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Estimations of Net Ecosystem Exchange (NEE) are crucial to assess the carbon
sequestration/carbon source capacity of agricultural systems. Although several global
models have been built to describe carbon flux patterns based on flux tower data, South
American ecosystems (and croplands in particular) are underrepresented in the databases
used to calibrate these models, leading to large uncertainties in regional and global NEE
estimation. Despite the fact that almost half of the land surface is used worldwide for
agricultural activities, these models still do not include variables related to cropland
management. Using enhanced vegetation index (EVI) derived from MODIS imagery (250
m) and monthly CO2 exchange from a 9-year record of an eddy covariance (EC) flux tower
in a crop field in the Inland Pampas region, we developed regression models to predict
monthly NEE. We tested whether including a term for crop identity/land cover as a
categorical variable (maize, soybean, wheat, and fallow) could improve model capability in
capturing monthly NEE dynamics. NEE measured at the flux tower site was scaled to
croplands across the Inland Pampa using crop-type maps, from which annual NEE maps
were generated for the 2018–2019, 2019–2020, and 2020–2021 agricultural campaigns.
The model based solely on EVI showed to be a good predictor of monthly NEE for the
study region (r2 = 0.78), but model adjustment was improved by including a term for crop
identity (r2 = 0.83). A second set of maps was generated taking into account carbon
exports during harvest to estimate Net Biome Productivity (NBP) at the county level. Crops
across the region as a whole acted as a carbon sink during the three studied campaigns,
although with highly heterogeneous spatial and temporal patterns. Between 60% and
80% of the carbon sequestered was exported during harvest, a large decrease from the
carbon sequestration capacity estimated using just NEE, which further decreased if fossil
carbon emissions from agricultural supplies are taken into account. Estimates presented
in this study are a first step towards upscaling carbon fluxes at the regional scale in a
South American cropland area, and could help to improve regional to global estimations of
carbon fluxes and refine national greenhouse gas (GHG) inventories.
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INTRODUCTION

Estimations of Net Ecosystem Exchange (NEE) are crucial to
assess the carbon sequestration or source capacity of agricultural
systems (1). NEE of terrestrial ecosystems is quantified by the
difference between CO2 uptake via gross photosynthetic
assimilation (GPP) and release of CO2viaecosystem-wide
respiration processes (Reco) (2). GPP and net primary
production (NPP) often used by ecologists do not fully
describe the feedback of the ecosystems–atmosphere carbon
exchange as NEE does, because they do not explicitly include
soil-derived fluxes and other fluxes associated with heterotrophic
respiration (3). In managed agricultural ecosystems, estimates of
carbon balance have to be complemented NEE with “lateral”
fluxes such as crop harvest, deriving what is known as Net Biome
Productivity (NBP) (4), also called Net Ecosystem Carbon
Budget (NECB) (5). To identify whether a managed ecosystem
is a net source or a destination of carbon, it is necessary to
calculate its NBP, since many times NEE suggests that the
ecosystem is sequestering carbon when in fact it is acting as a
net source (6, 7).

During the last three decades, measurements of NEE
between ecosystems and the atmosphere via direct
quantification of net carbon flux have been carried out using
the eddy covariance technique (EC; 8). Currently, there are at
least 212 unevenly distributed sites around the world with EC
micrometeorological towers included in the FLUXNET global
network, and its FLUXNET2015 database, providing
measurements of exchange of CO2, water vapor, and energy,
plus associated biological and meteorological variables (9).
Although the effective area of the EC measurements, its
“footprint”, is relatively small, often less than 1 km2, the
variability of NEE at these sites is representative of
variability at larger spatial scales (10). The combined use of
the FLUXNET2015 database, spatially explicit climate
information, and satellite products such as vegetation
indices has enabled the extrapolation of carbon fluxes from
the local scale to the regional, continental, and global scales
(10–13).

Although several global models have been built to describe
carbon flux patterns based on EC data and vegetation indices (10,
13–16), South American ecosystems (and croplands in
particular) are still underrepresented in the databases used to
calibrate these models, leading to large uncertainties in the
regional and global estimatesof NEE. Global models show less
than 50% efficiency in their ability to predict NEE (14). This may
be attributable, at least in part, to approximately 85% of the
FLUXNET sites used to calibrate these models being located in
the northern hemisphere, mainly between 30°C and 55°C of
latitude (17). Croplands cover about 12%–13% of the Earth’s ice-
free land surface (18, 19), and even when ca. 10% of FLUXNET
sites are croplands, none of them is located in the southern
hemisphere (9).

Human interventions are one of the key non-climatic controls
of the carbon balance (13, 20). Despite the fact that almost half of
the land surface is already used worldwide for agricultural
activities (livestock and crop production, 18), the inclusion of
Frontiers in Soil Science | www.frontiersin.org 2
management-related variables in models remains a challenge
(14), specially for croplands (15). In recent studies, variables
related to leaf-area temporal dynamics were included as a proxy
for the seasonality of different plant functional types (PFT) (16),
but this is done using land cover maps derived from MODIS
products (i.e., MCD12Q1), whose maximum level of detail is the
“crop” category, thus masking the large heterogeneity of these
managed ecosystems (11). To overcome this constraint for
agricultural landscapes, accurate and detailed land cover maps
for different seasons along the year are needed to improve the
estimates of regional fluxes (21). Recently, several crop-type
maps have been published for our study region as part of the
MapBiomas project that can be used to include management in a
regional model (22, 23).

In this study, we aimed to develop a regression model to
predict monthly NEE, combining enhanced vegetation index
(EVI) derived from MODIS satellite imagery (250 m spatial
resolution) with monthly CO2 exchange from a 9-year record of
an eddy covariance (EC) flux tower in a crop field in the Inland
Pampas region of Argentina. We tested whether including a
term for crop identity/land cover (maize, soybean, wheat, and
fallow) as a categorical variable could improve the model ability
for capturing monthly NEE dynamics. NEE measured at the
flux tower site was scaled to croplands across the Inland Pampa
(a subregion of the Pampas with similar soil and climate
conditions) using the regression model, and annual NEE
maps were generated for the 2018–2019, 2019–2020, and
2020–2021 agricultural campaigns (June to May is the usual
12-month period used to center the crop-year around
December to February summer months). Spatially explicit
crop yield data from national statistics at the county level was
combined with NEE maps to estimate regional and
county NBP.
MATERIALS AND METHODS

Site Description
The flat Inland Pampa is part of the Pampas region (Figure 1,
24), one of the most agriculturally productive areas worldwide
and responsible for most of Argentina’s total grain exports. The
study site had a 3-year continuous crop rotation including
soybean, wheat–soybean double cropping, and maize,
representative of the region (22, 25). This EC site is located in
a 32-ha field in Carlos Casares, Buenos Aires Province, Argentina
(35°37’15,52” S, 61°19’5,26” W, Figure 1). The climate is
temperate sub-humid, with an average annual rainfall of 1,022
mm during the last 25 years, and mean temperatures ranging
from 7.2°C in July to 23.8°C in January (26). Livestock and
farming activities are carried out in different soils (27).
Agriculture is concentrated in typic Hapludols, well drained
and rich in organic matter (28). In deep sandy-loam soils, it is
possible to find agriculture or a mesophyte pseudo-steppe with
abundant grasses. In soils of flat and low areas close to lentic
environments, there are halophyte steppes and livestock
activities (24).
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Micrometeorological Data
Fluxes of CO2 were measured by the EC method between
November 2012 and December 2020. The EC setup comprised
a 3-D sonic anemometer (CSAT3; © Campbell Scientific, Logan,
UT, USA) and an open path infrared gas analyzer (IRGA; LI-
7500; © Li-Cor Inc., Lincoln, NE, USA), for measuring wind
speed and sonic temperature and CO2 concentrations,
respectively, 2.5 m above the canopy. From high-frequency (10
Hz) EC data, fluxes were computed in 30-min average blocks
with standard procedures (29) as the covariance between the
concentration of CO2 and the vertical component of wind speed.
Invalid data (e.g., nighttime fluxes under non-turbulent
conditions) were removed and gap filling was carried out
following Reichstein et al. (2005) (30). A more detailed
description of the methodology is found in Posse et al. (2018)
(31). NEE was aggregated on a monthly basis (32). A footprint
model (33) shows that measures cover about ca. 86% of the area
of the crop field. Footprint area was defined as encompassing the
70% of accumulated total footprint area, covering ca. 30 ha (310
m average radius around the tower). By convention, positive flux
values represent mass transfer from the surface to the
atmosphere and negative values indicate the opposite.

Remote Sensing Data
Two regression models to estimate NEE were derived from EVI
from NASA-MODIS. This index is more accurate than NDVI in
areas with a dense canopy, is less sensitive to canopy background
signal and atmosphere influences (34), has a better response to
structural changes of deciduous canopies (35) and tends to show
better correlation with croplands at different time scales (1, 36).
For the entire Flat Inland Pampa, EVI (MOD13Q1 MODIS
Frontiers in Soil Science | www.frontiersin.org 3
product, 250 m spatial resolution) was obtained for each 16-day
interval over the period November 2012–December 2020 from
the Google Earth Engine repository (37). For the EC site, three
pixels matching the footprint and centered at tower coordinates
were chosen, and the monthly mean EVI for each of them was
obtained and averaged [arithmetic mean as, e.g (38)., and (39)
did]. Averaging over many pixels reduces gridding errors, the
effects of geo-location error, and random noise (40). For regional
analysis purposes, monthly mean EVI values of each pixel within
the entire Flat Inland Pampa were obtained (32, 41).

Model Development
Two linear regression analyses were performed to investigate the
relationship between monthly averaged site EVI and monthly
accumulated NEE. Within the general regression, we found
statistically significant different slopes between different crops;
thus, a second regression model was built including terms for
land cover as categorical dummy variables. In a first attempt,
categories were maize, soybean, wheat, and fallow. Fallow
periods often exhibit carbon losses, and its inclusion in carbon
balances is recommended for comprehensive quantification (42).
Including fallow cover was problematic because these periods
have low EVI values and mainly positive NEE values (around 0.2
and 0 to +100 gC m−2, respectively; Figure 2). Thus, in order to
include these during model development, we made two
assumptions: (a) Fallow months were assigned to the preceding
crop cover, the one responsible for the decomposing stubble; and
(b) the situation during fallow is very similar regardless of the
crop (low EVI and NEE are mainly attributed to respiration).
Thus, we assumed that all crop covers had the same Y-intercept
value. Therefore, mutually exclusive categories included in the
FIGURE 1 | Location of the study area. (A) Inland Pampa within the Pampa Region and location of the EC site in Carlos Casares. (B) Study region situated in South
America. The extent of the Pampas region and the Inland Pampa was obtained from (24).
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land cover model were reduced to three: maize, soybean, and
wheat. A contrast matrix (Table 1) was built with 0’s and 1’s
according to the absence or presence of each crop cover,
respectively. For example, when categorical variables “soybean”
and “wheat” have a value of 0, meaning the absence of these crop
covers, the regression equation corresponds to maize cover
(Table 1). Months with no changes in land cover were
assigned to the corresponding category. Sowing months were
classified as fallow and harvest months were classified as the crop
harvested, unless the change (sowing or harvest) involved more
than 70% of the length of the month. The latter occurred in less
than 4% of the months.

For both models, a 10-fold cross-validation was performed using
the caret R package version 6.0-90 to assess the quality of the
estimators. The fit criterion was characterized using the coefficient
of determination (r2) and the root mean square error (RMSE). The
model assumptions were evaluated for normality and
autocorrelation of the residuals and homoscedasticity. The
general, aggregated-crop model slightly failed them but the land
cover model improved this aspect (Shapiro–Wilk normality test p >
0.05; no residuals autocorrelation).

NEE Upscaling and NBP Maps
Land cover was determined using crop-type maps for the 2018–
2019, 2019–2020, and 2020–2021 agricultural campaigns (43–45).
These maps describe the presence of the main single and double
crops from June to May (i.e., southern hemisphere winter to fall),
Frontiers in Soil Science | www.frontiersin.org 4
based on field surveys and supervised classifications with a 30-m
resolution and accuracy higher than 85%. For the 2019–2020 and
2020–2021 campaigns, winter and summer crop maps have been
published separately, so we combined them into a single map for
each campaign. We used the land cover categories included in the
land cover model (maize, soybean, and wheat) masking the rest.
Thus, our study is not an extrapolation of the carbon balance to the
whole region, because we are not making inference on pixels not
included in the NEE calculation, some of which correspond to
livestock activities. Crop maps did not discriminate between winter
cereals [wheat, barley, rye, oats, and winter fodder grasses (44)].
However, as most of the winter cereal sown area in this region is
wheat [National Crop Statistics (46)], we assumed that all pixels
included in that category behaved as wheat (6).

By overlaying crop-type maps with the monthly mean EVI
maps, we selected MODIS pixels that contained only one of our
three crops included in the model (“pure” pixels). On these
selected MODIS pixels, the land cover model was used to
estimate NEE. Pure pixels belonging to maize, wheat, and
soybean represented together 21%, 28%, and 33% of the
agricultural area mapped in the 2018–2019, 2019–2020, and
2020–2021 crop maps, respectively. The remaining cropland
area corresponds to “impure” pixels that contain other crops,
more than one crop cover, or combinations of crops with
non-cultivated land. Fallow NEE was estimated as stated above
with maize and soybean cover from the previous summer. Since
we lacked these data for the 2018–2019 campaign, we assumed
that if soybean was grown in the 2018–2019 campaign, maize
had previously been grown in 2017–2018 and vice versa, which
occurs in more than 80% of the Rolling Pampas cropland area,
next to the Inland Pampa (25). Crop yield data from national
statistics at the county level [National Crop Statistics (46)] and
an average carbon content of 0.45 (47) were used to calculate
carbon exported per crop and NBP.
A B

FIGURE 2 | Comparison of linear regression models between monthly mean EVI and monthly accumulated NEE in EC site. (A) General model without land cover
differentiation and (B) Land cover model discriminating by crop/land cover.
TABLE 1 | Contrast matrix.

Soybean Wheat

Maize 0 0
Soybean 1 0
Wheat 0 1
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Carbon footprint for each agricultural campaign, weighted by
the area of each crop, was estimated combining a region-wide
average NBP in MgC/ha and greenhouse gas (GHG) emissions
per Mg of grain harvested from carbon inputs in fertilizers, fuels,
machinery, and pesticides. For soybean and maize, GHG
emissions of 0.150 MgCO2-eq/Mg grain and 0.172 MgCO2-eq/
Mg grain were obtained from (48), as the mean GHG emissions
for the Inland Pampas region. For winter wheat, we used a mean
value of 0.45 MgCO2-eq/Mg (49, 50).
RESULTS

Regression Models
Our general model (Eq. 1) relates monthly mean site EVI values
to monthly NEE (n = 95, p < 0.001, r2 = 0.78, RMSE: 42,53,
Figure 2A and Table 2), without discriminating by land cover.
Parameter estimation using K-fold cross-validation (k = 10) gave
the same results and a higher r2 (0.83).

NEE  gC m-2month-1
� �

  ¼  104:83 - 390:57 � EVI (Eq:1)

The land cover model (Eq. 2) relates monthly mean site EVI
values to monthly NEE distinguishing between maize, soybean,
and wheat slopes and assuming the same Y-intercept (see
Materials and Methods) (n = 95, p < 0.001, r2 = 0.83, RMSE:
39.3, Figure 2B and Table 2). Parameter estimation using K-fold
cross-validation (k = 10) gives the same results and a higher r2

(0.85). The slope for wheat does not differ from that of maize
(Table 2), but does differ from that of soybean (p < 0.001).

NEE  gC m-2month-1
� �

  ¼  113,31 – 498,88 � EVI +
132,10 � EVI � SOYBEAN + 38,66 � EVI �WHEAT

  (Eq:2)

Besides the land cover model that includes all three cover
types, monthly NEE for maize, soybean, and wheat can be
individually predicted through their monthly mean EVI. In
isolation, all three showed that they have significant and
different slopes and Y-intercept value (Figure 3). Soybean
reaches higher EVI values than maize and wheat. Maize
reaches NEE values equal to those of soybeans at lower
EVI values.

Both models mirrored the temporal dynamics of observed
data (Figure 4). They were able to establish, with an efficiency of
85%, whether the field behaved as a carbon source or sink. For
Frontiers in Soil Science | www.frontiersin.org 5
values close to zero, between ±40 gC m−2 month−1 (in line with
model RMSE), such efficiency drops to 76%. Both models
underestimated the peaks of carbon loss above 80 gC m−2

month−1 that mostly occur after the harvest of summer crops,
maize, and soybean. The land cover model provided an overall
slightly better description of NEE monthly dynamics. Yearly,
cumulative agricultural campaigns NEE (June to May, Table 3)
from observed monthly data were predicted with reasonable
accuracy by both models (RMSE: land cover model: 120 gC m−2

year−1; general model: 160 gC m−2 year−1). They seemed to
compensate month-to-month residuals leading to a close
matching between 9-year NEE and the observed data.

NEE Upscaling and Inland Pampa
Cropland NBP
Estimates made with this approach show that croplands of the
region as a whole acted as a carbon sink during the three
agricultural campaigns (Table 4). However, the ranges of NEE
values for pixels in the region (−2,334.6 to 1,503.2 gC m−2 year−1

in 2018–2019, −1,831.2 to 802.9 gC m−2 year−1 in 2019–2020,
and −1,503.3 to 582.4 gC m−2 year−1 in 2020–2021) show that the
spatial distribution of NEE values was heterogeneous across the
study region, which can also be observed in Figures 5A–C. A
northern zone with more agricultural area than the southern one
is apparent, which, in turn, increased their area through the
years. Agricultural area measured with pure pixels used in this
analysis increased by 77% between 2018–2019 and 2020–2021.

At the regional scale, NBP was 80%, 62%, and 78% higher
than NEE for the 2018–2019, 2019–2020, and 2020–2021
campaigns, respectively, due to carbon export during harvest
(Table 4). Among counties, NBP showed a large spatial and
temporal heterogeneity. Figures 5D–F show that the strong net
carbon uptake in croplands for all seasons was mainly distributed
from the center towards the southeast of the study area in all
three agricultural campaigns. This may have been explained, at
least in part, by the high percentage of area with double cropping
(Figures 5G–I). Throughout the three campaigns, counties
seemed to show trajectories of NBP relatively independent of
each other. Carbon footprint analysis shows that the actual C
balance (NBP minus input fossil emissions) decreases between
20% and 47% when inputs are taken into account (Table 5).

NEE spatial patterns seem to exhibit scale dependency, as net
fluxes can change from broader to fine scales. Figures 6A, B
show the detailed heterogeneous spatial distribution of NEE in
TABLE 2 | General and land cover model parameters estimates, confidence interval, p-values, and fit criteria.

Predictors General Model Land Cover Model

Estimates 95% CI p Estimates 95% CI p

(Intercept) 104.83 88.08–121.59 <0.001 113.31 98.21–128.40 <0.001
EVI −390.57 −433.45–−347.68 <0.001 −498.88 −562.92–−434.83 <0.001
EVI*SOYBEAN 132.10 77.00–187.20 <0.001
EVI*WHEAT 38.66 −25.53–102.86 0.235
Observations 95 95
R2/R2 adjusted 0.779/0.776 0.834/0.828
RMSE 42.53 39.3
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two counties in the northern Inland Pampa for the 2019–2020
cropping season. Average NEE of the Union county (Figure 6A)
was −332.5 gC m−2 year−1 and the NBP showed an average
carbon sink of 1.38 MgC ha−1 year−1 (Figure 5E); however, it
includes sites with carbon losses up to 350 gC m−2 year−1,
equivalent to 3.5 MgC ha−1 year−1. On the other hand, average
NEE of Juárez Celman county (Figure 6B) was −127 gC m−2

year−1and NBP exhibits a carbon loss of 0.6 MgC ha−1 year−1

(Figure 5E), but includes sites with an NEE of more than −900
gC m−2 year−1, equivalent to 9 MgC ha−1 year−1.

Temporal dynamics of the monthly averaged NEE of the
Inland Pampa were similar for the three campaigns (Figure 7).
Carbon sequestration seems to be concentrated in the summer
months and carbon losses in the fall and winter. During the
spring, the study region seems to function on average as a
weak sink.
DISCUSSION

Both models presented in this study were able to capture the
temporal dynamics of measured NEE through crop leaf-area
phenology. The land cover model provided a better description
Frontiers in Soil Science | www.frontiersin.org 6
of the timing of carbon sequestration, perhaps because it
captures more variability by differentiating the slopes of each
crop. This improvement in NEE estimation by explicitly
including crop identity was also observed in more complex
models with shorter temporal resolution and coarser spatial
resolution (51). Both pixel-based models presented in this
paper allow direct estimation of NEE from satellite data and
are thus easy to implement with regularly available EVI data, as
they do not need external inputs such as meteorology, light use
efficiency (LUE) or FPAR (1, 52). Use of coarser resolution
weather, biophysical, and ecophysiological data to estimate GPP
may introduce significant errors (41), although it remains
unclear how the EVI–NEE relationship varies with time scales
(32) and fine spatial resolutions (41).

Underestimation of carbon losses during the post-harvest
months in both models may be explained by the fact that fallow
months have a large variability in their NEE over a narrow range
of EVI values. EVI cannot differentiate between different fallow
situations because it is only sensitive to photosynthetic activity. A
few studies (41, 53) have proposed using surface-temperature
satellite products (such as LST) to overcome this issue, since soil
temperature is closely related to Reco. Periods without
photosynthetic activity generate difficulties in estimating
FIGURE 4 | Temporal dynamics of observed (gray line) and predicted NEE with both models. The yellow line represents general model prediction and the green line
shows land cover model prediction. Gray dashed lines around zero enclose the area between ±40 gC m−2 month−1 where efficiency to determine whether the field
behaved as a carbon source or sink drops to 76%.
FIGURE 3 | Individual linear regression models between monthly mean EVI and monthly accumulated NEE in EC site for each land cover/crop type. Insets include
coefficient of determination (R2), intercept, and slope for corresponding land cover/crop type. The fallow linear regression model was not statistically significant.
June 2022 | Volume 2 | Article 903544

https://www.frontiersin.org/journals/soil-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/soil-science#articles


Marconato et al. Inland Pampa Croplands Carbon Fluxes
carbon fluxes with a remote sensing approach; thus, removing
winter months tends to improve EVI-derived GPP estimates (36,
53). That may work for northern hemisphere sites affected by
snow or cold temperatures. However, in the milder southern
hemisphere temperate croplands, fall and winter months without
photosynthetic activity can have a strong impact on annual
carbon balance (31, 54) and not including them may lead to
think that the ecosystem behaves like a carbon destination, when
in fact it is acting as a net source (6, 7).

The spatial pattern we observed for NBP is partly explained
by the percentage of area under double cropping within each
county. In turn, it is possible that it also depends on the yields of
the different crops (Supplementary Material S1). Wheat yields
are higher in the southern counties than in the northern ones,
where soybean and maize yields are higher than in the south.
Soybean and maize early single-cropping, sown in November,
usually have higher yields than when it is preceded by wheat or
another winter crop (46). These yield differences would
encourage, at least in part, wheat and soybean double-cropping
in the south and early maize and soybean single-cropping further
north. Other factors that may have influence but were not taken
into account in this study are farmer decisions (as to which
species to plant and how much to fertilize them) based on
changes in international prices, land tenure regime, agricultural
policies and weather conditions (25).

Estimates of carbon fluxes are highly dependent on both
spatial and temporal scales, with spatial prediction being usually
more difficult (55). According to our estimations, the Inland
Pampa croplands seem to be acting as a carbon sink as a whole,
even though the spatial distribution of NEE and NBP at the
county and pixel-site scales is highly heterogeneous (Figure 5,
Figure 6). Despite the fact that NEE and NBP estimations of
Frontiers in Soil Science | www.frontiersin.org 7
heterogeneous regional ecosystems are relevant for assessing
ecosystem services in land-use planning (56, 57), studies
comprising upscaling at the regional scale are scarce. Temporal
variations in croplands are highly variable and partially
dependent on management (58), but understanding and
predicting its monthly mean dynamics seem to be less
challenging than spatial patterns. We propose that estimates
made for a full rotation or at least a full year are more realistic
and comparable than those made for a single growing season
(6, 7).

Our regional estimates of NEE are roughly in agreement with
those for other cropland regions of the world, although
somewhat higher (11, 52, 59). Overestimation of carbon fluxes
from croplands have been reported in upscaling models,
particularly the ones including maize and soybean (11, 51, 60).
This study is based on pure pixels of the most productive crops
(46) in a high-yielding agricultural region (61) and coupled with
a possible underestimation of carbon losses during fallow
months as stated above. Therefore, it is possible that we have
overestimated their carbon sink capacity. Furthermore, using a
single average crop yield value per county (best information
available) in sites with NEE values much lower than the average
may have resulted in an overestimation of the NBP.

Between 60% and 80% of carbon sequestered was exported
during harvest on a regional scale, generating a large decrease in
the carbon sequestration capacity estimate expressed using just
NEE. This reinforces the idea that in order to evaluate the
complete carbon balance of a managed ecosystem, it is
necessary to estimate its NBP (7). NEE indicates carbon
sequestration capacity but the carbon absorbed by crops and
allocated to grains will be released back into the atmosphere due
to grain and sub-product consumption by humans and cattle.
TABLE 3 | Observed and predicted NEE in yearly agricultural campaigns, from June to May, with RMSE estimates.

Agricultural campaign Observed General model Land cover model

2012/2013 −194.39 −444.07 −313.03
2013/2014 −212.43 −463.73 −465.77
2014/2015 27.68 135.44 59.23
2015/2016 −153.59 −243.06 −169.08
2016/2017 −692.92 −526.29 −545.41
2017/2018 −198.33 −1.51 −134.11
2018/2019 −398.10 −328.39 −254.17
2019/2020 −517.65 −572.70 −578.20
2020/2021 −94.74 9.85 −33.94
NEE (full 9-years period) −2,434.47 −2,434.46 −2,434.48
RMSE – 160 120
June 2022 | Volum
All values are expressed in gC m−2 year−1.
TABLE 4 | Summary statistics for NEE, carbon export, and NBP estimations within the three agricultural campaigns for Inland Pampa croplands with main crops.

Agricultural Campaign NEE (gC m−2 year−1) Total regional estimates (PgC year−1) %DNEE-NBP

Mean SD Min Max Range NEE C export NBP

2018–2019 −369.71 272.4 −2,334.58 1,503.25 3,837.83 −3.49 (± 0.01) 2.79 −0.69 −80
2019–2020 −339.93 304.83 −1,831.23 802.98 2,634.22 −5.03 (± 0.01) 3.13 −1.9 −62
2020–2021 −248.33 277.58 −1,503.33 582.42 2,085.74 −4.15 (± 0.01) 3.23 −0.92 −78s
e 2 |
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Ecosystems with high carbon exchange rates such as the one
presented in this study might play an important role in
ecosystem services supply related to food provisioning (57, 62,
63). Thus, estimating their NBP seems a more appropriate way to
assess the potential carbon remaining in their soils.
Frontiers in Soil Science | www.frontiersin.org 8
If GHG emissions from carbon inputs in fertilizers, fuels,
machinery, and pesticides are taken into account, the average
carbon balance for croplands comprised in this study becomes
closer to neutrality. However, a small carbon sink still remains
for the three agricultural campaigns. Estimates presented here
TABLE 5 | Carbon footprint estimates for the three agricultural campaigns for the Inland Pampa croplands, taking into account main crops.

Campaign Mean NBP (MgC ha−1 year−1) GHG emissions (MgC ha−1 year−1) Actual C balance (MgC ha−1 year−1) %DNBP-GHG

2018/19 −0.91 0.42 −0.49 −46%
2019/20 −1.24 0.25 −0.99 −20%
2020/21 −0.73 0.22 −0.51 −30%
June 2022 | Volume 2 |
GHG emissions (MgC ha−1 year−1) comprise carbon inputs in fertilizers, fuels, machinery, and pesticides. Actual C balance represents a comprehensive net carbon balance as the
difference between mean NBP and GHG emissions. %DNBP-GHG represents how much the NBP decreases if GHG emissions are included.
FIGURE 5 | Inland Pampa cropland area and carbon fluxes. Upscaled NEE (A–C; gC m−2 year−1), NBP (D–F; MgC ha−1 year−1), and (G–I) double-cropping
percentage area of total cropland area per county. (A, D, G) correspond to 2018–2019; (B, E, H) correspond to 2019–2020; and (C, F, I) correspond to 2020–2021.
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suggested that GHG emissions from fossil carbon inputs can
represent up to nearly half of NBP in croplands. These results
are not in agreement with studies in other cropland regions of
the world (58, 64, 65) showing that croplands act as a net
source of GHGs. Carbon footprint estimates presented here
are a coarse regional average and more detailed estimations
that take into account spatial internal heterogeneity are clearly
needed. Nevertheless, two recent studies in the region suggest
that Pampean cropland soils might have a considerable
carbon sequestration potential (66, 67), which opens the
way for devising effective mitigation.

GHG emissions from agriculture (crops and livestock) are
estimated to be growing by 1% annually and surpassing land use
change emissions (68). In addition, management practices in
Frontiers in Soil Science | www.frontiersin.org 9
croplands can have a significant impact on climate (69–73).
Estimates presented in this study are a first attempt made in
upscaling carbon fluxes at the regional scale in a South American
cropland area, showing the carbon sequestration capacity of
croplands in the Inland Pampa. Local/regional models and
upscaling processes such as the one presented in this study
could become an important tool both for local environmental
assessment and food-security policies, and globally as a
benchmark for global models, given their uncertainties.
Consideration of data from the models here presented could
help to improve regional to global estimations of carbon fluxes
and refine national GHG inventories for our country and
perhaps carbon sequestration capacity assessments for
similar regions.
FIGURE 7 | Mean and standard error of Inland Pampa monthly NEE for the 2018–2019, 2019–2020, and 2020–2021 campaigns.
A B

FIGURE 6 | Detailed NEE in Union (A) and Juarez Celman (B) counties in the northern Inland Pampa during the 2019–2020 cropping season.
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