.058 mg/mL), while extracts
from V. polystachya also show slight AChE inhibition at 200 µg/mL. In addition, compounds
6β-hydroxysitostenone, baldrine, and IVHD-valtrate isolated from V. polystachya inhibit
AChE at 150 µM (53.8, 37.3 and 38.4% inhibition, respectively) [47]. Moreover, studies with
iridoids and sesquiterpenoids isolated from the ethyl acetate extract of V. jatamansi, which
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have revealed weak inhibition of AChE, showed that these compounds were unable to
inhibit mAChE at 50 µM and therefore not responsible for total extract activity [48]. On
the other hand, some compounds isolated from the ethanolic extract of V. officinalis—i.e.,
spatulenol (49.1%), anismol A (20.2%), (þ)-8-hydroxypinoresinol (19.3%), and pinoresinol-4-
O-β-D-glucopyranoside (32.0%) have shown moderate activity on mAChE at 100 µm [33].
For these reasons, extracts from Argentine species show good inhibitory ability against
AChE and similar to other species of this plant.

2.4. Inhibitory Activity of the Extracts against BChE

The results obtained for aqueous and ethylic extracts of valerians in human recombi-
nant BChE (hBChE) and mouse plasma BChE inhibition assays are shown in Table 2.

Aqueous 1 extracts were able to inhibit both human and murine BChE, with more
potent inhibition of the murine enzyme. However, comparisons should be made with
caution, as reaction conditions and media differed between assays. Nevertheless, the
extracts of V. clarionifolia were the most active, and ethylic extracts were more potent BChE
inhibitors than aqueous extracts 1 and 2. This result indicates that nonpolar compounds
are responsible for overall activity, as they are extractable with a nonpolar solvent such as
ethyl ether.

We found no reports in the literature describing valerians such as BChE inhibitors,
besides V. wallichii, although inhibition by other species has certainly been described.
Studies on ChE inhibition by methanol extracts of different parts of Nelumbo nucifera
have shown weak ChE inhibition by rhizomes, potent BChE inhibition by embryos and
active AChE inhibition by seeds [49,50]. Artemisia scoparia and Artemisia absinthium leaves’
essential oils also show anticholinesterase potential by inhibiting both AChE (IC50 of
30 ± 0.04 µg/mL and 32 ± 0.05 µg/mL, respectively) and BChE (IC50 of 34 ± 0.07 µg/mL
and 36 ± 0.03 µg/mL, respectively) [51]. Another study has described the inhibitory
activity against BChE of 26 ethanolic extracts of Chinese medicinal plants. For 15 of
them, underground parts revealed IC50 values between 0.005–0.3 mg/mL. Among them,
Polygonum multiflorum was the most potent BChE inhibitor (IC50 = 0.005 mg/mL), while
Paeonia lactiflora and Paeonia veitchii also potently inhibited BChE with IC50 values of
0.006 and 0.01 mg/mL, respectively. Interestingly, some extracts of Angelica dahurica,
Cremastra appendiculata, Juncus setchuensis and Nardostachys jatamansi selectively inhibited
BChE in comparison to AChE [52]. Of note, Nardostachys jatamansi belongs to the same
family as the Valeriana genus and inhibits BChE with an IC50 of 0.015 mg/mL. To sum up,
the extracts presented here are potent BChE inhibitors when compared to extracts reported
in the literature.

The BChE/AChE ratio changes considerably in cortical regions affected by AD [53].
In fact, in early stages of AD AChE levels decrease up to 85% in some brain regions,
whereas BChE levels increase with disease progression [53]. While increased BChE activity
aggravates AD, selective BChE inhibition ameliorates the cholinergic deficit. Notably,
selective BChE inhibition has been shown to elevate extracellular ACh levels and to improve
learning in elderly rats performing maze trials [54]. Adverse effects may be associated with
a lack of central vs. peripheral selectivity (e.g., muscle cramps) or brain regional selectivity
(e.g., sleep disturbances and extrapyramidal symptoms), in turn, due to poor inhibitor
preference for AChE or BChE. Worth highlighting, the plants used in this work inhibit
BChE to a greater extent than AChE, which could prove a beneficial feature associated with
fewer side effects.

2.5. Inhibitory Activity of Extracts against MAO

The results obtained for aqueous 1 and ethylic extracts in human MAO-A (hMAO-A)
and hMAO-B inhibition assays are shown in Table 3.
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Table 3. Inhibition of MAO-A and MAO-B by Valeriana species extracts.

Sample Extract 1 hMAO-A 2 hMAO-B 2

Inhibition (%) Inhibition (%)

V. effusa Aqueous 1 37.2 ± 1.1 23.5 ± 1.3
Ethylic 45.3 ± 0.9 14.2 ± 4.9

V. ferax Aqueous 1 38.7 ± 0.1 22.1 ± 0.8
Ethylic 57.9 ± 0.7 NA

V. macrorhiza
Aqueous 1 24.7 ± 3.7 62.7 ± 2.5

Ethylic 68.6 ± 0.1 50.6 ± 3.6

V. clarionifolia Aqueous 1 39.5 ± 0.6 39.9 ± 1.8
Ethylic 0.4 ± 0.7 NA

V. carnosa
Aqueous 1 41.6 ± 0.1 57.6 ± 5.4

Ethylic
69.5 ± 1.4

IC50 (mg/mL): 0.286
(0.213–0.384) 3

49.4 ± 4.2

V. officinalis Aqueous 1 62.8 ± 0.4 57.5 ± 3.2
Ethylic ND ND

Clorgyline 4 - IC50 (µM): 0.00335 ± 0.00031 3 IC50 (µM): 13.568 ± 1.157 3

Pargyline 4 - IC50 (µM): 3.968 ± 0.275 3 IC50 (µM): 0.195 ± 0.019 3

L-deprenyl 4 - IC50 (µM): 62.664 ± 0.411 3 IC50 (µM): 0.012 ± 0.004 3

Isatin 4 - ND IC50 (µM): 19.778 ± 1.108 3

1 Aqueous 1 extracts evaluated at 1 mg/mL and ethylic extracts evaluated at 0.5 mg/mL; 2 % hMAO inhibition:
mean ± SEM of three independent determinations; 3 IC50: mean (confidence interval) of three independent deter-
minations; 4 Positive controls: clorgyline (MAO-A), pargyline (MAO-B), L-deprenyl (MAO-B), isatin (MAO-B)NA:
Not active; ND: Not determined.

V. officinalis aqueous 1 extract and V. carnosa and V. macrorhiza ethylic extracts were the
most potent hMAO-A inhibitors (the IC50 value was calculated for V. carnosa). Moreover, ethylic
extracts showed greater inhibitory potency than aqueous 1 extracts, except for V. clarionifolia.
Again, this suggests that compounds responsible for total activity are rather lipophilic. On
the other hand, the aqueous 1 and ethylic extracts of V. carnosa, V. macrorhiza, and V. officinalis
had greater ability to inhibit hMAO-B. In this case, aqueous 1 extracts were more active than
ethylic extracts which makes polar compounds responsible for inhibitory effects.

MAO-A inhibitors were the first antidepressants that appeared on the market. Clor-
gyline is an irreversible and selective inhibitor of MAO-A used in research and here as
a reference. Unlike MAO-A, MAO-B is associated with inhibition of dopamine degrada-
tion, rather than that of noradrenaline and serotonin metabolism, [55]. Therefore, MAO-B
inhibitors are used to slow down the progression of Parkinson’s disease. Pargyline is an
irreversible MAO-B inhibitor that has been used to treat depression, whereas L-deprenyl
(selegiline) is an antiparkinsonian and antidepressant used to treat early stages of Parkin-
son’s disease, depression, and senile dementia. Selegilin selectively and irreversibly inhibits
MAO-B, but loses specificity at higher doses, thus inhibiting MAO-A [56]. In turn, isatin
(indole-2,3-dione) is an endogenous inhibitor of MAO B [57]. Furthermore, MAO inhibitors
inhibit hydrogen peroxide production, which triggers a neuroprotective effect [58].

To the best of our knowledge, this is the first report linking an extract of the Valeriana
genus with MAO inhibition. Other medicinal plant species with antidepressant activ-
ity have been reported as MAO inhibitors, for instance, Hypericum perforatum, has been
shown to inhibit MAO-A and MAO-B (0.005 mg/mL, 93% and 49%, respectively) [59].
The methanolic extracts of commercial H. perforatum powder (Herb Pharm, Williams,
OR, USA) inhibit hMAO-A with an IC50 of 0.142 ± 0.031 mg/mL, whereas the
methanolic flower extracts of H. perforatum show the most potent inhibition (IC50 of
0.0636 ± 0.0094 mg/mL), followed by stems and leaves (IC50 of 0.1436 ± 0.0165 mg/mL),
and finally by the root extracts. In addition, the ethylic extract of the underground parts
of V. carnosa showed better inhibitory capacity (IC50 (mg/mL) of 0.286 (0.213–0.384)) than
the root extracts of this widely used antidepressant medicinal plant. Another species with
MAO inhibition capacity is Peganum harmala, which seed extracts strongly inhibit hMAO-A
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(IC50 of 0.0499 ± 0.0056 mg/L) [60]. Of note, underground part extracts of the Argentine
Valeriana species show MAO inhibitory effects comparable to those of other species used as
antidepressants in traditional medicine and clinics such as H. perforatum.

2.6. Inhibitory Activity of Extracts against Aβ1-42 Aggregation

All aqueous 1 extracts of Valeriana species were able to inhibit Aβ aggregation at
0.1 mg/mL (Table 4). Some small molecules such as resveratrol, curcumin, and their
derivatives, have exhibited neuroprotective effects by inhibiting Aβ-induced damage,
inhibiting ChEs and attenuating neuronal death by oxidative stress [40,61,62]. The aromatic
structures of these compounds contribute to the prevention of self-induced Aβ aggregation
by disrupting the π stacking of aromatic residues in Aβ aggregate development [63]. In
particular, resveratrol (trans-3,4′, 5-trihydroxystilbene), a flavonoid derivative largely found
in grapes [64], inhibits Aβ self-aggregation, attenuates Aβ induced toxicity, promotes Aβ

clearance, and reduces senile plaques [65]; for these reasons this compound was used as a
positive control in Aβ1-42 aggregation inhibition assays. The results shown in Table 4 reveal
that V. effusa and V. clarionifolia were the most potent inhibitors, with inhibition values
similar to those of resveratrol.

Table 4. Inhibition of Aβ1–42 aggregation by Valeriana species aqueous 1 extracts.

Sample
Aβ1–42 Aggregation 1

Inhibition (%)

V. effusa 93.4% ± 4.1
V. ferax 47.8% ± 13.4

V. macrorhiza 32.0% ± 11.5
V. clarionifolia 81.6% ± 13.6

V. carnosa 65.7% ±12.2
V. officinalis 59.7% ± 2.6

Resveratrol 3 93.9% ± 4.8 2

1 % inhibition of Aβ1-42 peptide aggregation at 0.1 mg/mL: mean ± SEM of three independent determinations.
Four replicates each measurement; 2 Value of % inhibition at 10 µM; 3 Positive control: Resveratrol.

Few reports have described the effect of plant extracts on Aβ aggregation and, to
our knowledge, none have described this effect for the Valeriana genus. A study has
reported 58.3 ± 1.0 % Aβ aggregation inhibition for the aqueous extract of Lycium bar-
barum fruits at 0.1 mg/mL [66]. In addition, analyses of 14 aqueous extracts of plant
seeds (68–123 mg/mL) revealed inhibition values of 98.7 ± 2.4% for lettuce, 95.9 ± 2.6%
for bitter melon, 93.9 ± 2.1% for corn, and 68.3 ± 1.9% for the common daisy [67]. Another
study reported the effect of ethanolic extracts of Chinese medicinal plants, where the under-
ground parts were studied for 15 out of total 26 plants, with inhibition values ranging from
10 to 92% (at 0.1 mg/mL). Rheum officinale showed promising inhibitory effects (91.75%) as
compared to curcumin (positive control) (92.97%), followed by Polygonum multiflorum root
(87.41%), and Cremastra appendiculata and Paeonia veitchii (under 73%) [52].

Briefly, Argentine valerian extracts exhibited moderate to high capacity to inhibit Aβ

aggregation. But this is only one among other properties described in this and previous
papers [10,68,69]. All these characteristics make Argentine valerian extracts multitarget
drugs for the treatment of neurodegenerative diseases and their comorbidities.

The aqueous 1 extract of V. carnosa inhibited both AChE (IC50 6.71 (2.86–15.77) mg/mL)
and BChE (IC50 1.46 (0.99–1.14) mg/mL). In addition, it inhibited Aβ aggregation, was
able to chelate Fe2+ and in having the highest polyphenol content, was the most potent
free radical scavenger. Moreover, V. carnosa was able to inhibit hMAO-A (IC50: 0.286
(0.213–0.384) mg/mL) and hMAO-B. Although not the most active extract in all the targets
studied aqueous 1 of V. carnosa was an active extract in all targets. For these reasons,
V. carnosa proved to be the most promising species within this group of Argentine valerians
and was selected for the in vivo studies in mice.
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2.7. Effect of Chronic Treatments of V. Carnosa Aqueous 1 Extract in Mice
2.7.1. Stability Determination by High Performance Liquid Chromatography
(HPLC) Fractionation

An aliquot of the extract solution was chromatographed directly after extraction, after
frozen sample reconstitution to be used for in vivo study and after it was consumed by mice
(before it was renewed). No significant differences were observed in the chromatograms ob-
tained after extraction, before or after the animal intake (Figure S1). Two major constituents
had already been determined in the aqueous 1 extract of V. carnosa, [10], 2S-hesperidin and
chlorogenic acid (~1.5% and 12.0%, respectively).

2S-Hesperidin (Scheme S1) is a glycosylated flavanone with sedative-hypnotic ef-
fects [11]. Chronic oral ingestion of this flavonoid elicits anxiolytic-like effects. 2S-
Hesperidin inhibits AChE (IC50 = 0.85 nM) and BChE (IC50 = 3.45 nM) [70]. On the other
hand, hesperidin shows relatively weak hMAO inhibition [71], but its chronic treatment
in rats (100 mg/kg) inhibits MAO-A hippocampal activity [72]. Moreover, 10 mM hes-
peridin can inhibit ~40% of Aβ formation in vitro [73]. In addition, hesperidin can scavenge
free radicals DPPH (247.52 µg/mL) [74] and ABTS (16.46 µM) [73]. Oral administration
of hesperidin to rats (50 mg/kg/day) for 10 consecutive days before and 14 days after
γ-irradiation significantly attenuates radiation-induced TBARS levels [75]. In addition,
chronic treatment with hesperidin (1 mg/kg) produces antidepressant-like effects in mice
in the tail suspension test [76]. In Wistar rats, hesperidin (25, 50, and 100 mg/kg) restores
alternation index levels decreased by L-methionine in the Y-maze test. In addition, these
rats exhibits decreased AChE activity and malondialdehyde (MDA) concentration, and
increased glutathione (GSH) levels [77].

In turn, polyphenol chlorogenic acid is an ester of caffeic acid and L-quinic acid
(Scheme S1) which inhibits AChE (IC50 of 8.01 µg/mL), BChE (IC50 of 6.3 µg/mL) [78], and
hMAO-A (IC50 of 158 µM) but fails to inhibit hMAO-B at maximum concentration tested
(i.e., 100 µM) [79]. Administration of chlorogenic acid (6 or 9 mg/kg) significantly restores
the alternation index previously decreased by scopolamine in mice. Chlorogenic acid at
doses of 3, 6, and 9 mg/kg significantly inhibits AChE activity in the hippocampus, and
reduces hippocampal MDA levels in scopolamine treated mice at 3 or 6 mg/kg doses [80].
In addition, chlorogenic acid scavenges free radicals such as DPPH (IC50 of 35 µg/mL) and
ABTS (IC50 of 38 µg/mL) [81]. Chlorogenic acid-enriched extracts of Eucommia ulmoides
(200 and 400 mg/kg/day for 7 days) have shown antidepressant-like activity in mice in the
tail suspension test. Moreover, chlorogenic acid has been detected in high-performance
liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-
MS/MS) analysis of cerebrospinal fluid of rats treated with oral chlorogenic acid-enriched
extracts of E. ulmoides. This finding indicates that chlorogenic acid can cross the blood-brain
barrier in rodents [82].

In sum, the two compounds present in the aqueous 1 extract of V. carnosa are active
in the CNS. Consequently, extract activities could be due to each compound, the possible
pharmacological interactions between them (which may be synergistic) or pharmacological
interaction with other compounds. Thus, the biological results for this extract may thus
result from a complex combination of activities of the individual compounds and/or a
combination of interactions between them.

2.7.2. Fluid Intake and Mouse Weight

The effects of V. carnosa aqueous 1 extract intake (50 and 150 mg/kg/day, groups 2 and 3,
respectively) on the amount of fluid ingested and the mouse weight are shown in Figure S2.
Weight was monitored to assess possible adverse effects such as loss of appetite or decreased
mobility. On the other hand, the amount of daily fluid intake allowed us to determine
doses and assess whether mice avoided ingestion because of organoleptically unpleasant
fluid properties. We found no differences in weight or fluid intake between the control
group that drank water (group 1) and the treated groups (groups 2 and 3).
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2.7.3. Effect of V. carnosa in the Hole Board and Locomotor Activity Assays

The effects of chronic ingestion of the aqueous 1 extract of V. carnosa (50 and 150 mg/kg/day,
groups 2 and 3, respectively) in the hole board assay and the locomotor activity test are
shown in Figure 2. No significant differences were observed between groups 2 or 3 and
group 1 (the control group) in the number of holes explored or in the locomotor activity,
which indicates that V. carnosa did not induce sedation at these doses. However, the number
of spatial explorations (rearings) was significatively increased in group 3, suggesting an
anxiolytic-like behavior in mice at this dose. We have previously shown that chronic oral
intake of hesperidin (50 and 100 mg/kg/day) produces anxiolytic-like effects in mice [83],
and increases the number of rearings in the hole board assay. However, hesperidin doses
were higher than its concentration in the V. carnosa extract, other components or interactions
may be responsible for the extract effects.
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Figure 2. Effect of Valeriana carnosa aqueous 1 extract (on day 15 of treatment) in the hole board and
locomotor activity assays (50 and 150 mg/kg/day in drinking water, groups 2 and 3, respectively).
Results are expressed as mean ± SEM. of percent exploring holes (
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sessions. * p < 0.05, significantly different from group 1. Dunnett’s multiple comparison test after
ANOVA. ⊗: discarded values. ngroup 1 = 14, ngroup 2 = 12, ngroup 3 = 12.

On the other hand, we have previously shown that a single intraperitoneal injection of
aqueous 1 extract of V. carnosa (500 mg/kg) reduce locomotor activity and hole explorations
in mice, producing a sedative effect. In contrast, a single oral administration (600 mg/kg)
has shown anxiolytic-like effects [10]. All these properties of V. carnosa aqueous 1 extract as
a CNS depressant are consistent with those previously reported for this species.

2.7.4. Effect of V. carnosa in the Y-maze Test

In mice chronically treated with the aqueous 1 extract of V. carnosa (group 2 and 3)
the alternation index was significantly higher than in those that drank water (group 1)
(Figure 3). This means that mice in groups 2 and 3 were better able to remember Y-maze
arms previously visited. Similarly, V. carnosa groups 2 and 3 showed a significantly lower
return index than group 1, which also suggests that V. carnosa-treated mice had better
working memory. This type of memory is one of the memories usually impaired in AD
patients. Rearings were also measured in this assay (Figure 3). This exploratory parameter
was also significantly increased in group 3, again showing the anxiolytic-like properties
induced by this dose of V. carnosa. It is noteworthy that these two effects on memory and
anxiety can be observed.
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Figure 3. Effect of Valeriana carnosa aqueous 1 extract (50 and 150 mg/kg/day in drinking water,
groups 2 and 3, respectively; on day 22 of treatment) in a Y-maze test in mice. Results are expressed
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Other Valeriana species have shown effects on memory in vivo. For example, an ethano-
lic extract of V. amurensis (0.2–0.8 g/kg orally for 14 days) has improved cognitive function
in the Morris water maze test in a mouse model of Aβ-induced cognitive dysfunction. This
extract also improved brain cholinergic function by increasing ACh secretion, enhancing
choline acetyltransferase activity, and protecting brain neurons from Aβ-induced apop-
tosis [35]. On the other hand, the roots of Urtica dioica (100 mg/kg orally for 19 days)
attenuated scopolamine-induced neuropathic effects on rat learning and memory evaluated
in the Y-maze assay. Moreover, this extract showed antioxidant properties and protected
the brain from neuronal death [84].

2.7.5. Effect of Chronic Treatment of V. carnosa on AChE Inhibition in the Mouse Brain

AChE activity was significantly decreased in the brains of mice treated with the aqueous
1 extract of V. carnosa (groups 2 and 3) for 30 days compared with the control group (group 1)
(Figure 4). This neurotransmitter is highly involved in cognitive functions of memory and
learning [85,86] and mechanisms related to attention [87,88]. Consequently, inhibition of
AChE activity in V. carnosa-treated mice may result in increased ACh availability, which may
in turn have contributed to their improved performance in the Y-maze assay.

These results obtained for V. carnosa are promising and comparable to those obtained
for other species reported in the literature. A significant decrease in AChE activity has
been observed in the cortex and hippocampus of mice after administration of an n-hexane
extract of the aerial parts of Lycopodium thyoides and Lycopodium clavatum (25, 10, and
1 mg/kg i.p., a single administration) [89]. Aqueous (400 mg/kg) and alkaloid-enriched
(100 mg/kg, 200 mg/kg, and 400 mg/kg) extracts of Erythrina velutina leaves significantly
inhibited cortical ChEs in mice after acute oral administration [90]. Moreover, a single
intraperitoneal administration of linarin (35, 70, and 140 mg/kg), a flavone glycoside found
in V. officinalis [9], decreased AChE activity in the cortex and hippocampus to an extent
similar to that of huperzine A (0.5 mg/kg), the positive control compound [91].
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Figure 4. AChE inhibition (%) in mouse brain homogenates after chronic treatment with aqueous 1
extract of Valeriana carnosa (50 and 150 mg/kg/day in drinking water, groups 2 and 3, respec-
tively). Results are expressed as mean ± SEM of AChE activity (Abs/min) in % relative to control
group 1 (mice drinking water); ** p < 0.01, **** p < 0.0001, significantly different from group 1;
Dunnett’s multiple comparison test after ANOVA. ngroup 1 = 5, ngroup 2 = 4, ngroup 3 = 5.

2.7.6. Effect of V. carnosa in the Tail Suspension Test

Immobility time in the tail suspension test was significantly decreased in mice treated
with V. carnosa (groups 2 and 3) vs. group 1 (Figure 5), which indicates an antidepressant-
like effect of this species. Although the mechanism of action underlying this effect remains
to be thoroughly established, MAO inhibition may be thought to play a role. Other Valeriana
species have shown antidepressant-like properties in rodents. For instance, methanolic,
aqueous, and aqueous-ethanolic extracts of V. wallichii (acute 50 to 200 mg/kg) have shown
antidepressant-like activity in the tail suspension test [31]. An extract of V. glechomifolia
enriched in valepotriates produced a biphasic (1–20 mg/kg p.o.) dose-response relationship
without changes in locomotor activity or motor coordination (assessed in the open field
and rotarod tests, respectively) of the animals [92].
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Figure 5. Effect of Valeriana carnosa aqueous 1 extract (50 and 150 mg/kg/day in drinking water,
groups 2 and 3, respectively, on day 28 of treatment) in the tail suspension test in mice. Results are
expressed as mean ± SEM, recorded in 6 min sessions * p < 0.05, ** p < 0.008, significantly different
from control (group 1). Dunnett’s multiple comparison test after ANOVA. ngroup 1 = 14, ngroup 2 = 12,
ngroup 3 = 12.

Worth pointing out, anxiety and depression are the most common neuropsychiatric
disorders in AD [93]. Thus, extracts from V. carnosa may have a dual function in these
patients. Moreover, the inhibition of MAOs may reduce oxidative stress in the brain by
reducing H2O2 concentration.
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2.7.7. Effect of V. carnosa on Oxidative Stress Parameters

Oxidative stress plays an important role in the pathogenesis of AD. The brain is more
susceptible to oxidative stress than other organs, and many neuronal components (lipids,
proteins, and nucleic acids) can be oxidized in AD because of mitochondrial dysfunction,
increased metal concentration, inflammation, and Aβ aggregation. Further, oxidative stress
is involved in the development of AD by promoting Aβ deposition, tau hyperphosphory-
lation, and subsequent loss of synapses and neurons. These data suggests that oxidative
stress is an essential component of the disease process so antioxidants may be useful
treatment options [94].

Figure 6 shows that mice treated with 50 mg/kg/day V. carnosa (group 2) had lower
TBARS concentration and higher GSH levels than control mice (group 1) (Figures 6a and 6b,
respectively). Because TBARS are formed as a byproduct of lipid peroxidation, chronic in-
gestion of V. carnosa extract may inhibit lipid peroxidation. This result was further enhanced
by the presence of high GSH levels. GSH is one the first line defense of mitochondrial
membranes against oxidative damage, as it ensures the reduction of hydroxy peroxide
to phospholipids and other lipid peroxides. This property is not unique to V. carnosa, as
many plant extracts have been described as antioxidants. However, this native valerian has
distinctive multitarget properties which can be combined with the antioxidant effects of
most medicinal plants. For example, V. wallichii powder has been reported to prevent the
decrease in GSH levels and the increase in TBARS concentration caused by methylmercury
in enriched mitochondrial fractions of adult Wistar rats [95]. Moreover, the tincture of
V. officinalis prevents the oxidative damage induced by different prooxidants (quinolinic
acid, sodium nitroprusside, 3-nitropropionic acid, Fe2+ and Fe2+/ethylenediaminetetraacetic
acid (EDTA) complex) in rat brain homogenates [96]. Furthermore, an alcoholic extract of
V. officinalis has been reported to protect hippocampal neurons from iron/ascorbate-induced
lipoxidation and neurotoxicity in a model of Parkinson’s disease [97].
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Figure 6. In vivo antioxidant capacity of Valeriana carnosa aqueous 1 extract. (a) TBARS concentration
expressed as nmol/g of tissue (ngroup 1 = 4, ngroup 2 = 4) and (b) GSH concentration expressed as
µg/g of tissue (ngroup 1 = 5, ngroup 2 = 4) present in mouse brain homogenates that have ingested
50 mg/kg/day of Valeriana carnosa aqueous 1 extract in drinking water for 30 days (group 2).
* p < 0.05, ** p < 0.005, significantly different from group 1 (control); unpaired t-test.

3. Materials and Methods
3.1. Chemicals and Reagents

All chemicals and drugs – DPPH, 6-hydroxy-2,5,7,8-tetramethylchromium-2-carboxylic
acid (Trolox), ABTS, ferrozine, EDTA, 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB), acetylth-
iocholine iodide and butyrylthiocholine iodide, reduced glutathione, gallic acid, tacrine,
pargyline, clorgyline, isatin, L-deprenyl were purchased from Sigma-Aldrich®, Argentina.
TBA, trichloroacetic acid (TCA) and butylated hydroxytoluene (BHT) were purchased
from Biopack®Productos Químicos, Argentina. Vitamin E was purchased from Casasco
Laboratories (Argentina).
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Murine mAChE and recombinant hBChE were kindly provided by Xavier Brazzolotto
and Florian Nachon (IRBA, Brétigny-sur-Orge, France). Recombinant human microsomal
hMAO (expressed in baculovirus-infected insect cells (BTI-TN-5B1-4 cells)), horseradish
peroxidase (type II, lyophilized powder) and p-tyramine hydrochloride were obtained from
Sigma Aldrich (Sigma Aldrich, St. Louis, MO, USA). 10-Acetyl-3,7-dihydroxyphenoxazine
(Amplex Red) was synthesized according to [98]. All reagents and solvents used were
analytical or HPLC grade.

3.2. High Performance Liquid Chromatography (HPLC)

Analytical HPLC fractionations were performed using an LKB Pharmacia instrument
with C-18 reversed-phase Vydac columns (5 mm, 0.46 × 25 cm) (The Separation Group,
Hesperia, CA, USA). The aqueous 1 extract of V. carnosa was injected into the column and
eluted with an aqueous acetonitrile (ACN) gradient (v/v) (30 min total run time): 10%
isocratic, 0–10 min, 10–45% ACN, 10–20 min; 45–80% ACN, 20–30 min. The elution flow
was kept constant at 1 mL/min and 200 µL of each sample was injected. The effluent was
monitored at 280 nm. All analyses (retention times) were performed in triplicate.

3.3. Animals
General

Adult male Swiss mice weighing 25–30 g obtained from the Central Vivarium of
the School of Pharmacy and Biochemistry of the University of Buenos Aires were used
throughout. For behavioral trials, mice were housed in groups of four to five animals in a
controlled environment (20–23 ◦C), with free access to food and water, and maintained on
a 12 h/12 h day/night cycle, switched on at 07:00 a.m. The number of animals used was
the minimum number compatible with obtaining significant data. Mice were randomly
assigned to one of the three groups and used only once. Pharmacological assays were
performed by experimenters who were blinded to treatments and were carried out between
10:00 a.m. and 2:00 p.m. Protein concentration was determined by the Bradford method
using bovine serum albumin as a standard [99].

3.4. Chemical Assays
3.4.1. Determination of Antioxidant Capacity by the DPPH Method

The ability of extracts to scavenge free radicals was determined by the DPPH
assay [98]. Briefly, 250 µL of 500 µM DPPH and 200 µL of 100 mM Tris HCl buffer,
pH 7.4, were incubated with 50 µL of different concentrations of each extract for 20 min at
room temperature in the dark. Absorbance was measured at 517 nm. Trolox was used as a
positive control. Measurements were performed in triplicate.

3.4.2. Determination of Antioxidant Capacity by the ABTS•+ Method

This procedure is based on the evaluation of the free radical scavenging capacity of
the extracts to reduce the radical cation ABTS•+ to ABTS [100]. ABTS•+ was prepared
by reacting 7 mM ABTS (in deionized water) with 2.45 mM K2S2O8. The solution was
kept at room temperature in the dark for at least 12 h to obtain stable absorbance values at
λ = 734 nm. Subsequently, the reagent was diluted to obtain an approximate absorbance
of 0.7 (water as blank). A 50 µL aliquot of the different concentrations of each extract
was added to 450 µL of this solution. The decrease in absorbance at 734 nm reflects the
antioxidant activity. Trolox was used as a positive control (0 and 20 µM).

The percentage of scavenging activity was calculated as (for Sections 3.4.1 and 3.4.2):

Free radical scavenging activity (%) =

(Acontrol − Asample

Acontrol

)
× 100 (1)

Acontrol = absorbance of the control prepared without extracts.
Asample = absorbance with the tested extract.
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The 50 % of the effective concentration (EC50) was calculated as:

EC50 = antilog (D− [(A− 50%maxresponse)× (D− C)]/(A− B) (2)

A: immediate response over 50%.
B: immediate response below 50%.
C: log of the concentration corresponding to B.
D: log of the concentration corresponding to A.

3.4.3. Metal Fe2+ Chelating Ability

Metal iron has been identified within amyloid plaque nuclei in post-mortem brain
samples of AD patients [101]. In addition, Fe2+ is one of the major chemical species involved
in the initiation and propagation of ROS and lipid peroxidation [102]. Therefore, extracts
capacity to chelate Fe2+ was determined using the ferrozine assay. For this study, reaction
mixtures containing 200 µL of different concentrations of aqueous 1 extracts, 150 µL of
2 mM FeCl2 and 150 µL of 5 mM ferrozine were incubated at 37 ◦C for 10 min. Then,
absorbance of the ferrozine-Fe2+ complex was then measured at 562 nm. Results were
expressed as the percentage inhibition of the ferrozine-Fe2+ complex formation relative to
the reactions without extracts, as follows:

Inhibition o f f errozine complex f ormation (%) =

(Acontrol − Asample

Acontrol

)
× 100 (3)

Acontrol = absorbance of control prepared without extracts.
Asample = absorbance with the extracts.
These data were used to calculate the concentration of extract required for 50% Fe2+

complex inhibition formation (IC50) [103]. EDTA was used as a positive control. IC50 values
were determined by plotting the inhibition percentages against the extract concentrations
applied using the GraphPad Prism8 software (GraphPad Software, San Diego, CA, USA).

3.5. Biochemical Assays
3.5.1. Assessment of Lipid Damage through the Measurement of TBARS

The main substance reactive with TBA, MDA, is a pink dialdehyde formed as a
by-product of the peroxidation of polyunsaturated fatty acids. The determination of
MDA content in biological material is thus a convenient and widely used method for the
quantitative assessment of lipid peroxidation [104].

Lipid damage was evaluated by measuring TBARS in two conditions:
in vitro: effect of all aqueous 1 extracts on brain homogenates of naïve mice.
in vivo: effect of aqueous 1 extract of V. carnosa on brain homogenates of mice after

chronic ingestion (50 mg/kg/day) (group 2) (see Figure 7).
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Brains from mice treated with V. carnosa (50 mg/kg/day in drinking water, group 2,
n = 4), as well as the mice that drank water (control mice, group 1, n = 4) (see Figure 7), or
brains from naïve mice (n = 3), were homogenized in 50 mM Tris HCl buffer (pH = 7.4)
(1 g of brain tissue in 5 mL of buffer). Homogenates were centrifuged at 2500 rpm for
10 min and each supernatant was separated. For in vitro assays only, 0.2 mL of the
supernatant from naïve mice (which were pooled) were incubated with 0.2 mL of the
aqueous 1 extract of each plant or buffer (negative control) at 37 ◦C for 1 h. For both con-
ditions (in vitro and in vivo TBARS assays), 0.04 mL of 4% BHT (in ethanol) and 0.4 mL of
20% TCA were added to precipitate the proteins and centrifuged at 4000 rpm for 10 min.
Then, 0.4 mL of 0.7% TBA was added to the supernatant and refluxed for 1 h at 100 ◦C. At
the end of this time, absorbance was measured at 535 nm [105]. Vitamin E was used as a
positive control in the in vitro assay. The TBARS concentration was calculated as follows:

TBARS (nmol/g tissue) =

(
Abs

156 1
mM× cm × g tissue

)
× 1000 (4)

Inhibition o f TBARS f ormation (%) =

(Acontrol − Asample

Acontrol

)
× 100 (5)

Acontrol = absorbance of control prepared with buffer.
Asample = absorbance with the extracts.
These data were used to calculate the IC50. IC50 values were obtained by plotting

inhibition percentages against the extract concentrations applied using the GraphPad
Prism8 software (GraphPad Software, San Diego, CA, USA).

3.5.2. Determination of Reduced GSH

GSH levels in mouse brains were evaluated to estimate endogenous defenses against
oxidative stress after chronic ingestion of V. carnosa (50 mg/kg/day, group 2, n = 4). The
method was based on the reaction of Ellman’s reagent (DTNB) with free thiol groups.
GSH production levels were determined as described by Sedlak and Lindsay [106]. Briefly,
a calibration curve was made with GHS as a standard. The homogenate of each brain
(1 g of brain tissue in 5 mL of 50 mM Tris HCl buffer, pH = 7.4) was deproteinized with
50% TCA and centrifuged at 3000 rpm for 10 min. This supernatant (0.2 mL) was added to
0.4 mL of 0.4 M Tris buffer (pH = 8.9) containing 0.02 M EDTA followed by the addition
of 20 µL of 0.01 M DTNB solution in water. Then, the mixture was adjusted to pH = 8–9
with 0.2 M Tris buffer (pH = 8.2). Finally, absorbance was measured at 412 nm (Jasco V-550
spectrophotometer), and the results were expressed as µg of GSH/g of tissue.

3.5.3. Inhibition of Aβ1-42 Aggregation

The thioflavin T (ThT) fluorometric assay was used to assess the ability of all aqueous 1
extracts to inhibit Aβ1–42 aggregation. Recombinant Aβ1-42 peptide was dissolved in DMSO
(75 µM), and a dilution was made with 150 mM HEPES buffer (pH = 7.4, 150 mM NaCl;
final DMSO concentration 10 %, v/v). Stock solutions of extracts and resveratrol (positive
control) were prepared using DMSO. Reactions were carried out with final concentrations
of 10 µM ThT, 1.5 µM Aβ1–42 solution, 0.1 mg/mL of each aqueous extract 1 or 10 µM
resveratrol, and 3% (v/v) DMSO. ThT fluorescence was measured every 300 s (λex = 440 nm,
λem = 490 nm) for 2 days, with the medium moving continuously between measurements
on a plate reader (Synergy™ H4; BioTek Instruments, Inc., Winooski, VT, USA) at room
temperature. Results were expressed as the percentage of inhibition, as follows:

% inhibition =

(
1− Fi

F0

)
× 100 (6)

Fi = increase in fluorescence of Aβ1–42 treated with test extracts.
F0 = increased fluorescence of Aβ1–42 alone.
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3.5.4. ChE Inhibition
3.5.4.1. Recombinant Enzymes

The inhibitory capacity of the extracts against mAChE and hBChE was determined
by Ellman’s method [107]. Enzyme dilutions were made in 0.1 M sodium phosphate
buffer (pH = 8.0). The stock solution of extracts was prepared in water:ethanol (1:1).
Final reaction concentrations were: 370 µM DTNB, 500 µM substrate (acetylthiocholine
or butyrylthiocholine iodide), and 100 pM mAChE or 1–2 nM hBChE. Absorbance at
412 nm was measured using a microplate reader (Synergy H4; BioTek Instruments, Inc.,
Santa Clara, CA, USA) during 1 min. Tacrine was used as a positive control.

The results were expressed as percentage of inhibition, as follows:

% inhibition = 100−
(

vi
v0
× 100

)
(7)

v0 = initial velocity calculated from the slope of the linear trend obtained without extracts.
vi = initial velocities in the presence of the extracts.
Each measurement was performed in triplicate. For IC50 measurements, different

concentrations of extracts were used to obtain enzyme activities between 5% and 90%. IC50
values were obtained by plotting residual enzyme activities against inhibitor concentrations
using GraphPad Prism 8 software (GraphPad Software, San Diego, CA, USA).

3.5.4.2. AChE Inhibition in Mouse Brains

Brains from naïve mice (n = 3 and pooled), brains from V. carnosa-treated mice
(group 2, n = 4; Group 3, n = 5), and brains of mice that had drunk water (control mice,
group 1, n = 5) (see Figure 7) were homogenized in 50 mM Tris HCl buffer (pH = 7.4).
The homogenates were then centrifuged at 5000 rpm at 4 ◦C for 10 min. Reactions were
performed in a final volume of 500 µL of a 50 mM Tris HCl (pH = 7.4) solution, contain-
ing 310 µM DTNB, 600 µM acetylthiocholine, and a dilution of brain homogenate (the
protein concentration of the incubation mixture was 0.135 µg/µL). For the in vitro assay
(effect of aqueous 1 extracts on brain homogenates of naïve mice), the brain homogenate
and extracts were pre-incubated at 37 ◦C for 5 min, to allow complete equilibration of the
enzyme-inhibitor complexes. For the in vivo assay (effect after chronic ingestion of V. carnosa
aqueous 1 extract on mouse brain homogenates), each homogenate was pre-incubated
with buffer. The reaction was monitored for 10 min as a change in absorbance at 412 nm
(Shimadzu Corporation™ UV-160A UV-VIS spectrometer, Analytical Instruments Division,
Kyoto, Japan).

3.5.4.3. BChE Inhibition in Mouse Serum

Blood samples from naïve animals (n= 3) were collected by retroorbital puncture, and
plasma was then isolated by centrifugation at 5000 rpm for 5 min. These reactions were
performed in a final volume of 500 µL of a 50 mM TrisHCl solution (pH = 7.4), containing
310 µM DTNB, 200 µM butyrylthiocholine iodide and a 1/600 dilution of mouse serum
as BChE source. The serum dilution and extracts were preincubated at 37 ◦C for 5 min, to
allow complete equilibration of the enzyme-inhibitor complexes. Reactions were started
by adding the butyrylthiocholine iodide and DTNB at room temperature. The reaction
was measured for 5 min as a change in absorbance at 412 nm (Shimadzu Corporation™
UV-160A UV-VIS spectrometer, Analytical Instruments Division, Kyoto, Japan). Each
concentration was measured at least in triplicate.

The inhibitory capacity of extracts (Sections 3.5.4.2 and 3.5.4.3) was expressed as per-
cent inhibition and calculated as described in Section 3.5.4.1. For IC50 measurements, differ-
ent extract concentrations were used to obtain enzyme activities ranging from 5% to 90%.
IC50 values were calculated by plotting the percent inhibition as a function of the log-
arithm of the inhibitor concentration applied, with the experimental data fitted to the
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four-parameter Hill equation using GraphPad Prism 8 software (GraphPad Software, San
Diego, CA, USA).

3.5.5. In vitro hMAO Inhibition Assay

The ability of the extracts to inhibit hMAO was determined according to Košak and
coworkers [108]. Each extract was prepared as a solution so that the final concentration
in the reaction tube was 1 mg/mL. Briefly, 100 µL of 50 mM sodium phosphate buffer,
pH 7.4, 0.05% (v/v) Triton X-114 containing either extracts or reference inhibitors (pargylin,
clorgyline, isatin, and L-deprenyl) and hMAO-A or hMAO-B were incubated for 15 min at
37 ◦C in black 96-well flat-bottomed microplates placed. After 15 min of preincubation, the
reaction was started by adding p-tyramine, Amplex Red, and horseradish peroxidase (HRP)
(1 mM, 250 µM, and 2 U/mL, respectively, in a final volume of 200 µL) and different extract
concentrations or reference inhibitors. Resorufin fluorescent emission was quantified
(λex = 530 nm, λem = 590 nm) at 37 ◦C, for 30 min where fluorescence increased linearly.
Ethanol:water (1:1) was used as a control. To determine the blank (b), the enzyme solution
was replaced by buffer solution. Initial velocities were calculated from the trends obtained,
with each measurement performed in duplicate. Extract ability to inhibit MAOs was
expressed as the percentage of inhibition according to the following equation:

Inhibition (%) = 100− Vi − b
Vo − b

× 100 (8)

Vi = velocity in the presence of the extracts or reference compounds.
Vo = control velocity in the presence of ethanol:water 1:1.
IC50 was calculated by plotting percent inhibition against inhibitor concentrations,

with experimental data fitted to a four-parameter Hill equation using GraphPad Prism 8.0
(GraphPad Software, San Diego, CA, USA).

Extracts showed no interference with the reagents in the medium of the assay.

3.6. Pharmacological Studies
3.6.1. Protocol

Animals had access to liquid and food ad libitum and were divided into three groups
according to the corresponding oral treatment:

Group 1: Control (water, n = 14);
Group 2: Valeriana carnosa total aqueous remaining phase, aqueous 1 (50 mg/kg/day,

n = 12);
Group 3: Valeriana carnosa total aqueous remaining phase, aqueous 1 (150 mg/kg/day,

n = 12).
The dry fractions of aqueous 1 extracts of V. carnosa were dissolved in water in an

amount sufficient for each mouse to consume the doses indicated. Extract concentration
in the liquid was determined from the average of daily fluid intake (mL/mouse/day)
and the average of body weight per mouse (g/mouse) to achieve the desired doses
(50 and 150 mg/kg/day). The doses reported in this study (50 and 150 mg/kg/day)
were obtained by calculating these results. Body weight was checked every 3 to 4 days
and fluid intake was determined daily, as approximately 200 mL/kg, and no significant
differences were found between the experimental groups. Extract solutions were replaced
every 2 days. Stability controls of the extract was performed by HPLC. The extracts doses
used in this study were chosen on the basis of pilot experiments and previous work, so that
they had no effect on the locomotor activity of the animals [9–11,109].

3.6.2. Behavioral Studies

In vivo studies were performed according to the protocol shown in Figure 7. The
experimental apparatus was cleaned with 60% ethanol before each test. Animals were used
only once. All experiments were filmed for subsequent analysis. Animals were randomly
selected from each group to perform the biochemical tests.
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Hole Board Assay

Mouse behavior was evaluated in a black plexiglass box with a 60 cm × 60 cm floor
and 30 cm high walls, with four evenly spaced and centered holes in the floor, each 2 cm
in diameter, as previously described [110] and illuminated with indirect dim light. Each
animal was placed in the center of the field and allowed to move freely in the apparatus
for 5 min. The following parameters were recorded: the number of times the mouse put
its head into the hole (holes) and the number of vertical explorations, defined by animal
standing on its hind legs (rearings) and leaving its front legs free or resting against the
wall. The test was performed on day 15 of treatment (Figure 7). Results were expressed as
relative (in %) to group 1 (control), which ingested water.

Locomotor Activity Test

Spontaneous locomotor activity was studied in a 15 cm × 30 cm transparent plexiglass
box with 15 cm high walls. Each mouse was placed in the center of the box and allowed
to explore freely for 5 min. The total distance traveled by each mouse was measured and
expressed as total distance traveled relative (in %) to group 1. This test was performed, for
each mouse, immediately after the hole board assay.

Y-Maze

The Y-maze was used to assess spatial working memory, as previously described [111]
using an apparatus consisting of three arms of equal length (30 cm × 7 cm × 15 cm). Each
mouse was placed at the end of one arm and allowed to freely explore the maze for 8 min.
The entry sequence of each mouse into the different arms was documented to calculate the
index of alternation and returns, as follows:

Alternation index =
Alternations

Total number o f entries− 2
∗ 100 (9)

Return index =
Returns

Total number o f entries− 2
∗ 100 (10)

A spontaneous alternation occurs when a mouse enters a different arm of the maze
at each of 3 successive arm entrances. A return, on the other hand, occurs when a mouse
returns to the same branch from which it came. The number of rearings was also recorded,
as a measure of exploration. The test was performed on day 22 of treatment (Figure 7).

Tail Suspension Test

The total duration of immobility induced by tail suspension was measured as pre-
viously described [112]. This is a behavioral test for mice suitable for detecting potential
antidepressant drugs [113]. Mice were individually suspended by the tail from a metal
hook (distance from the floor: 18 cm) with an adhesive tape (distance from the tip of the
tail: 2 cm) for 6 min. Initially, mice try to escape the inverted position, but after a while
they remain immobile, which is considered a sign of learned hopelessness. The duration of
immobility was recorded during the last 4-min interval of the test. The test was performed
on day 28 of treatment (Figure 7).

3.7. Statistical Analysis

Data from behavioral experiments were expressed as mean ± standard error of the
mean (SEM). Values that were more than twice their standard deviation away from the
mean were excluded from the statistical analysis. Data were analyzed by unpaired t-test or
one-way analysis of variance (ANOVA), and post hoc comparisons between treatments
and control were performed using Dunnett’s multiple comparison (GraphPad Prism 8.0,
GraphPad Software, San Diego, CA, USA). Significance level was set at p < 0.05.
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4. Conclusions

We have described the effects of Valeriana effusa, V. ferax, V. macrorhiza, V. clarionifolia,
V. carnosa, and V. officinalis on various pharmacological targets associated with AD. All
extracts were found to inhibit ChEs, especially BChE. Most of them also inhibited MAOs,
and V. carnosa was the most potent inhibitor of hMAO-A. In most cases, the ethylic extracts
exerted a broader activity profile than corresponding aqueous extracts. Furthermore, all
aqueous 1 extracts inhibited Aβ aggregation, were able to scavenge free radicals, chelated
Fe2+, and inhibited lipid peroxidation in vitro. Chronic treatment with aqueous 1 extract of
V. carnosa improved mouse working memory and induced antidepressant and anxiolytic-
like activities. Moreover, a decrease in AChE activity and a decrease in oxidative stress
parameters were observed in mouse brains. Sleep-inducing properties have already been
described for extracts of V. carnosa.

All these properties suggest that Valeriana carnosa can be a multifunctional phytothera-
peutic alternative for the treatment of AD and its comorbidities (such as anxiety, depression,
and sleep disorders). Although preclinical and clinical trial phases still need to be com-
pleted, ancient widespread use of this medicinal plant suggests it may present fewer side
effects than currently used drugs and thus gain faster market access. Moreover, it could
also avoid polypharmacotherapy typically prescribed to the elderly and its consequent
adverse effects.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16010129/s1, Figure S1: Representative analytical HPLC
chromatogram of V. carnosa aqueous 1 extract; Scheme S1: Chemical structures of chlorogenic acid
and 2S-hesperidin; Figure S2: Mice weight and volume of ingested fluid/day/mice during chronic
treatment with V. carnosa aqueous 1 extract; Table S1: Details of the “Valerians” (family Caprifoliaceae)
used in this study.
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