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Abstract: The impact of land cover change across the planet continues to necessitate accurate methods
to detect and monitor evolving processes from satellite imagery. In this context, regional and global
land cover mapping over time has largely treated time as independent and addressed temporal
map consistency as a post-classification endeavor. However, we argue that time can be better
modeled as codependent during the model classification stage to produce more consistent land cover
estimates over long time periods and gradual change events. To produce temporally-dependent land
cover estimates—meaning land cover is predicted over time in connected sequences as opposed to
predictions made for a given time period without consideration of past land cover—we use structured
learning with conditional random fields (CRFs), coupled with a land cover augmentation method to
produce time series training data and bi-weekly Landsat imagery over 20 years (1999–2018) across the
Southern Cone region of South America. A CRF accounts for the natural dependencies of land change
processes. As a result, it is able to produce land cover estimates over time that better reflect real
change and stability by reducing pixel-level annual noise. Using CRF, we produced a twenty-year
dataset of land cover over the region, depicting key change processes such as cropland expansion and
tree cover loss at the Landsat scale. The augmentation and CRF approach introduced here provides a
more temporally consistent land cover product over traditional mapping methods.

Keywords: landsat; time series; land cover; conditional random fields; southern cone

1. Introduction

Land cover across the globe has been shaped by climate over centuries and, in turn,
has also influenced climate patterns [1]. In recent decades, land cover change from land
use has negatively impacted ecosystems worldwide [2,3]. Commodity-driven deforestation
rates, for example, remain high [4,5] as global consumption of agriculture and agroforestry
products continues to grow [2,6,7]. Consequently, forests across the tropics have been cleared
for agriculture [8–10], resulting in emissions of 2.6 GtCO2 yr−1 [11]. While tropical regions
such as the Amazon [12,13], Congo basin [14,15], and the Malay Archipelago [16–18] have
received substantial attention, dry woody and grassland systems are increasingly being
transformed and negatively impacted by land use [19–22]. Unfortunately, data on land
change in extra-tropical systems of the Global South are lacking, even though these systems
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are particularly vulnerable to changing climate [2]. Timely estimates of land use and land
cover (LULC) across these evolving landscapes are required to support a variety of efforts
in the land system science community, such as deforestation monitoring, environmental
impact assessments, and land conservation. In this paper, to address data shortcomings
over one region in the Global South, we focus on the South American Southern Cone using
20 years of satellite-based land cover estimates. In doing so, we aim to better characterize
and understand the environmental impacts and consequences of land use across the region.

The South American continent has undergone some of the planet’s fastest rates of
forest loss and agricultural expansion over recent decades [23–28]. However, most LULC
studies in South America have focused on the Amazon biome, leaving temperate regions
on the continent largely understudied. The imbalance in regional foci is perhaps best
exemplified by differences in research that has been conducted in the Amazon and Chaco
forests [12,13,21,29–31]. The Chaco, which is the second largest forest system in South
America, is understudied relative to the Amazon, even though deforestation rates are
as high there as anywhere on the planet [21,24,30,32–34]. Further, studies that focus on
soybeans in Brazil far outnumber those focused on other key soy-producing Southern
Cone nations, such as Argentina, Bolivia, Paraguay, and Uruguay. Recently, however,
interest and awareness regarding the impact of human activities and LULC on land areas
in the Southern Cone over the last several decades has begun to increase [26,28,35,36].
Grassland and shrubland regions have received less attention, in general, thus leaving
unanswered questions about LULC across large swaths of the Southern Cone [37–39].
As a result, key land change processes since the turn of this century in this region are
largely undocumented.

As is now well known, land cover plays an important role in the delivery of ecosystem
services and in the regulation of local and global biogeochemical cycles [40–42]. Time series
of satellite imagery provide valuable information to monitor and enhance understand-
ing of these processes. Over the Southern Cone, improved land cover estimates would
also contribute toward better understanding the ecological and social impacts of forest
clearance in the Chaco region [43,44]; small- and large-holder agricultural dynamics in
Eastern Paraguay [45]; forest management in Misiones, Argentina [46]; shrub encroachment
across Patagonia and in the Andes foothills [47]; and the impacts of grassland-to-cropland
conversion across the Pampas and Espinal [48,49].

The LULC community now has Landsat imagery from 1972 to present available to
monitor and map land change processes. Image classification is still a challenging endeavor,
however, as illustrated by the plethora of studies and land cover datasets produced through-
out the world [50–57]. To address challenges involved in image classification, satellite data
acquisitions and processing methods have evolved to support temporally consistent, large-
scale analyses of terrestrial events [58–61]. In particular, crop- [62–74] and forest-related
studies [75,76] have benefited from new time series methods, analysis-ready data products,
and the launches of Landsat 8 and 9 and Sentinel-2A and -2B . With increasingly longer
historical records of Landsat imagery, land cover classification methods that address time
series continue to evolve.

Our key objective in this work is to estimate annual land cover, and in doing so,
develop a methodological framework for large-area estimates over long time spans. In this
study, we use 20 years (1999–2019) of Landsat imagery to estimate annual maps of land
cover across the South American Southern Cone region, combining multiple sources of
field data, a dynamic time series smoother [77], and temporally-dependent land cover
estimates. To estimate land cover transitions, we use conditional random fields CRFs [78,79]
with a first-order conditional framework. The CRF modeling approach used here presents,
to our knowledge, one of the most geographically expansive and longest time series
applications of structured learning for land cover mapping in South America, while the
land cover estimates presented here capture annual spatial and temporal dynamics at an
unprecedented scale for the region.
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2. Motivation for Sequential Land Cover Predictions with Structured Learning

The use of time series for land cover mapping has increased with better access to both
data (e.g., Landsat) and high-performance computing. The conventional approach to esti-
mate land cover over time is to treat each time step independently [9,24,80,81]. While recent
studies have implemented post-classification probabilistic stabilization techniques [82–84],
they still rely on existing land cover datasets as a starting point. Another novel approach for
temporal land cover mapping is the continuous change detection and classification (CCDC)
algorithm [85]. The CCDC method models seasonal variation in vegetation over time and
uses estimated harmonic coefficients as classification predictors. This method works well in
certain landscapes, such as boreal and tropical forests, where vegetation dynamics are often
consistent over time and land cover change results in a pronounced satellite signal [76,86].
However, in more complex landscapes, such as dry savannas, vegetation cycles are not
guaranteed to behave in a consistent, periodic manner, even when no land cover change
has occurred. Moreover, many cropland systems include diverse mixtures of crop species
and, therefore, do not follow predictable crop rotations.

In this study, we present a method in which temporal dependencies are incorporated
into land cover predictions by directly modeling conditional dependencies across time
series rather than post-inference of classified maps or by estimating land cover change
events (i.e., breakpoint detection) from satellite signals. We present a framework to estimate
temporally-consistent land cover over long time spans using structured learning of recon-
structed satellite signals. Specifically, to estimate annual land cover we use linear-chain
conditional random fields (CRFs) (see Section 5.4 for details) fit to weekly Landsat time
series (described in Section 5.1 and in [77]), and apply this method to map annual land
cover across 20 years in the Southern Cone of South America.

3. Study Area

The Southern Cone is a region in South America that typically refers to Argentina,
Chile, and Uruguay. In this study, we also include Paraguay and the Bolivian lowlands
because of their importance in regional LULC (Figure 1). In total, the included area
within these five countries is approximately 4,972,837 km2. Placing this in a continental
perspective, the region contains the largest forest system (the Chaco) in South America
outside of the Amazon, the largest contiguous area of remnant Atlantic forest in Misiones,
Argentina, as well as an estimated 18% (230,849 km2) of the planet’s harvested soybean
area in 2017 [23].
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Figure 1. The South American Southern Cone region. The study area encompasses five countries of
southern South America: Argentina, Bolivia, Chile, Paraguay, and Uruguay. This region (excluding
Bolivia) is often referred to as the Southern Cone. The grids outlined in red are the Landsat processing
tiles. As illustrated, the data processing area includes the entirety of Paraguay and Uruguay. However,
the northern border excludes northwestern Bolivia, as the objective in this study was to include the
agricultural lowlands. In the southern portion of the study area we limited the data processing to
around −47◦ latitude, as the data density declined substantially farther south and limited the quality
of time series reconstruction.

There is considerable regional complexity in climate and vegetation types across the
Southern Cone. The region’s climate ranges from tropical in the north, desert in the northern
Andes and the south, Mediterranean along the Pacific Ocean, to temperate in the eastern
grasslands. The northeast, dominated by grassland and croplands, is characterized by high
mean annual precipitation (>1200 mm) and high mean annual temperatures (15–20 ◦C)
[87,88]. The south and northwest are dominated by grasslands and shrublands and are
characterized by relatively low mean annual precipitation (150–500 mm) and mean annual
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temperatures ranging from 0–12 ◦C [87,88]. The Mediterranean climate in Chile supports
a mixture of grasslands, shrublands, and woodlands. Lastly, this study area covers an
elevation gradient from 20 m above sea level in the Pampas to more than 3000 m in
the Andes.

4. Data
4.1. Satellite Data

We acquired Landsat TM, ETM+, and OLI Collection 1 (C1) surface reflectance data
from the US Geological Survey (USGS) Earth Resources Observation and Science (EROS)
Center on-demand Science Processing Architecture (ESPA). We defined each 12-month
period in this study as starting and ending on July 1, corresponding to seasonality in the
Southern Hemisphere. As outlined in [77], we padded the time series end years by three
months to ensure data continuity. Therefore, we selected all Landsat scenes from 1 April
1999 to 1 November 2019, using the same cloud cover thresholds and pixel angle generation
described in [77]. We processed and stored all Landsat bands and pixel angle layers into
non-overlapping, 150 km × 150 km grid cells, gridded to the South America Albers equal-
area conic projection. Data density was generally higher in the middle latitudes of the
study region compared to the northern and southern locations (Figure A2).

4.2. Field Data

Using georeferenced samples from multiple sources, we compiled a large set of land
cover polygons across the study region from (1) field campaigns in central and northern
Argentina during the summers of 2017 and 2018 conducted by researchers at Boston
University; (2) field campaigns in northern Argentina and central Bolivia during the winter
of 2014; (3) field campaigns in 2016 and 2017 conducted by the Instituto Nacional de
Investigación Agropecuaria (INIA) of Uruguay; (4) a field campaign in 2018 conducted
by the Instituto Nacional de Tecnología Agropecuaria (INTA) of Argentina; (5) multi-year
field campaigns over 2014–2018 conducted by the Buenos Aires Bolsa de Cereales (Grains
Exchange); and (6) land cover data collected on-screen via image interpretation by analysts
at Boston University.

The field campaigns consisted of a mix of systematic and opportunistic sampling of
land cover and agricultural land use (categories described in Section 5.5), but were designed
to collect samples of agricultural land use. Georeferenced samples (collected in the field
using GPS) were converted into polygons and manually delineated to agricultural field
boundaries by interpreters. For samples collected in cultivated areas, to ensure that each
field corresponded to a single crop, we interpreted boundaries from high-resolution im-
agery in Google Earth (GE) along with annual Landsat composites to illustrate within-field
spectral homogeneity. After investigators with local knowledge reviewed field polygons
for quality assurance, the field dataset included 11,464 field sample polygons of land cover
and crop type.

To complement field samples, we also collected on-screen samples of land cover classes
using a global sampling grid provided by the UN Food and Agriculture Organization
(FAO). The grid consists of 10 km × 10 km grid cells derived from a systematic sampling
design based on each latitude and longitude intersection [89]. These additional samples
were necessary to provide full geographic coverage and thematic representation across
the Southern Cone. Within each grid cell, we attempted to digitize three polygons with
class labels defined for every available GE image acquisition over time. Samples were
subjectively selected and interpreted based on time series of Landsat spectral reflectance
and annual Landsat composites along with GE high-resolution imagery and the interpreters’
local knowledge. The total number of land use/cover polygons was 46,532 across all sources
and years. Figure A1 illustrates the distribution of samples across the study area.



Remote Sens. 2022, 14, 4005 6 of 28

5. Methodology
5.1. Image Preprocessing and Time Series Reconstruction

We adjusted surface reflectance values for bidirectional reflectance distribution func-
tion (BRDF) effects using the c-factor method [59,77,90]. Using the BRDF-corrected surface
reflectance data, we calculated the two-band enhanced vegetation index (EVI2) [91] and
the woody index (WI) [92] for every Landsat image as

EVI2 = 2.5
NIR − red

NIR + 2.4red + 1
(1)

and

WI =

{
0 if (red + NIR) > 0.5
1.0− red+NIR

0.5 otherwise
(2)

respectively. The EVI2 was chosen because of its proven utility for the detection of agri-
cultural phenology [93]. The WI was chosen for its non-agricultural use, particularly in
dry savanna woodlands, as a large swath of the study area contains similar biophysical
characteristics to the region where WI was first tested (i.e., Queensland, Australia) [92].

To generate consistent data across all years, we used a dynamic temporal smoothing
algorithm (DTS) [77] to reconstruct weekly time series of EVI2 and WI. The DTS produces
60 values per 12-month cycle.

5.2. Land Cover Classification Scheme

Following land cover definitions by the USGS Multi-Resolution Land Characteristics
Consortium (MRLC) National Land Cover Database (NLCD), we designed a classification
scheme of 8 land cover categories for the study region (Table 1). The field data collection
was designed to record individual crops. Thus, for this study we aggregated all crop
samples into a single cropland class and all agroforestry samples into the tree cover class
(Figure 2).

Figure 2. The classification hierarchy. Level I consists of dominant land cover categories estimated in
this study. Level II illustrates the cropland category as collected in the field.
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Table 1. Land cover classes and definitions.

Class Label Description

Cropland Managed lands for production of annual and perennial crop species
(excluding tree crops); this class represents row-crop agriculture, such as
maize, soybeans, wheat, and rice.

Water Open-water bodies, such as lakes and rives.
Developed Urban areas, built-up structures, and roads.
Barren Barren land, snow, or ice.
Trees Tree cover with >= 30% canopy cover (natural or managed); this class

includes agroforestry such as pine and eucalyptus plantations.
Shrubland Shrubs or cactus cover with >= 30% canopy cover.
Grassland Herbaceous grassland (natural or managed) and savannas with <30%

canopy cover; this class includes pastureland used for livestock grazing.
Wetland Seasonal wetlands, including prolonged flooding (e.g., Pampas).

5.3. Features Used for Land Cover Predictions

For land cover mapping, we used the EVI2 time series and seasonal time series metrics
calculated from the weekly EVI2 and WI time series (Table 2). We used the time series
of both indices to compute aggregate metrics shown in Table 2. However, we excluded
the WI time series from the set of predictive features to reduce the computational load on
the classifier. In total, we generated 94 image layers (60 EVI2 values + 17 (x2) aggregate
metrics) that we used as predictive features (X).

Table 2. Features used for vegetation indices EVI2 and WI (VI) to fit classification models for each
grid cell. * The weekly time series were generated for EVI2 and WI and used to calculate aggregate
metrics. However, only the EVI2 weekly values were used as predictive features. ** The maximum
and minimum slopes were computed with a moving window of 1.5 month width.

Metric N Description

EVI2 60 * The weekly gap-filled time series
VIq50 4 Median of time series each quarter
VIµ 1 Mean of the time series
VIp50 1 Median of the time series
VICVµ 1 Coefficient of variation with VIµ

VICVp50 1 Coefficient of variation with VIp50
VImin(m) 1 ** Minimum slope
VImax(m) 1 ** Maximum slope
VIp5 1 5th percentile of the time series
VIp10 1 10th percentile of the time series
VIp25 1 25th percentile of the time series
VIp75 1 75th percentile of the time series
VIp90 1 90th percentile of the time series
VIp95 1 95th percentile of the time series
VIargmax 1 Date of maximum time series value

5.4. Land Cover Estimates with Conditional Random Fields

A conditional random field (CRF) is a discriminative model used to predict sequences
of data [78]. A CRF models the conditional probability of labels and variables over a joint
distribution and makes no assumptions about variable independence. In fact, CRFs are
designed to estimate the most likely sequence of state transitions assuming codependency.
Because of these model properties, CRFs are well suited to remote sensing problems with
temporal codependencies such as land cover change. However, CRFs are more widely
used for natural language processing [94] than in the field of remote sensing. Structured
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learning for remote sensing applications has recently increased, with several studies using
CRFs to address spatial and temporal dependencies in predictive modeling of land use and
land cover [95–97].

To fit a CRF classifier, class conditional likelihoods from a given set of labeled data (e.g.,
land cover) and predictive features are maximized by modeling a sequence of states (in our
case, across time). A model with first-order transition dependencies, called a linear-chain
CRF, is defined by the sequential dependence of the current state observation i and the
previous state observation (i− 1) as

P(y|x, ω) =
exp

{
∑n

i=1 ∑m
j=1 ωj f j(x, i, yi−1, yi)

}
∑y′∈Y exp

{
∑n

i=1 ∑m
j=1 ωj f j(x, i, y′ i−1, y′ i)

} (3)

where y is a sequence of labels and x is a sequence of variables. The feature function,
f j(x, i, yi−1, yi), is a set of characteristics that describes each predictive variable, based only
on the current and previous state. Feature functions are designed by the user and, therefore,
can be customized. In the model fitting phase, the feature weights (ω), which are initialized
randomly in P(y|x, ω), are derived by iteratively maximizing the class conditional likeli-
hoods of all states (n) and features (m) by argmaxP(y|x) of a regularized log-linear function.
The numerator in Equation (3) is used to normalize the class conditional probabilities over
all possible labels (in this study, Y is equal to the land cover classes listed in Table 1).

5.5. Land Cover Sample Design

We used a distance-based search to collect land cover samples around each 150 km ×
150 km grid cell, thus generating a different set of samples and model for each grid cell. We
illustrate this process for a single grid cell (Figure 3). First, we locate all land cover samples
within 250 km from a grid cell center. If a grid cell target sample pool is not met, we expand
the search from 250 km up to 500 km, in 100 km intervals, until sufficient samples have
been collected. The radial expansion provides flexibility over regions of sparse data or
with rare land cover classes such as ‘developed’. After a sample pool around a grid has
been collected, they are not yet ready to use to train a CRF. The sample pool shown in
Figure 3 consists of various dates, depending on the data collection source (Section 4.2).
However, this sample pool does not contain repeat data, which is pivotal in order to train a
sequential-based classifier such as CRF. We describe our solution to this data shortcoming
in the following paragraph (Section 5.6).
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Figure 3. Diagram of spatial sampling approach. For a given grid cell (here, the center 150 km ×
150 km grid cell), we locate all samples within a specified radius (250 km). If the sample pool for the
grid cell is not satisfied by the initial radius, we expand the search distance up to 500 km, in 100 km
intervals, until sufficient samples are established.

5.6. Temporal Augmentation

One challenge of supervised learning with structured models is the collection of repeat
training data. A CRF, for example, requires a sequence of target labels to optimize the
transition weights during the fitting phase. Yet, collecting repeat labels, especially over
20 years, is difficult because the task is laborious and consistent satellite acquisitions are not
guaranteed to be available. We address this impediment by temporally augmenting pseudo
land cover sequences, which we then use as our model training data. More specifically, we
generate training sequences using the field data from Section 4.2. Figure 4 illustrates the
random selection to generate a single augmented pseudo time series sequence. The field
data are distributed over the timeframe but there are no cases of repeat visits. Therefore,
a temporally augmented sequence consists of samples drawn at random from a sample
pool. The pseudo sequences consist of real data, but are arranged in a synthetic manner.
Thus, we defined likely land cover transition scenarios to help guide the augmentation
into realistic land cover transitions (Table 3). We repeat the framework in Figure 4 using
Table 3 as a guide to determine which land cover data pools to randomly draw from.
The land cover transitions characterized in this study (Table 3) are representative of the
most common landscape change processes in the Southern Cone—deforestation and forest
degradation for ranching [21,24,98] and commodity crop agriculture [32,33,45,99–101],
agricultural intensification [24–26,28], afforestation [102–105], and woody encroachment
and forest regeneration [47]. In total, we generated 2500 random sequences for each grid
cell, regardless of the sample count within the grid cell sampling radius.
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Figure 4. Example of temporal augmentation for a single time series. To generate random sequences,
we start with a 150 km × 150 km grid cell (represented by the center red square). Then, we randomly
select N samples within a predetermined radius around the grid cell. N is the length of the time
series (12 years in this example, 20 in this study). To guide the augmentation, we define likely land
cover transitions (Table 3). In this example, we are generating a 12-year pseudo time series based
on data surrounding our center red grid of interest. To start, we would expect a pool of potential
training samples surrounding our grid, where individual field samples would consist of a range of
land covers and timeframes. This potential pool is illustrated by all the stars and circles (to simplify
the illustration, we only have two land covers: tree and herbaceous). Since our target time series
length is 12 years, we only need to randomly sample 12 points from the data pool. After a random
sample from the data pool, the 12 samples selected are shown in black, and the remaining data
in the grid pool are shown in gray. Next, we use the 12 samples to create the pseudo time series,
which is shown by y = at the bottom of the graphic. The only condition driving the order is a land
cover transition defined in Table 3. We are illustrating a tree-to-herbaceous land cover change and,
therefore, first order all the sampled tree points followed by the remaining herbaceous samples. Note
that the order of the years is not important here (and is random) because all 12 samples come from a
different geolocation. This process is repeated to create a training dataset for the grid, sampling with
replacement from the grid sample pool.
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Table 3. Land cover transitions used in the temporal augmentation of pseudo time series sequences.
The first column describes the land cover transitions. Single land covers represent stable sequences.
The↔ symbol indicates the sequence was generated in both directions. The second column describes
the land cover change that the sequence is intended to represent. The third column shows the
percentage breakdown of the land covers in the sequence. As an example, the trees-to-cropland
sequence represents clearance for agriculture when sorted by trees → cropland, and cropland
abandonment and regrowth when sorted by cropland→ trees. In the trees→ cropland sequence,
the first 70% of the sequence is trees (i.e., 17 years) followed by 30% (3 years) of cropland samples,
and vice versa for cropland→ trees.

Transition Land Cover Simulation Percentage
of Sequence

Cropland Stable cover 100
Developed Stable cover 100
Trees Stable cover 100
Shrubland Stable cover 100
Grassland Stable cover 100
Water Stable cover 100
Wetland Stable cover 100
Barren Stable cover 100
Cropland↔ Grassland Agricultural shift 70/30
Cropland↔ Barren Fallow 80/20
Trees↔ Shrubland Degradation/Regrowth/Greening 70/30
Trees↔ Grassland Clearance/Regrowth/greening 70/30
Shrubland↔ Grassland Clearance/Abandonment 70/30
Shrubland↔ Cropland Clearance/Abandonment 70/30
Trees↔ Cropland Clearance/Abandonment 70/30
Wetland↔ Grassland↔ Cropland Seasonal wetlands 33/33/33

5.7. CRF Model Fitting and Land Cover Estimates

For each 150 km × 150 km grid, we fit a CRF classifier using an exponential transfor-
mation of the time series features X (Table 2) as

−→
X = [(exp(X)− exp(0))/(exp(1)− exp(0))]5 (4)

which was applied to stretch feature weights and to help maximize class separability.
Then, for each grid cell we optimized P(y|−→X , ω), where our feature functions f j∈m were

the 94
−→
X values. Experimentation showed that the exponential transformation from a

[0,1] to [0,5] dynamic range improved CRF predictions on test samples. We used the
limited-memory Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm with L1 and L2
regularization [106,107], optimized with the sklearn-crfsuite Python interface [108] to the
crfsuite software package [109]. We applied the grid cell’s fitted CRF model to the full
timeframe (i.e., 1999–2019) for each pixel, with CRF class probabilities for each two-year
timeframe. For each two-year timeframe, we used the land cover class with the maximum
CRF probability as the class label.

5.8. Map Assessment

Guidelines for best practices in land cover change assessment stipulate that unbiased
estimators of reference data be used instead of pixel counting [110–113]. Following these
recommendations, we set up a stratified random sample design based on unbiased area
estimates with Landsat pixels as the sampling units. We chose to assess four time periods
of the map outputs (2000–2005, 2005–2010, 2010–2015, and 2015–2018) rather than the full
time series, considering trade-offs between balancing uncertainty reporting and time. We
consider this a reasonable compromise given the total area of the study area and the length



Remote Sens. 2022, 14, 4005 12 of 28

of the time period [76]. For the purposes of map assessment, we aggregated shrubland,
developed, barren, water, and wetland classes into a class called “other”. Then, we assessed
stable tree, grassland, cropland, and other strata, as well as all the change strata representing
the dynamics among these classes. We used a target standard error of 1.5%, resulting in 587,
596, 608, and 529 samples for each time period, respectively (Figure 5). For the last time
period between 2015 and 2018, this target corresponds to 6666 km2 of trees to grassland
change and approximately 1164 km2 of grassland to trees change.

Figure 5. Reference points collected for four time periods assessed in this study.

The assessment of land cover change in these four time periods was executed using
independent high-resolution imagery and medium-resolution composites that were in-
terpreted by analysts with local knowledge and expertise in the Southern Cone region.
Specifically, reference data were interpreted using the Augmented Visual Interpretation
tool available in Collect Earth via the Open Foris platform [114], which enables evaluation
using high-resolution imagery from Google Earth along with time series and composites of
MODIS and Landsat in Google Earth Engine.
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6. Results

Our study generated annual maps of land cover for the Southern Cone of South Amer-
ica at 30 m spatial resolution from 1999/2000 to 2018/2019 (Figure 6; annual change Figures
7–10). In addition, we calculated area estimates of land cover with 95% confidence intervals
for four approximately 5-year time periods for stable land categories and conversions
Tables 4 and 5).

Figure 6. Overview of classification results for the beginning (left panel) and end (right panel) of the
study period at 30 m spatial resolution.

6.1. Accuracy Assessment

The overall accuracy of the Southern Cone map was 69% for 2000–2005, 73% for
2005–2010, 73% for 2010–2015, and 71% for 2015–2018. Class-specific user’s and producer’s
accuracies for the four assessment time periods were variable (Table 4). Higher accuracies
were obtained for stable land cover categories, especially for tree cover, as well as for
larger map classes such as the combined “other” category, which included wetland, water,
shrubland, and barren classes. Distinction between grasslands and croplands, on the other
hand, was difficult, and as a result the user’s and producer’s accuracies for those two
classes were lower compared to tree cover (Table 4). Confusion between these two classes
was due to spectral similarities and the fact that they were often collocated, sometimes
on the same field during different years. There was also map confusion with classes that
represented transitional situations (e.g., shrubland encroachment on grasslands).



Remote Sens. 2022, 14, 4005 14 of 28

Table 4. User’s and producer’s accuracy (%) for four different time periods assessed in this study.

2000–2005 2005–2010 2010–2015 2015–2018

Land Cover Users Producers Users Producers Users Producers Users Producers

Stable cropland 61 68 66 84 49 89 56 82
Stable other 70 92 84 91 84 92 76 89
Stable grassland 53 78 46 70 59 81 61 84
Stable trees 80 86 76 87 69 77 72 83
Cropland to other 100 6 100 3 100 8 67 3
Cropland to grassland 100 14 94 15 90 28 86 15
Cropland to trees 100 1 100 1 100 4 67 0
Other to cropland 67 5 75 7 100 13 100 6
Other to grassland 64 10 65 7 84 21 64 4
Other to trees 100 4 0 0 93 15 0 0
Grassland to cropland 92 41 76 35 81 31 100 14
Grassland to other 55 6 72 9 69 24 50 7
Grassland to trees 33 5 94 19 100 19 100 2
Trees to cropland 100 25 100 28 100 30 100 7
Trees to other 71 7 67 21 83 5 100 2
Trees to grassland 79 18 83 46 100 34 60 7

Producer’s accuracies were generally low and user’s accuracies were generally high for
conversions between classes. Producer’s accuracies for transitions between 2010 and 2015
had higher accuracies compared to the other time periods and so did transitions among
tree cover and the three other categories (i.e., cropland, grassland, and other) (Table 4).
User’s accuracies were higher compared to producer’s accuracies—they ranged from 33%
to 100% but were generally above 60%. In many cases, the commission error is very low
(or even nonexistent) while the omission error is quite high, indicating that conversion
to croplands or tree cover loss, for example, were omitted from the correct class in the
final map (Table 4). In other words, while the maps do not include a lot of incorrect
classifications, they sometimes failed to identify areas of tree cover loss and conversion to
croplands. Given these results, our results likely represent an underestimate of how much
the subcontinent has changed since 1999.

6.2. Comparison against Independent Sources of Data

The annual estimates of land cover allowed us to track trends over two decades in
cropland area across the Southern Cone region. To complement the accuracy assessment
presented in Tables 4 and 5, we compared our results against data from the Ministerio
de Agricultura, Ganadería, y Pesca (MAG) of Argentina [115] (Figure 11). We included
all row crops reported by MAG, excluding banana, canary grass, jojoba, lime, mandarin,
orange, pomelo, tea, tung, and yerba mate. Contrary to MAG’s estimates of planted area,
our cropland estimates are of area cover over a 12-month period and, therefore, do not
account for double cropping (i.e., over each pixel, we map crop cover, regardless of the
number of crop cycles). As a result, our land cover area estimates of cropland will typically
be lower than planted (or sown) area statistics reported by MAG. To transform our crop
area estimates into planted area, we estimated the number of crop peaks, or cycles, over a
12-month period and multiplied the peak count by our cropland mask. For this comparison,
we summed planted area by pixel counting and not by the unbiased area estimates reported
in this study.

In general, our planted area estimates were correlated with MAG estimates in de-
partments and provinces with more than 1000 km2 of estimated planted crop area (Figure
11). We tended to underestimate planted crop area compared to MAG estimates in ad-
ministrative units with less crop area and in drier regions along the southern Pampas.
A prime example of this discrepancy is La Pampa province, shown by the brown dots in
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Figure 11. At every time period, La Pampa had the largest difference between our planted
area estimates and MAG’s planted area. Similarly, southern Buenos Aires departments also
had noticeably higher estimates by MAG.

We also compared our CRF land cover estimates with an independent product (Map-
Biomas Chaco [116] and Pampas [117]) by generating an error matrix with overall accuracy.
We used all validation points (from Section 5.8) that intersected the MapBiomas Chaco
and Pampas map extents. The accuracy results from this simple comparison are shown
in Table A1. Note that the numbers reported here for CRF (this study) are higher than
the numbers reported for the overall accuracies across the entire study region, while the
accuracies for the MapBiomas regions are lower than reported by the MapBiomas projects
(consistent range of around 80%). The set of validation points used are biased toward the
CRF maps, as they were generated using a stratified random sample of change estimated
from this study. Additionally, Figure A5 illustrates the temporal stability of CRF for a
single pixel compared to the MODIS MCD12Q1 global land cover product and MapBiomas
Chaco product.

6.3. Spatial and Temporal Trends of Change in the Southern Cone of South America

Our study estimated land cover annually over twenty years from 1999/2000 to
2018/2019 and our results revealed widespread and systematic changes in the distribution
of land cover in the Southern Cone of South America in the 21st century (Figure 6). Changes
took place across all ecoregions of the subcontinent but they were most pronounced in the
savanna ecoregions in the northeast (e.g., Humid Pampas and Uruguayan Savanna) and in
the forested ecoregions in the north (e.g., Gran Chaco and Atlantic Forest). At the regional
scale, noticeable net changes included loss of tree cover (Figure A4) and replacement by
natural or managed grassland in western Paraguay, as well as an increase in cropland
area at the expense of grasslands across the Argentine Pampas. While the regional net
changes revealed striking land cover transformations, one of the key contributions of this
paper was the annual estimates in land cover. For example, the expansion of cropland in
the Uruguayan savannas (Figure 7), loss of tree cover in western Paraguay (Figure 8) and
eastern Bolivia (Figure 9), as well as gradual cropland expansion near Santa Cruz, Bolivia
(Figure 10). The CRF model produced annual land cover estimates with minimal “pixel
flipping” noise from year to year, as illustrated in Figures 7–10. Additionally, Figure A3
illustrates land cover change at a larger scale, while Figure A4B highlights the consistency
of this method for accurately detecting long-term gradual change events.

In the beginning of the 21st century (from 2000 to 2005) we estimated forested area
across the Southern Cone of South America at 1,070,482 km2 (±106,175 km2), the area of
croplands at 153,211 km2 (±47,651 km2), and grasslands at 569,891 km2 (±95,466 km2)
(Table 5). At the end of the study period (2015–2018), forest area decreased to 996,839 km2

(±116,671 km2) while croplands expanded to an area of 198,657 km2 (±59,345 km2) and
grasslands to 614,316 km2 (±95,434 km2) (Table 5). The magnitude of deforestation was the
highest at the beginning of the time period and was associated with an increase in the area
of “other”, a category that included shrublands and barren ground (Figure 12). Conversely,
an increase in conversion from tree cover to grasslands and croplands in the last ten years
of the study period corresponded to a decrease in the area converted from forests to the
“other” category (Figure 12). Throughout the 20-year study period, conversion from tree
cover to grasslands was consistently higher than conversion from tree cover to croplands.
Starting in 2005, conversion directly to grasslands became more widespread compared to
conversion to “other” land cover (Figure 12).
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Figure 7. Annual land cover estimates in southwest Uruguay illustrating expansion of cropland onto
herbaceous cover. The land cover legend is the same as the legend used in Figure 6. However, here
we include additional categories to illustrate change: e.g., tree cover loss and herbaceous cover loss
from time A to time B.

Figure 8. Annual land cover estimates in the Paraguayan Chaco illustrating expansion of herbaceous
cover at the expense of tree cover loss. The land cover legend is the same as the legend used in
Figure 6. However, here we include additional categories to illustrate change: e.g., tree cover loss and
herbaceous cover loss from time A to time B.

Figure 9. Annual land cover estimates in the Chiquitania lowlands, Bolivia, illustrating expansion of
cropland and herbaceous cover at the expense of tree cover loss. The land cover legend is the same as
the legend used in Figure 6. However, here we include additional categories to illustrate change: e.g.,
tree cover loss and herbaceous cover loss from time A to time B.
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Figure 10. Annual land cover estimates in Santa Cruz province, Bolivia, illustrating expansion of
cropland at the expense of herbaceous cover and tree cover loss. The land cover legend is the same as
the legend used in Figure 6. However, here we include additional categories to illustrate change: e.g.,
tree cover loss and herbaceous cover loss from time A to time B.

Figure 11. Comparison between planted area estimated in this study (x-axis) and planted area
reported by the Ministerio de Agricultura, Ganadería, and Pesca (MAG) of Argentina (y-axes) over
four time periods: 2000/2001, 2005/2006, 2010/2011, and 2018/2019. The left y-axis shows the total
area (km2) of planted cropland for each department (small dots), whereas the right y-axis shows the
total area (km2 × 10) of planted cropland for each province (large dots, outlined in black). The data
were logged to better illustrate the cluster of administrative units with low planted area. Colors are
unique for each province and provinces not shown here include Chubut and Santa Cruz.
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Table 5. Stratified unbiased area estimate and standard error of the error-adjusted area confidence
interval (SE) for four different periods assessed in this study.

2000–2005 2005–2010 2010–2015 2015–2018

Land Cover Area
(km2)

SE
(km2)

Area
(km2)

SE
(km2)

Area
(km2)

SE
(km2)

Area
(km2)

SE
(km2)

Stable cropland 153,211 47,651 179,796 47,739 148,476 45,228 198,657 59,345
Stable other 1,340,525 119,452 1,645,780 114,346 1,620,578 110,114 1,519,434 128,984
Stable grassland 569,891 95,466 528,926 100,957 567,818 94,171 614,316 95,434
Stable trees 1,070,482 106,175 971,476 104,825 982,111 122,832 996,839 116,671
Cropland to other 47,142 35,275 36,491 32,484 36,215 27,364 44,362 36,986
Cropland to grassland 39,728 29,899 62,484 35,931 67,793 36,533 65,208 40,049
Cropland to trees 58,390 38,591 36,117 30,562 10,397 14,219 48,457 40,886
Other to cropland 40,934 31,285 42,742 31,706 40,695 30,875 57,780 42,970
Other to grassland 130,780 56,644 97,214 49,063 89,557 46,749 161,125 70,127
Other to trees 81,218 51,998 82,304 53,449 130,063 61,859 93,922 57,074
Grassland to cropland 135,812 44,177 114,638 44,586 71,004 36,965 54,471 36,740
Grassland to other 143,438 60,963 91,720 49,054 57,485 35,089 44,365 35,223
Grassland to trees 56,982 41,168 89,217 44,966 134,505 56,847 72,051 48,347
Trees to cropland 29,715 22,355 25,014 19,910 13,727 12,026 24,380 26,416
Trees to other 125,544 57,870 27,574 26,855 49,169 40,565 48,448 40,364
Trees to grassland 69,920 40,419 64,891 31,069 77,341 40,286 55,509 41,197

Figure 12. Five-year unbiased area estimates with 95% confidence intervals for change classes
estimated from reference data using independent samples for each time period.

7. Discussion

The Southern Cone of South America experienced large-scale land cover change over
the course of the last twenty years since 2000 (Figure 6). Stable tree cover experienced the
most substantial losses—it decreased to 996,839 km2 (±116,671 km2) by the end of 2019
(Table 5). Forested landscapes are mostly converted to grasslands and “other” land cover
types (e.g., shrublands) and only later converted to croplands (Figure 12), indicating that
there is a time lag from deforestation to land utilization and that livestock production is the
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proximate driver of deforestation while crop production is the underlying driver [21,24].
Our results reveal noticeable deforestation in the Dry Chaco of western Paraguay (Figure 8),
northern Argentina (Figure 6), and in the Chiquitania of eastern Bolivia (Figures 9 and 10).
Deforestation in the Southern Cone region is largely driven by agricultural production–
soybean cultivation in the Atlantic Forest of eastern Paraguay and the Dry Chaco of
northern Argentina [32,33,45,99–101] and cattle ranching in the Dry Chaco of western
Paraguay and the Chiquitania of eastern Bolivia [21,24,98]. These findings are consistent
with recent publications documenting large-scale deforestation in the dry woodlands of
South America [24,25,28,36], a significant source of carbon emissions since the 1980s [20].

While croplands sometimes expanded onto forests in the 21st century, they mostly
and consistently, throughout the 20-year study period, expanded onto grasslands (Figure
12, Table 5). In total, cropland area increased to 198,657 km2 (±59,345 km2) by the 2015–
2018 time period. In only 5 years—from 2000 to 2005—135,812 km2 (±44,177 km2) of
grasslands were converted to croplands. In addition to pastureland conversion to croplands
along forest frontiers, our study demonstrates that there is cropland expansion at the
expense of grasslands (natural, pasturelands, and rangelands) in the Argentine Pampas
and the Uruguayan Savanna (Figures 6 and 7). Expansion of croplands across Argentina is
especially prevalent in the provinces of Buenos Aires, Córdoba, and Entre Ríos (Figures 6
and 11) and is largely driven by expansion of soybean cultivation [26,48]. Taken together,
conversion of natural grasslands, pasturelands, and tree landscapes to croplands represents
large-scale agricultural intensification across the subcontinent that started as early as the
1960s [24–26,28].

A relatively less studied land cover change phenomenon across the Southern Cone
is the increase in tree cover due to reforestation and afforestation. Over the last several
decades, there has been a proliferation of plantations in Uruguay [102], eastern Argentina,
and Chile [103–105] (Figure 6). According to our results, increase in tree cover in the
Southern Cone predominantly happens on land that was previously either grasslands or
“other” (Figure 12). Most conversion to tree cover occurred between 2010 and 2015, with
134,505 km2 (±56,847 km2) from grasslands and 130,063 km2 (± 61 859 km2) from “other”
(Table 5). They are most likely the result of afforestation secondary growth, reforestation,
and woody encroachment, respectively. Note, however, that it is common across Chile for
plantations to replace natural forests, a transition that is not captured by our study because
we did not differentiate between different kinds of tree cover [103–105].

This study represents—to our knowledge—the first application of conditional random
fields to land cover change classification at a large spatial scale using two decades of Landsat
observations. The CRF classifier is well suited for studies of land cover change because
it learns temporal transitions in the presence of noisy time series and, therefore, helps
to address spurious annual land cover estimates. Our results demonstrate that the CRF
approach to land cover classification indicates promise but future studies can improve the
map accuracies achieved in this analysis by addressing data collection and advancing the
CRF framework. For example, data collection at “revisit sites” would strengthen temporal
transition model learning (i.e., sequence-based models such as the CRF used in this study)
and provide an important dataset to use for model benchmarking and validation. The need
to scale and enrich the sequential modeling framework that was used here is evident, given
the underestimation of some key land cover transitions. The sample design could also be
tested on a sequentially-based deep learning framework. As shown in [118], large-scale
land cover mapping using sequence-based deep learning architectures is becoming a reality.
Lastly, the methods in this study could easily be extended and enhanced by the inclusion of
Sentinel-2 data. Given that the Sentinel-2 sensors share similar radiometric properties to the
Landsat series of sensors, harmonization between the two is relatively straightforward [59].
A complete replication of the methods used in this study would require a limited set of
optical wavelengths, and there are no sensor restrictions to the CRF framework. Therefore,
Sentinel-2 and additional bands or indices could be tested with minimal changes to the
modeling framework.
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Despite methodological advancements in this study, there are still challenges and
limitations that we face in mapping land cover and land cover change across the large
latitudinal, altitudinal, and climate gradient in the Southern Cone region of South America.
For example, our map accuracies are lower than targeted for less common classes and
transitions such as “other” to grassland and grassland to “other” (Table 4). These transitions
are consistent with Chaco forest clearance that can be characterized by a land cover change
sequence (tree to grassland to shrubland to cropland) that is hard to capture due to similar
spectral response of different classes and debris that are often left on the field. The spectral
similarity and spatial proximity of grasslands and croplands makes them difficult to
separate, especially in the Pampas and Uruguayan Savanna. Wetlands, which are also part
of the “other” class in the accuracy assessment, are challenging to discriminate since they
are usually seasonally flooded and occur in grasslands and treed landscapes [119]. We also
highlighted some underestimation of planted crop area (Figure 11). Many of La Pampa
and Buenos Aires departments with higher MAG planted area predictions (Figure 11)
are located in the Southern Pampas, where the historical precipitation gradient declines
north-to-south, livestock grazing becomes more commonplace than row-crop agriculture,
and the sea of maize and soybeans that defines the Argentine agricultural heartland gives
way to cereals and forage crops, such as sunflowers, wheat, barley, and sorghum. A large
proportion of underestimated departments were along the southern fringes of this Pampas
region. Based on our analysis and collective expertise on regional agriculture in Argentina,
we concluded that this was the main region where we incorrectly classified cropland
with herbaceous cover (grassland/pastureland). In addition, reference data collection
carries its own uncertainty due to difficulties in interpretation of land cover, especially
early in the time series when high-resolution data are less available and sometimes the
available imagery has lower resolution. These difficulties have been previously described
in the literature and are not unique to this study [120]. Lastly, this study was fortunate to
have funding for large-scale data processing on a high-performance compute environment
(Boston University Shared Computing Cluster). The methods used in this study, particularly
the time series reconstruction, cannot be efficiently applied over large regions without a
compute cluster. Although we did not record processing compute times, replication of this
work using a long time series of nearly every available Landsat image would likely require
access to a high-performance compute environment.
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Appendix A

Figure A1. Count of training polygons within each 150 km × 150 km grid cell.
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Figure A2. Data density across the study region. Data density was calculated by binning latitudes
(7 bins) and taking the average clear-sky count from 1 July to 1 July of each 12-month period across
each latitude bin.

Table A1. Overall accuracy (%) of two land cover products for four different time periods. These
accuracy numbers were generated using the same set of validation samples used in the unbiased
assessment. To compare the two maps at a comparable legend, we recoded MapBiomas Chaco
maps to match our land cover legend as close as possible. The MapBiomas Chaco product contains
twenty land cover categories, including multiple tree cover (all woodland classes were recoded to
“trees” except “flooded natural woodlands”) and grassland (all grassland categories were recoded to
“grassland” except “flooded grassland”) categories.

2000–2005 2005–2010 2010–2015 2015–2018

CRF 90 91 93 79
MapBiomas Chaco 73 75 74 79
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Figure A3. Annual land cover estimates in the Atlantic Forest, eastern Paraguay.

Figure A4. Tree cover area from 1999/2000 to 2018/2019 as a percentage of 1999/2000 tree cover for
selected Southern Cone provinces (Argentina) and departments (Paraguay). The top panel (A) shows
change in percent tree cover area from the 1999/2000 baseline. The bottom panel (B) shows the first
differences in the change in percentages over time.

Figure A5. Example of land cover change for three land cover products: this study’s CRF method;
MODIS MCD12Q1 product; and MapBiomas Chaco. The coordinate plotted is −21.867◦S, −60.72◦W,
which is also illustrated by the center white circle in Figure A6.
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Figure A6. Annual land cover estimates in the Paraguayan Chaco. Each inset is approximately 1 km
× 1 km.

References
1. Schmidt, M.; Klein, D.; Conrad, C.; Dech, S.; Paeth, H. On the relationship between vegetation and climate in tropical and

northern Africa. Theor. Appl. Climatol. 2014, 115, 341–353. [CrossRef]
2. IPCC. Dire Warning; Technical Report; The International Panel on Climate Change: Geneva, Switzerland, 2019.
3. Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global

food production. PLoS ONE 2019, 14, e0217148. [CrossRef] [PubMed]
4. World Resources Institute. Global Forest Watch. 2014. Available online: www.globalforestwatch.org (accessed on 1 May

2018). [CrossRef]
5. Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018,

361, 1108–1111. [CrossRef] [PubMed]
6. Godfray, H.C.J.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Nisbett, N.; Pretty, J.; Robinson, S.; Toulmin, C.; Whiteley, R. The

future of the global food system. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2769–2777. [CrossRef]
7. Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2793–2807. [CrossRef]
8. Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary

sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [CrossRef]
9. Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.;

Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest cover Change. Science 2013, 342, 850–853. [CrossRef]
10. Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from

1982 to 2016. Nature 2018, 560, 639–643. [CrossRef] [PubMed]
11. Pendrill, F.; Persson, U.M.; Godar, J.; Kastner, T.; Moran, D.; Schmidt, S.; Wood, R. Agricultural and forestry trade drives large

share of tropical deforestation emissions. Glob. Environ. Chang. 2019, 56, 1–10. [CrossRef]
12. Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Arai, E.; del Bon Espirito-Santo, F.; Freitas, R.; Morisette, J.

Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2006,
103, 14637–14641. [CrossRef] [PubMed]

13. Barona, E.; Ramankutty, N.; Hyman, G.; Coomes, O.T. The role of pasture and soybean in deforestation of the Brazilian Amazon.
Environ. Res. Lett. 2010, 5, 024002. [CrossRef]

14. Hansen, M.C.; Roy, D.P.; Lindquist, E.; Adusei, B.; Justice, C.O.; Altstatt, A. A method for integrating MODIS and Landsat data
for systematic monitoring of forest cover and change in the Congo Basin. Remote Sens. Environ. 2008, 112, 2495–2513. [CrossRef]

15. Potapov, P.V.; Turubanova, S.A.; Hansen, M.C.; Adusei, B.; Broich, M.; Altstatt, A.; Mane, L.; Justice, C.O. Quantifying forest
cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM+ data. Remote Sens. Environ. 2012, 122, 106–
116. [CrossRef]

16. Margono, B.A.; Potapov, P.V.; Turubanova, S.; Stolle, F.; Hansen, M.C. Primary forest cover loss in Indonesia over 2000–2012. Nat.
Clim. Chang. 2014, 4, 730–735. [CrossRef]

17. Gaveau, D.L.A.; Sheil, D.; Husnayaen; Salim, M.A.; Arjasakusuma, S.; Ancrenaz, M.; Pacheco, P.; Meijaard, E. Rapid conversions
and avoided deforestation: Examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 2016, 6, 32017.
[CrossRef] [PubMed]

18. Hadi; Pfeifer, M.; Korhonen, L.; Wheeler, C.; Rautiainen, M. Forest canopy structure and reflectance in humid tropical Borneo: A
physically-based interpretation using spectral invariants. Remote Sens. Environ. 2017, 201, 314–330. [CrossRef]

19. Evans, M.C. Deforestation in Australia: Drivers, trends and policy responses. Pac. Conserv. Biol. 2016, 22, 130. [CrossRef]
20. Baumann, M.; Gasparri, I.; Piquer-Rodríguez, M.; Gavier Pizarro, G.; Griffiths, P.; Hostert, P.; Kuemmerle, T. Carbon emissions

from agricultural expansion and intensification in the Chaco. Glob. Chang. Biol. 2017, 23, 1902–1916. [CrossRef]
21. Fehlenberg, V.; Baumann, M.; Gasparri, N.I.; Piquer-Rodriguez, M.; Gavier-Pizarro, G.; Kuemmerle, T. The role of soybean

production as an underlying driver of deforestation in the South American Chaco. Glob. Environ. Chang. 2017, 45, 24–34. [CrossRef]

http://doi.org/10.1007/s00704-013-0900-6
http://dx.doi.org/10.1371/journal.pone.0217148
http://www.ncbi.nlm.nih.gov/pubmed/31150427
www.globalforestwatch.org
http://dx.doi.org/10.4225/13/511C71F8612C3
http://dx.doi.org/10.1126/science.aau3445
http://www.ncbi.nlm.nih.gov/pubmed/30213911
http://dx.doi.org/10.1098/rstb.2010.0180
http://dx.doi.org/10.1098/rstb.2010.0149
http://dx.doi.org/10.1073/pnas.0910275107
http://dx.doi.org/10.1126/science.1244693
http://dx.doi.org/10.1038/s41586-018-0411-9
http://www.ncbi.nlm.nih.gov/pubmed/30089903
http://dx.doi.org/10.1016/j.gloenvcha.2019.03.002
http://dx.doi.org/10.1073/pnas.0606377103
http://www.ncbi.nlm.nih.gov/pubmed/16973742
http://dx.doi.org/10.1088/1748-9326/5/2/024002
http://dx.doi.org/10.1016/j.rse.2007.11.012
http://dx.doi.org/10.1016/j.rse.2011.08.027
http://dx.doi.org/10.1038/nclimate2277
http://dx.doi.org/10.1038/srep32017
http://www.ncbi.nlm.nih.gov/pubmed/27605501
http://dx.doi.org/10.1016/j.rse.2017.09.018
http://dx.doi.org/10.1071/PC15052
http://dx.doi.org/10.1111/gcb.13521
http://dx.doi.org/10.1016/j.gloenvcha.2017.05.001


Remote Sens. 2022, 14, 4005 25 of 28

22. Hendricks, N.P.; Er, E. Changes in cropland area in the United States and the role of CRP. Food Policy 2018, 75, 15–23. [CrossRef]
23. FAOSTAT Statistical Database. Food and Agriculture Organization of the United Nations, 2012. Available online: https:

//www.fao.org/faostat/ (accessed on 1 June 2018).
24. Graesser, J.; Aide, T.M.; Grau, H.R.; Ramankutty, N. Cropland/pastureland dynamics and the slowdown of deforestation in Latin

America. Environ. Res. Lett. 2015, 10, 034017. [CrossRef]
25. Graesser, J.; Ramankutty, N.; Coomes, O.T. Increasing expansion of large-scale crop production onto deforested land in

sub-Andean South America. Environ. Res. Lett. 2018, 13, 084021. [CrossRef]
26. Song, X.P.; Hansen, M.C.; Potapov, P.; Adusei, B.; Pickering, J.; Adami, M.; Lima, A.; Zalles, V.; Stehman, S.V.; Di Bella, C.M.;

et al. Massive soybean expansion in South America since 2000 and implications for conservation. Nat. Sustain. 2021, 4, 784–792.
[CrossRef] [PubMed]

27. Zalles, V.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Tyukavina, A.; Pickens, A.; Song, X.P.; Adusei, B.; Okpa, C.; Aguilar, R.; et al.
Near doubling of Brazil’s intensive row crop area since 2000. Proc. Natl. Acad. Sci. USA 2019, 116, 428–435. [CrossRef] [PubMed]

28. Zalles, V.; Hansen, M.C.; Potapov, P.V.; Parker, D.; Stehman, S.V.; Pickens, A.H.; Parente, L.L.; Ferreira, L.G.; Song, X.P.;
Hernandez-Serna, A.; et al. Rapid expansion of human impact on natural land in South America since 1985. Sci. Adv. 2021,
7, eabg1620. [CrossRef]

29. Nepstad, D.; McGrath, D.; Stickler, C.; Alencar, A.; Azevedo, A.; Swette, B.; Bezerra, T.; DiGiano, M.; Shimada, J.; Seroa da Motta,
R.; et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 2014,
344, 1118–1123. [CrossRef]

30. Vallejos, M.; Volante, J.N.; Mosciaro, M.J.; Vale, L.M.; Bustamante, M.L.; Paruelo, J.M. Transformation dynamics of the natural
cover in the Dry Chaco ecoregion: A plot level geo-database from 1976 to 2012. J. Arid Environ. 2015, 123, 3–11. [CrossRef]

31. Tyukavina, A.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Smith-Rodriguez, K.; Okpa, C.; Aguilar, R. Types and rates of forest
disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 2017, 3, e1601047. [CrossRef]

32. Gasparri, N.I.; Grau, H.R. Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972–2007). For. Ecol. Manag.
2009, 258, 913–921. [CrossRef]

33. Gasparri, N.; Grau, H.; Gutiérrez Angonese, J. Linkages between soybean and neotropical deforestation: Coupling and transient
decoupling dynamics in a multi-decadal analysis. Glob. Environ. Chang. 2013, 23, 1605–1614. [CrossRef]

34. Grau, H.R.; Gasparri, N.I.; Aide, T.M. Agriculture expansion and deforestation in seasonally dry forests of north-west Argentina.
Environ. Conserv. 2005, 32, 140–148. [CrossRef]

35. Banchero, S.; de Abelleyra, D.; Veron, S.; Mosciaro, M.J.; Arevalos, F.; Volante, J.N. Recent Land Use and Land Cover Change
Dynamics in the Gran Chaco Americano. In Proceedings of the Latin American GRSS &ISPRS Remote Sensing Conference
(LAGIRS -IEEE), Santiago, Chile, 22–26 March 2020; pp. 511–514.

36. Buchadas, A.; Baumann, M.; Meyfroidt, P.; Kuemmerle, T. Uncovering major types of deforestation frontiers across the world’s
tropical dry woodlands. Nat. Sustain. 2022, 5, 619–627. [CrossRef]

37. Vega, E.; Baldi, G.; Jobbágy, E.G.; Paruelo, J. Land use change patterns in the Río de la Plata grasslands: The influence of
phytogeographic and political boundaries. Agric. Ecosyst. Environ. 2009, 134, 287–292. [CrossRef]

38. Verón, S.R.; Paruelo, J.M. Desertification alters the response of vegetation to changes in precipitation: Desertification in Patagonia.
J. Appl. Ecol. 2010, 47, 1233–1241. [CrossRef]

39. Villagra, P.; Defossé, G.; del Valle, H.; Tabeni, S.; Rostagno, M.; Cesca, E.; Abraham, E. Land use and disturbance effects on
the dynamics of natural ecosystems of the Monte Desert: Implications for their management. J. Arid Environ. 2009, 73, 202–
211. [CrossRef]

40. Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al.
Global Consequences of Land Use. Science 2005, 309, 570–574. [CrossRef]

41. Friedl, M.; McIver, D.; Hodges, J.; Zhang, X.; Muchoney, D.; Strahler, A.; Woodcock, C.; Gopal, S.; Schneider, A.; Cooper, A.; et al.
Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [CrossRef]

42. Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability.
Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [CrossRef]

43. de Waroux, Y.l.P.; Garrett, R.D.; Heilmayr, R.; Lambin, E.F. Land-use policies and corporate investments in agriculture in the Gran
Chaco and Chiquitano. Proc. Natl. Acad. Sci. USA 2016, 113, 4021–4026. [CrossRef]

44. de Waroux, Y.l.P.; Baumann, M.; Gasparri, N.I.; Gavier-Pizarro, G.; Godar, J.; Kuemmerle, T.; Müller, R.; Vázquez, F.; Volante,
J.N.; Meyfroidt, P. Rents, actors, and the expansion of commodity frontiers in the Gran Chaco. Ann. Am. Assoc. Geogr. 2018,
108, 204–225.

45. Richards, P.D.; Myers, R.J.; Swinton, S.M.; Walker, R.T. Exchange rates, soybean supply response, and deforestation in South
America. Glob. Environ. Chang. 2012, 22, 454–462. [CrossRef]

46. Izquierdo, A.E.; De Angelo, C.D.; Aide, T.M. Thirty Years of Human Demography and Land-Use Change in the Atlantic Forest of
Misiones, Argentina: An Evaluation of the Forest Transition Model. Ecol. Soc. 2008, 13, art3. [CrossRef]

47. Aide, T.M.; Grau, H.R.; Graesser, J.; Andrade-Nuñez, M.J.; Aráoz, E.; Barros, A.P.; Campos-Cerqueira, M.; Chacon-Moreno, E.;
Cuesta, F.; Espinoza, R.; et al. Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: Satellite
image interpretation and expert validation. Glob. Chang. Biol. 2019, 25, 2112–2126. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.foodpol.2018.02.001
https://www.fao.org/faostat/
https://www.fao.org/faostat/
http://dx.doi.org/10.1088/1748-9326/10/3/034017
http://dx.doi.org/10.1088/1748-9326/aad5bf
http://dx.doi.org/10.1038/s41893-021-00729-z
http://www.ncbi.nlm.nih.gov/pubmed/34377840
http://dx.doi.org/10.1073/pnas.1810301115
http://www.ncbi.nlm.nih.gov/pubmed/30559198
http://dx.doi.org/10.1126/sciadv.abg1620
http://dx.doi.org/10.1126/science.1248525
http://dx.doi.org/10.1016/j.jaridenv.2014.11.009
http://dx.doi.org/10.1126/sciadv.1601047
http://dx.doi.org/10.1016/j.foreco.2009.02.024
http://dx.doi.org/10.1016/j.gloenvcha.2013.09.007
http://dx.doi.org/10.1017/S0376892905002092
http://dx.doi.org/10.1038/s41893-022-00886-9
http://dx.doi.org/10.1016/j.agee.2009.07.011
http://dx.doi.org/10.1111/j.1365-2664.2010.01883.x
http://dx.doi.org/10.1016/j.jaridenv.2008.08.002
http://dx.doi.org/10.1126/science.1111772
http://dx.doi.org/10.1016/S0034-4257(02)00078-0
http://dx.doi.org/10.1073/pnas.0704119104
http://dx.doi.org/10.1073/pnas.1602646113
http://dx.doi.org/10.1016/j.gloenvcha.2012.01.004
http://dx.doi.org/10.5751/ES-02377-130203
http://dx.doi.org/10.1111/gcb.14618
http://www.ncbi.nlm.nih.gov/pubmed/30854741


Remote Sens. 2022, 14, 4005 26 of 28

48. Gavier-Pizarro, G.I.; Calamari, N.C.; Thompson, J.J.; Canavelli, S.B.; Solari, L.M.; Decarre, J.; Goijman, A.P.; Suarez, R.P.; Bernardos,
J.N.; Zaccagnini, M.E. Expansion and intensification of row crop agriculture in the Pampas and Espinal of Argentina can reduce
ecosystem service provision by changing avian density. Agric. Ecosyst. Environ. 2012, 154, 44–55. [CrossRef]

49. Guida-Johnson, B.; Zuleta, G.A. Land-use land-cover change and ecosystem loss in the Espinal ecoregion, Argentina. Agric.
Ecosyst. Environ. 2013, 181, 31–40. [CrossRef]

50. Bossard, M.; Feranec, J.; Otahel, J. CORINE Land Cover Technical Guide: Addendum 2000; Technical Report; European Environment
Agency: Copenhagen, Denmark, 2000.

51. Vogelmann, J.E.; Howard, S.M.; Yang, L.; Larson, C.R.; Wylie, B.K.; Van Driel, N. Completion of the 1990s National Land Cover
Data Set for the Conterminous United States From LandSat Thematic Mapper Data and Ancillary Data Sources. Photogramm. Eng.
Remote Sens. 2001, 67, 650–662.

52. Gutman, G.; Byrnes, R.; Masek, J.; Covington, S. Towards monitoring land-cover and land-use changes at a global scale: The
global land survey 2005. Photogramm. Eng. Remote Sens. 2008, 74, 6–10.

53. Xian, G.; Homer, C.; Fry, J. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat
imagery change detection methods. Remote Sens. Environ. 2009, 113, 1133–1147. [CrossRef]

54. Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land
cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [CrossRef]

55. Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ.
2012, 122, 66–74. [CrossRef]

56. Blanco, P.D.; Colditz, R.R.; López Saldaña, G.; Hardtke, L.A.; Llamas, R.M.; Mari, N.A.; Fischer, A.; Caride, C.; Aceñolaza, P.G.;
del Valle, H.F.; et al. A land cover map of Latin America and the Caribbean in the framework of the SERENA project. Remote
Sens. Environ. 2013, 132, 13–31. [CrossRef]

57. Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation
and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013,
34, 2607–2654. [CrossRef]

58. Hostert, P.; Griffiths, P.; van der Linden, S.; Pflugmacher, D. Time series analyses in a new era of optical satellite data. In Remote
Sensing Time Series; Springer: Berlin/Heidelberg, Germany, 2015; pp. 25–41.

59. Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and
Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [CrossRef]

60. Dwyer, J.; Roy, D.; Sauer, B.; Jenkerson, C.; Zhang, H.; Lymburner, L. Analysis ready data: Enabling analysis of the Landsat
archive. Remote Sens. 2018, 10, 1363. [CrossRef]

61. Qiu, S.; Lin, Y.; Shang, R.; Zhang, J.; Ma, L.; Zhu, Z. Making Landsat Time Series Consistent: Evaluating and Improving Landsat
Analysis Ready Data. Remote Sens. 2019, 11, 51. [CrossRef]

62. Kussul, N.; Lemoine, G.; Gallego, F.J.; Skakun, S.V.; Lavreniuk, M.; Shelestov, A.Y. Parcel-based crop classification in Ukraine
using Landsat-8 data and Sentinel-1A data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2500–2508. [CrossRef]

63. Schmidt, M.; Pringle, M.; Devadas, R.; Denham, R.; Tindall, D. A framework for large-area mapping of past and present cropping
activity using seasonal Landsat images and time series metrics. Remote Sens. 2016, 8, 312. [CrossRef]

64. Gao, F.; Anderson, M.C.; Zhang, X.; Yang, Z.; Alfieri, J.G.; Kustas, W.P.; Mueller, R.; Johnson, D.M.; Prueger, J.H. Toward mapping
crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 2017, 188, 9–25. [CrossRef]

65. Song, X.P.; Potapov, P.V.; Krylov, A.; King, L.; Di Bella, C.M.; Hudson, A.; Khan, A.; Adusei, B.; Stehman, S.V.; Hansen, M.C.
National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field
survey. Remote Sens. Environ. 2017, 190, 383–395. [CrossRef]

66. Zhu, L.; Radeloff, V.C.; Ives, A.R. Improving the mapping of crop types in the Midwestern US by fusing Landsat and MODIS
satellite data. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 1–11.

67. Roy, D.; Yan, L. Robust Landsat-based crop time series modelling. Remote Sens. Environ. 2018, 238, 110810. [CrossRef]
68. Torbick, N.; Huang, X.; Ziniti, B.; Johnson, D.; Masek, J.; Reba, M. Fusion of moderate resolution earth observations for operational

crop type mapping. Remote Sens. 2018, 10, 1058. [CrossRef]
69. Ashourloo, D.; Shahrabi, H.S.; Azadbakht, M.; Aghighi, H.; Nematollahi, H.; Alimohammadi, A.; Matkan, A.A. Automatic canola

mapping using time series of sentinel 2 images. ISPRS J. Photogramm. Remote Sens. 2019, 156, 63–76. [CrossRef]
70. Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and

land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [CrossRef]
71. Johnson, D.M. Using the Landsat archive to map crop cover history across the United States. Remote Sens. Environ. 2019,

232, 111286. [CrossRef]
72. Rufin, P.; Frantz, D.; Ernst, S.; Rabe, A.; Griffiths, P.; Özdoğan, M.; Hostert, P. Mapping Cropping Practices on a National Scale
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