

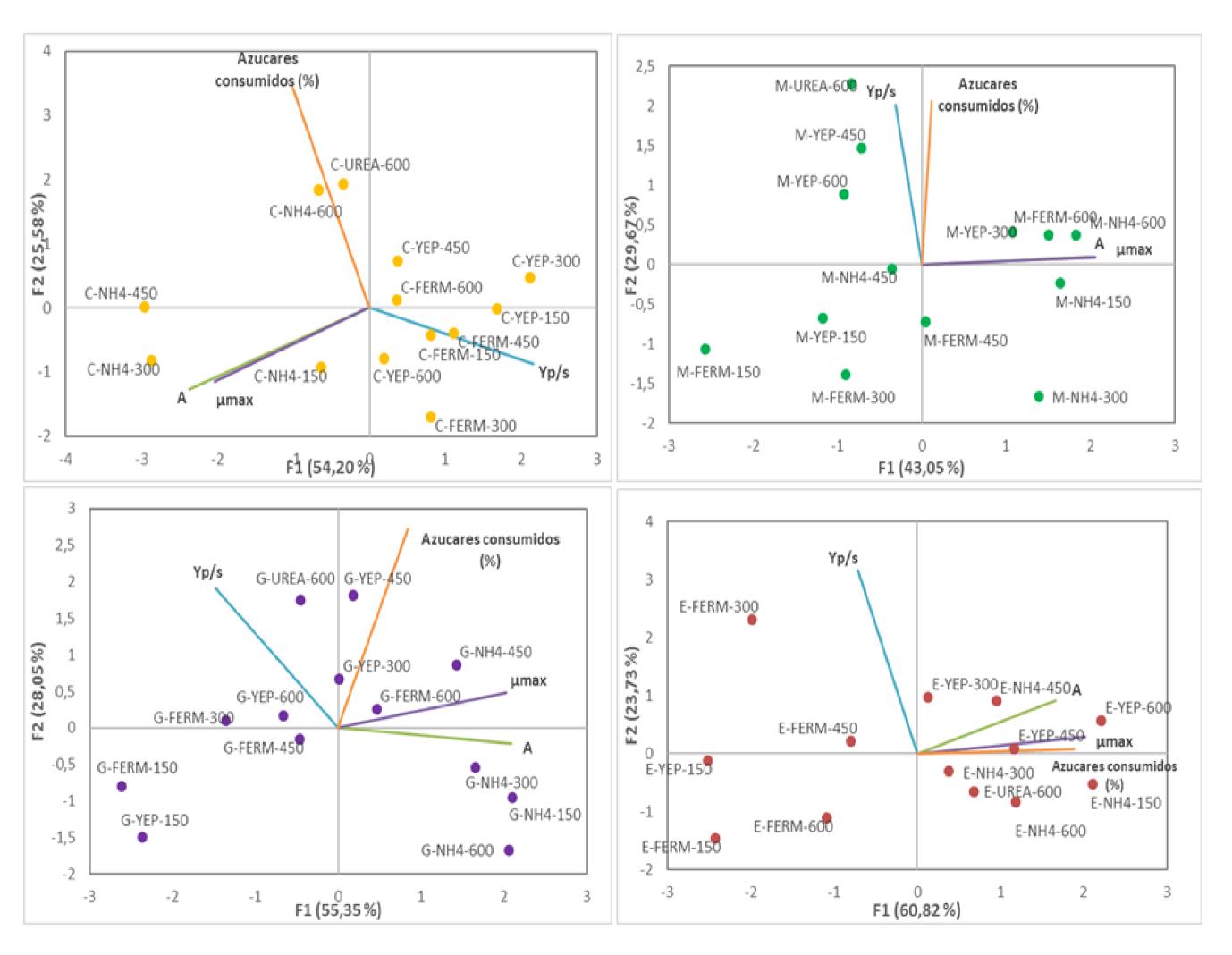
Influencia de diferentes fuentes de nitrógeno sobre el crecimiento y la fermentación de levaduras en mostos de uva

Rojo M.C. (1,2), Rodríguez Gómez F. (3), Martin V. (3), Torres Palazzolo C. (1,2), Ponsone L. (1,2), Massera A. (2), Mercado L. (2), Arroyo Lopez F.N. (3), Combina M. (1,2)

1.Consejo Superior de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina. 2.Instituto Nacional de Tecnología Agropecuaria (INTA) EEA-Mendoza, Mendoza, Argentina. 3.Consejo Superior de Investigaciones Científicas (CSIC) Instituto de la Grasa, Sevilla, España.*rojo.cecilia@inta.gob.ar

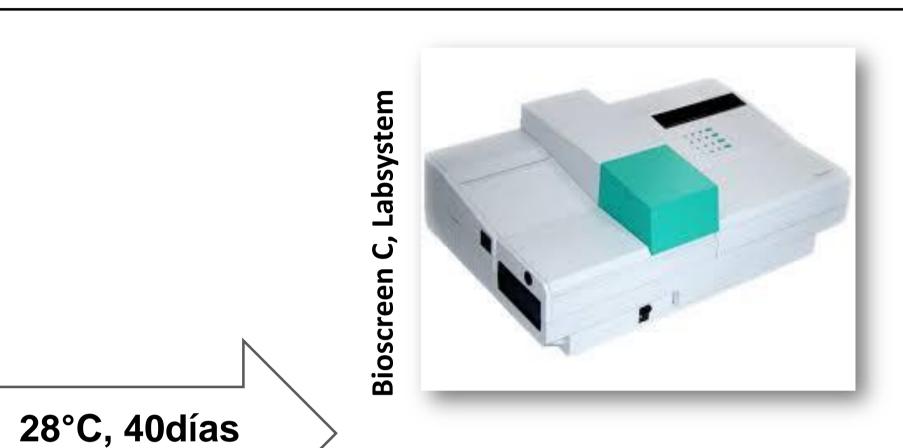
INTRODUCCION

En Argentina, la vitivinicultura representa un importante componente en las economías productivas de las provincias de Mendoza y San Juan. La obtención de bioetanol 1G a partir de uvas de bajo valor enológico podría aportar a la diversificación productiva y el agregado de valor de los jugos de uva excedentes.


OBJETIVO

El propósito de este estudio fue seleccionar una levadura y las condiciones óptimas de nutrición para mejorar el rendimiento de bioetanol.

METODOLOGIA


Levadura		Pruebas e	n medio sintétic	Pruebas de validación en mosto de uva					
		Fuentes de Nitrógeno (mg/L)							
		NH4	YEP	FERM	NH4 +U	YEP	NH4 + U		
С		150	150	150	150+600		150+600		
	iae	300	300	300		300	75+300		
	cerevisiae	450	450	450		450	0+300		
	cer	600	600	600					
M	s 5.	150	150	150	150+600		150+600		
	nativas	300	300	300			75+300		
	nat	450	450	450		450	0+300		
	pas	600	600	600		600			
G	Ce	150	150	150	150+600		150+600		
		300	300	300		300	75+300		
		450	450	450		450	0+300		
	0)	600	600	600					
E	S.cerevisiae EC1118	150	150	150	150+600		150+60		
	<i>cerevisi</i> c EC1118	300	300	300			75+300		
). <i>ce</i> E(450	450	450		450	0+300		
	0,	600	600	600					
Z	uxij	150	150	150	150+600	-	-		
	Z.rouxii	300	300	300					
	'7	450	450	450					
		600	600	600					

NH4:di-amino fosfato, YEP:extracto de levadura, FERM: nutriente comercial Fermaid-Lallemand, U:urea

Figura 1. PCA muestra el efecto de los tratamientos nitrogenados sobre los parámetros de crecimiento $(\mu_{max} \ y \ A)$ y fermentativos $(Yp/s \ y \ % \ azúcares consumidos)$ para las 4 cepas evaluadas $\ C$, $\ M$, $\ G$ y $\ E$ en medio sintético.

La **tabla 1** muestra que en los mostos de uva, los parámetros de crecimiento y fermentativos se vieron favorecidos en general por la combinación de urea y NH4 (300 + 75 mg/L) vs las fuentes nitrogenadas YEP y urea de manera individual. Se resaltan las cepas que produjeron los mejores resultados en todos los parámetros evaluados en la condición seleccionada.

Parámetros de crecimiento (μmax, A y λ)

Parámetros de fermentación (Rendimiento etanolico y % Azucares consumidos)

RESULTADOS

La **figura 1** muestra que los tratamientos en medio sintético adicionados con la fuente de nitrógeno simple (NH4) se asociaron con los parámetros de crecimiento para todas las cepas.

Las fuentes de nitrógeno más complejas se relacionaron con los parámetros fermentativos, dependiendo de la cepa y la concentración.

El tratamiento con urea favoreció un rápido consumo de azúcares.

Tabla 1. Parámetros de crecimiento y fermentativos en mostos de uva naturales

C	Fuente	Nivel	Parámetros de crecimiento y fermentativos					
Cepa	de N	(mg/L)	Α	µ _{они}	<u>Υ</u> p/s	SC (%)		
	YEP	300	10.21±1.65e	0.47±0.01bcde	0.26±0.04e	78.56±0.94e		
	YEP	450	11.09±0.93de	0.46±0.02cde	0.28±0.02de	79.35±0.24e		
С	U+NH4	600+150	10.98±0.34de	0.51±0.00abcd	0.28±0.01de	95.69±0.22ab		
	U+NH4	300+75	16.01±4.74bcd	0.48±0.08abcde	0.41±0.12bcd	85.29±3.72cd		
	U	300	12.97±2.63cde	0.45±0.05cde	0.33±0.07cde	78.82±1.45e		
М	YEP	450	15.27±2.00bce	0.45±0.04cdef	0.39±0.05bcde	82.63±1.76cde		
	YEP	600	14.27±0.93bce	0.41±0.01ef	0.37±0.02bcde	85.94±0.45c		
	U+NH4	600+150	15.51±2.16bcd	0.47±0.04bcde	0.40±0.06bcd	98.21±0.18a		
	U+NH4	300+75	18.84±3.20ab	0.51±0.06abcd	0.48±0.08ab	96.54±1.74ab		
	U	300	11.61±0.22de	0.37±0.00f	0.30±0.01de	79.72±2.50e		
G	YEP	300	13.94±0.90bce	0.46±0.00bcde	0.36±0.02bcde	81.00±0.76de		
	YEP	450	13.87±2.68bce	0.47±0.00bcde	0.36±0.07bcde	84.38±0.36cd		
	U+NH4	600+150	16.00±4.21bcd	0.53±0.04abc	0.41±0.11bcd	97.90±0.07a		
	U+NH4	300+75	18.16±2.48abc	0.54±0.08ab	0.47±0.06abc	92.36±3.95b		
	U	300	13.67±0.25bce	0.47±0.01bcde	0.35±0.01bcde	85.62±5.26c		
E	YEP	450	21.64±1.03a	0.56±0.03a	0.56±0.03a	95.78±0.27ab		
	U+NH4	600+150	14.59±1.57bce	0.46±0.01bcde	0.37±0.04bcde	98.41±0.11a		
	U+NH4	300+75	15.65±4.23bcd	0.44±0.02def	0.40±0.11bcd	96.50±1.00ab		
	U	300	18.09±3.40abc	0.56±0.08a	0.46±0.09abc	92.87±4.13b		

Los valores expresados son la media y la desviación estándar de experimentos por triplicado. Letras diferentes significan diferencia estadística significativa (p≤0,05) según la prueba de comparación post-hoc Fisher-LSD. NH4: di-amin ofosfato, YEP: extracto de levadura, FERM: Fermaid K (Lallemand Inc.) U+NH4: urea + fosfato diamónico.

CONCLUSIÓN

Se observó una mejor *performance* en el crecimiento y producción de etanol en las cepas M y G, con la adición de U+NH4 (300 + 75 mg/L), lo que las hace dos levaduras prometedoras para la producción de bioetanol en las condiciones de nutrición mencionadas.