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Abstract 

The aim of this study was to study the effects of four feeding systems on n-3 Polyunsaturated Fatty 

Acids (PUFAs) in Longissimus dorsi muscle lipids from three different steer genotypes and discuss the 

current finding concerning the role of these factors on alfa-linolenic acid conversion into n-3 long 

chain PUFAs. The feeding systems described here, represent productive models widespread in 

Argentina Pampeana region, ranging from pasture exclusive diet, to the feedlot system. C18:2 n-6 (LA) 

increased whereas C18:3 n-3 (ALA) decreased according to the increase in grain in the diet. The 

LA/ALA and n-6/n-3 PUFAs ratios increased as the grain in the diet increased. We concluded that by 

feeding animals correctly, we address the problem of consuming a high n-6/n-3 PUFAs ratio without 

virtually changing normal diets. Although these changes appear modest, for non-sea fish eaters, animal 

products such as beef are the only sources of long-chain n-3 PUFAs, and any improvement in the fatty 

acid composition of beef will result in an increase in the consumption of n-3 fatty acids. 
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1. Introduction 

Studies in meat science are advancing the development of foods with characteristics that benefit human 

health. Both Linoleic Acid (LA) and Alpha-Linolenic Acids (ALA) belong to the n-6 (omega 6) and n-3 

(omega 3) series of Polyunsaturated Fatty Acids (PUFAs) respectively. LA and ALA are defined as 

essential fatty acids because they are not synthesized in the human body and thus have to be obtained 

from the diet. Hence, it is essential to provide these two acids in the diet, because they are precursors 

for Long Chain Polyunsaturated Fatty Acids (LC-PUFAs) (Williams, 2000). LA, which is practically 

found in every food, is the most prominent PUFA in the Western diet. As LA is the metabolic precursor 

of Arachidonic Acid (ARA) and derived bioactive eicosanoids, there is concern that dietary LA could 

increase tissue ARA, eicosanoid formation and subsequently enhance the risk of and/or exacerbate 



www.scholink.org/ojs/index.php/ra                   Research in Agriculture                         Vol. 2, No. 1, 2017 

8 
Published by SCHOLINK INC. 

conditions associated with acute and chronic diseases (Whelan, 2008). 

According to recent studies the conversion of ALA into n-3 LC-PUFAs, especially 22:6 n-3 (DHA) in 

humans is scarce and is affected by the ratio LA/ALA, the total PUFAs and the amounts of ALA in the 

diet (Barcelo-Coblijn & Murphy, 2009). The conversion of ALA into LC-PUFAs is decreased by high 

dietary ratios of LA/ALA. Moreover, n-6 fatty acids intake influences tissue concentrations of n-3 

LC-PUFAs (Brenna et al. 2009). Competitive interactions among n-6 and n-3 PUFAs at the level of 

formation and action of eicosanoids, appear to relate directly to potential benefits attributed to an 

eligible dietary balance of n-3 and n-6 PUFAs. With higher dietary ratios of n-6/n-3 PUFAs, the 

pro-inflammatory/aggregatory eicosanoids from LA are favoured over those from ALA, showing 

anti-inflammatory/aggregatory effects. Controlling the synthesis of n-3 LC-PUFA, such as EPA (20:5 

n-3) and DHA, from ALA, as well as controlling the respective eicosanoids by consumption of the 

optimized ratio of n-6 to n-3 is, therefore, the particular nutritional focus of interest. Since members of 

the n-6 and n-3 PUFAs fatty acid families compete for the corresponding enzyme systems the 

conversion of LA or ALA into their longer chain homologues is significantly influenced by the 

composition of dietary fats. Most of the fat intake in humans comes from animal products (meat, milk, 

eggs, etc.). This has changed because animals used to eat mainly forages (high ALA and low LA) but 

now they typically eat less forage and consume more cereals and soy bean (high LA and low ALA). As 

a result, the animal products are now much higher in n-6 PUFAs and lower in n-3 PUFAs. Smink et al. 

(2013) suppressed the effect of ALA intake on n-3 LC-PUFAs by LA intake and suppressed the 

concentration of n-6 LC-PUFAs in blood plasma by dietary ALA. They found that the inhibiting effect 

of ALA in blood ARA, at equal increasing intakes, was stronger than the stimulating effect of LA as a 

precursor. Analysis of n-3 PUFA intake, intake recommendations, and health claims are often limited to 

ALA, EPA and DHA and omit Docosapentaenoic Acid (DPA). DPA is an intermediate in the production 

of DHA from EPA and its contribution in beef lipids is higher than that of EPA and DHA. The 

functional and nutritional attributes of DPA are largely unknown but some studies have shown that DPA 

appears to be a primary end point for the synthesis of n-3 PUFAs from ALA (Howe et al., 2006).  

Data from a large number of studies regarding LA and ALA proportions in beef lipids indicate that the 

fatty acid composition vary largely across production systems (Garcia & Casal, 2012). The fatty acid 

composition of adipose tissue and muscle in cattle is affected by several factors as diet, total fat content, 

breed, genotype, age and gender. Genetic variation in the fatty acid composition of adipose tissue 

triacylglycerols, with breed differences were observed in several studies. However, in the phospholipid 

fraction, the total amount of PUFAs does not differ among crossbreed groups, because certain amounts 

of unsaturated fatty acids are required to maintain the physical properties of the cell at the body 

temperature of mammals (Malau-Aduli et al., 1998). Sexton et al. (2012) showed that there is a sire 

breed x time of weaning interaction for percent total PUFA, with the Charolaise steers having a greater 

PUFAs percentages than other treatment groups. Humada et al. (2012) studied the effects of two 

production systems (semi-intensive vs. intensive), and two slaughter ages (12 vs.14 months) on LA and 
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ALA proportions on beef fatty acids composition. The slaughter age affected LA or ALA proportions. 

LA and ALA are strongly positively correlated to intramuscular fat of Longissimus dorsi muscle at the 

quantitative level (mg/100g fresh tissue), but there are negative correlation coefficients for the relative 

proportion of these fatty acids to intramuscular fat. The relationships between intramuscular fat and the 

fatty acid profile of triglycerides and phospholipids fractions are weaker compared to total muscle fat. 

The aim of this work was to study the effects of four feeding systems on LA, ALA, n-6 and n-3 PUFAs 

and in LA/ALA and n-6/n-3 PUFAs ratios in Longissimus dorsi muscle lipids from three different 

genotypes of steers and discuss the current finding concerning the role of these factors on ALA 

conversion into n-3 LC-PUFAs in humans. The feeding systems described here, represent productive 

models widespread in Argentina Pampeana region, ranging from pasture exclusive diet, to the feedlot 

system. The British purebred or their crossbreds, which are the main components of the meat consumed 

domestically, were represented by Abedeen Angus (AA) steers. The crossbred Charolais x Aberdeen 

Angus (CHAxAA) steers represents the most advisable crossbred for production of heavy steers for 

export markets, and Argentine Holstein (HA) steers are potentially adecuate for commercial purpose.  

 

2. Materials and Methods 

2.1 Animal Management of the Animals and Their Diets 

A total of 144 Aberdeen Angus (AA), Charolais x Aberdeen Angus (CHAxAA) and Argentine Holstein 

(HA) steers were allotted from 5-7 months old to slaughter weight to the four following treatment: 

Pasture: steers grazed on pasture exclusively (mainly alfalfa and festuca). 

Cn0.7%LW: steers fed with a similar pasture but supplemented daily with cracked corn grain (0.7% of 

live weight). 

Cn1%LW: steers fed with a similar pasture but supplemented daily with cracked corn grain (1% of 

live-weight). 

Cn85%: steers fed with a diet based in corn grain (85%), alfalfa hay (8.6%), soybean meal (8.4%) and, 

minerals and vitamins (0.5%). 

The forage in Pasture, Cn0.7% and Cn1% treatments were provided by a mixed pasture of alfalfa 

(Medicago sativa) and tall fescue (Festuca arundinacea Schreb) grazed under a rotational system of six 

paddocks with seven days of permanency in each one.  

Twelve steers for treatment were assigned and they were conventionally slaughtered in a conventional 

abattoir at a similar degree of finishing estimated by visual evaluation. Data from the animal 

performance within each breed and treatment group are presented in Tables 1 and 2.  
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Table 1. Animal Data: Initial and Final Live Weights and Experimental Period (EP) 

 Initial live weight (kg) Final live weight (kg) EP (days) 

Genotype AA CHAxAA HA AA CHAxAA HO AA CHAxAA HA 

N 12 12 12 12 12 12 12 12 12 

Pasture 190a 181a 195a 388b 449a 505b 365 382 391 

Cn0.7%L

W 

188a 171a 194a 408a 467a 512ab 333 378 367 

Cn1%LW 188a 174a 194a 420a 483a 541a 289 356 354 

Cn85% 189a 168a 193a 350a 399b 374c 152 192 170 

Note. abc means within a column with different letters significantly differ (p<0.05).  

 

Table 2. Experimental Animals: Growth Rate (g/d) and EAC (Estimated Average Contribution) 

of Grain to Total Energy Intake 

 Growth rate (g/d)  

Genotype AA CHAxAA HA EAC 

Pasture 546c 707c 800d 0% 

Cn0.7%LWt  675bc 787c 875cd 33.6% 

Cn1%LW 808b 871bc 983bc 44.9% 

Cn85% 1055a 1223a 1093ab 85.8% 

Note. abcd means within a column with different letters significantly differ (p<0.05).  
 

2.2 Methods of Analysis  

After 24 h at 4°C, 12 steaks, 2-25 cm of thickness, from Longissimus Dorsi muscles at the 11th rib 

were taken from each group, carefully dissected and used for chemical analysis. All samples were 

frozen and stored at -20°C until analysis were performed. Aliquot samples of 10g each, trimmed of 

external fat, minced carefully, dried and extracted in a Tecator apparatus using hexane as the extraction 

solvent according to official methods (AOAC, 1992), were used to determine total intramuscular fat 

(IMF). Aliquot samples of 5g each were extracted using the Folch et al. method (Folch et al., 1957). 

Fatty Acid Methyl Esters (FAME) were prepared according to the method of Pariza et al. (2001) and 

measured using a Chrompack CP 900 equipment (Chrompack Inc., Middleburg, The Netherlands) fitted 

with a flame ionization detector. Fatty acid methyl esters were separated with a fused silica capillary 

column CP-Sil 88 (100m x 0.25mm i.d.) from Chrompack Inc., Middleburg, The Netherlands, with N2 

as the carrier gas. The oven temperature was programmed at 70° C for 4 min, increased from 70 to 

170°C at a rate of 13°C/min and then increases from to 170° to 200°C at 1°C/min. Individual fatty 

acids were identified by comparing relative retention times with individual fatty acids standard 

(PUFA-2 Animal Source. Supelco). Analytic results were expressed as percentages of total fatty acids 
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and mg of fatty acid contribution in 100g of fresh Longissimus Dorsi muscle.  

2.3 Statistical Analyses  

Data were subjected to analysis of variance using the GLM procedure of SAS v.9.1 statistical software 

package. The two factorial design were considered: breed with three levels (AA, CHAxAA and AH) 

and diet with four levels (Pasture, pasture + 0.7% grain, pasture + 1% grain and grain) and their 

interactions. Tukey’s test was used for means comparison. 

 

3. Results  

The effects of the diet on the LA and ALA proportions, n-3 and n-6 PUFAs, IMF%, LA/ALA and 

ratios n-6/n-3 PUFA are shown in Tables 3 and 4.  

 

Table 3. Effects of Genotype and Diet, on LA, ALA, n-6 and n-3%, and LA/ALA and n-6/n-3 

Ratios in Steer Longissimus Dorsi Lipids 

 LA% ALA% n-3% n-6% n-6/n-3 LA/ALA IMF% PUFA% 

AA 4.10 0.91a 2.07a 5,97 3.84b 6.36a 3.57 8.04 

CHAxAA 4.30 0.93a 2.03ab 6.24 3.78b 6.72a 3.80 8.27 

HA 4.29 0.81b 1.82b 6.41 4.71a 8.05b 3.59 8.22 

Pasture 3.55b 1.38a 3.09a 5.48b 1.08 2.59c 2.89b 8.57ab 

Cn0.7% 3.76b 0.99b 2.09b 5.61b 2.69 3.84bc 3.58ab 7.70b 

Cn1.0% 3.94b 0.77c 1.69c 5.91b 3.61 5.31b 4.25a 7.61b 

Cn85% 5.65a 0.39d 1.01d 7.82a 8.32 16.43a 3.90a 8.83a 

RMSE 0.97 0.20 0.49 1.40 1.34 3.59 1.32 1.76 

Genotype 0.53 0.008 0.028 0.307 0.001 0.057 0.043 0.797 

Diet 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 

GxD 0.611 0.267 0.348 0.537 0.004 0.381 0.135 0.609 

Note. *Significance of main effects (breed, diet) and their interaction (G x D)  

abcd means within a column with different letters significantly differ.  

RMSE: Root mean square error n-3 (18:3+20:5+22:5+22:6); n-6 (18:2+18:3+20:3+20:4+22:4); 

PUFA%=n-6+n-3%.  

IMF: Intramuscular fat  
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Table 4. Effects of Genotype and Diet on n-6 and n-3 PUFAs (Percent of Total Fatty Acids) on 

Steer Longissimus Dorsi Muscle Lipids 

 18:2 n-6 20.3 n-6 20:4 n-6 18:3 n-3 20:5 n-3 22:5 n-3 22:6 n-3 

AA 4.10 0.44 1.10b 0.91a 0.31 0.52 0.33 

CHAxAA 4.30 0.42 1.16b 0.93a 0.31 0.50 0.29 

HA 4.29 0.44 1.41a 0.81b 0.35 0.52 0.13 

Pasture 3.55b 0.44 1.12 1.38a 0.57a 0.76a 0.38 

Cn0.7% 3.76b 0.41 1.18 0.99b 0.34b 0.53b 0.23 

Cn1.0% 3.94b 0.42 1.23 0.77c 0.35b 0.47b 0.20 

Cn85% 5.65a 0.46 1.35 0.39d 0.14b 0.30c 0.17 

RMSE 0.97 0.16 0.48 0.20 0.13 0.20 0.13 

Genotype 0.53 0.851 0.005 0.008 0.241 0.725 0.000 

Diet 0.000 0.588 0.236 0.000 0.000 0.000 0.000 

GxD 0.611 0.071 0.708 0.267 0.076 0.237 0.000 

Note.*Significance of main effects (breed, diet) and their interaction (G x D).  

abcd means within a column with different letters significantly differ.  

RMSE: Root mean square error  

 

The diet significantly affected all these variables. The proportions of LA increased (p<0.001) according 

with the increase in grain in the diet, whereas the ALA proportions decreased (p<0.001). Total n-3 

LC-PUFAs decreased significantly whereas total n-6 LC-PUFAs increased as the grain in the diet 

increased. Total LC-PUFAs were higher in Pasture and Cn85% than in Cn07% and Cn1%. The 

LA/ALA and n-6/n-3 PUFA ratios were (p<0.001) lower in pasture and supplement-fed beef than in the 

grain-fed beef. The LA/ALA ratio increased linearly as the grain in the diet increased. The n-6/n-3 

PUFAs ratio followed a similar pattern. IMF% was significantly affected by the diet, being lower in 

pasture-fed beef than in the others.  

The effects of the genotype on LA, ALA, n-3 and n-6 PUFAs, IMF percentages and LA/ALA and 

n-6/n-3 PUFA ratios are shown in Tables 3 and 4. The genotype affected ALA, n-3 LC-PUFAs, and 

n-6/n-3 PUFA and LA/ALA ratios. The beef lipids from HA showed (p<0.001) lower ALA proportions 

than those from AA and CHAxAA, but no significant differences in the LA proportions. Total n-6 

LC-PUFAs were similar in all genotypes whereas total n-3 LC-PUFAs were lower in HA than in AA 

and CHAxAA, which were similar. The LA/ALA and n-6/n-3 ratios were higher in HA than in the other 

two genotypes. The effects of genotype and diet on the estimated contributions (mg/100g fresh 

Longissimus dorsi muscle) of LA, ALA and n-3 and n-6 PUFAs are presented in Table 5. The effects of 

the diet on the contributions of LA, ALA, n-3 and n-6 and total PUFAs were more important than the 

genotype effects. 
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Table 5. Estimated Contribution of Longissimus Dorsi Fatty Acids (mg/100g Fresh Tissue) 

According to Genotype and Diet 

 LA ALA ARA EPA DPA DHA 

AA 144 31a 37c 10 17 10A 

CHAxAA 159 33a 41b 10 17 10A 

HA 148 27b 47a 11 17 5B 

Pasture 101c 40a 31c 16a 21a 11A 

Cn0.7% 126c 34b 37b 11a 18b 8AB 

Cn1.0% 158b 32b 48a 9c 18b 8AB 

Cn85% 216a 15c 49a 6c 11c 6B 

RMSE 45,9 11.3 15.1 4.1 6.3 5.4 

Genotype 0.263 0.026 0.005 0.334 0.995 0.000 

Diet 0.000 0.000 0.000 0.000 0.000 0.008 

GxD 0.847 0.945 0.640 0.478 0.473 0.000 

Note. The estimated values were calculated according with the levels of intramuscular fat  

*Significance of main effects (breed, diet) and their interaction (B x D) 

abc means within a column with different letters significantly differ.  

RMSE: Root mean square error  

 

4. Discussion 

It is well know that fatty acid composition of beef, and hence its nutritional value, can be manipulated 

by genetic and nutritional approaches although it is acknowledge that genetic factors provide smaller 

differences than dietary factors. In this study, as in a previous one, we found some evidence of genetic 

variation in LA and ALA proportions in beef lipids (Garcia et al. 2008). Nuernberg et al. (2005) found 

that the percentages of ALA in German Simmental and German Holstein bulls fed with grass or 

concentrate increased whereas the percentage of LA were only affected by breed being higher in 

German Simmental intramuscular fat. In contrast, Muchenje et al. (2009) found no differences due to 

the breed in the proportions of LA and ALA among Nguni, Bonsmara and Angus steers. Corazzin et al. 

(2012), found that Italian Simmental and Holstein bulls presented dietary differences in Longissimus 

thoracis muscle for LA in phospholipids and neutral lipids fractions. 

We found significant increase in most of the individual muscle n-3 PUFAs and decrease in n-6 PUFAs 

in the case of the diet supplemented with grain when compared with pasture group. In our study beef 

PUFAs content was higher than the values reported by others (Scollan et al., 2006) LA is the primary 

PUFAs in both grass/forage-fed and grain-finished beef providing 60-85% of total PUFAs (Duckett et 

al., 2013). Usually the percentage of PUFAs in beef is increased by as much as 25% in response to 

grass-feeding due to the lower intramuscular total fat of most grass-fed beef. However, the total 



www.scholink.org/ojs/index.php/ra                   Research in Agriculture                         Vol. 2, No. 1, 2017 

14 
Published by SCHOLINK INC. 

estimated amount of PUFAs in steaks from U.S. grass/forage-fed cattle may be up to 75mg lower per 

100g of beef, primarily as LA (Daley et al., 2010). Only 16 to 26 mg ALA have been reported in 

various lean cuts for grass/forage cattle versus 4-13 mg ALA from U.S. grain-finished beef, whereas 

but only traces of n-3 LC-PUFAs are noted in meat from U.S. grass/forage-fed cattle (Duckett et al., 

2013). 

The n-6/n-3 FA ratio in grass-fed beef is beneficially low, typically less than 3 (Howe et al., 2006). The 

decreased n-3/n-6 ratio in grazing beef is a consequence of increased ALA proportion and a relative 

constant proportion of LA in adipose tissues from steers on pasture compared with those finished with 

feedlot diets. Steers finished on a grain diet show a 2.5 times higher n-6/n-3 PUFAs ratio than those 

finished on pasture (Basarab et al., 2007; Duckett et al., 2009). However, the fold of increase in the 

n-6/n-3 FA ratio can be higher when examined in beef muscles (Garcia et al., 2008). Similar results 

have been found for others with crossbreed heifers offered a control diet of grass silage and concentrate 

(Sarries et al., 2009). Alfaia et al. (2009) used Alentejano bulls to research the effect of four feeding 

systems (pasture feeding followed by 2 or 4 months of finishing on concentrate and concentrate only) 

on the fatty acid composition of muscle of Longissimus dorsi muscle and found no significant 

differences in the proportions of LA among all treatments. Conversely, they found that the meat from 

the bulls fed the pasture diet had the highest percentages of ALA. Varela et al. (2004) found that both a 

pasture finishing system and an indoor finishing system (maize, silage and concentrate) affected the 

intramuscular fatty acid profile of Rubia Gallega steers. They also found that intramuscular fat fatty 

acids of finished steers contained higher concentrations of LA but no differences in those of ALA. In 

addition, Alfaia et al. (2006) found differences in LA between meat from bullocks reared in a 

semi-intensive system and that from bullocks produced in a conventional intensive concentrate-based 

system. On the other hand, Faucitano et al. (2008) found that cattle fed high concentrate diets showed a 

significantly decreased the proportion of ALA in Longissimus dorsi muscle lipids. Lee et al. (2009) 

studied the effects of diets with grass or red clover silage on the proportions of LA and ALA in 

Longissimus dorsi muscle in dairy cull cows and found that red clover silage increased the percentages 

of LA and ALA. Herdman et al. (2010) studied the effects of two diets, one rich in LA and the other 

rich in ALA and found that both affected the fatty acid composition of the lipid classes in the IMF of 

German Simmental bulls. The bulls fed the ALA rich-diet had higher concentrations of ALA in 

phospholipids and triglycerides. Leheska et al. (2008) in an USA study for inclusion in the USDA 

National Database for Standard Reference compared the fatty acid composition of grass-fed beef and 

conventionally fed (control) beef. They concluded that the two production systems, semi-intensive vs. 

intensive, affected the LA and ALA concentrations. 

While le contribution of ALA to cardiovascular diseases is debatable, evidence regarding the role of n-3 

LC-PUFAs in the prevention of hearth diseases is convincing (FAO, 2010). Due to the importance of 

n-3 LC-PUFAs in cardiovascular health, intake recommendations suggest a minimum of 250 mg 

EPA+DHA/day (EFSA, 2010). It has been shown that both grass/forage and grain-finished-fed beef can 
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contribute n-3 LC-PUFAs to the U.S. diet, averaging between 5.33 and 2-19 mg/100 respectively, 

primarily as EPA+DPA (Van Elswyk & McNeillet, 2014). 

 

5. Conclusions 

The genotype and animal diet, are the main factors considered in the current systems of beef production, 

affected the nutritional value of beef lipids. The LA and ALA proportions, and therefore the LA/ALA 

ratio of beef lipids were generally more healthy in grass-fed than grain-fed beef. Considering the 

importance of LA and ALA competition in the synthesis of LC n-3 PUFAs, and therefore in the 

concentrations of EPA, DPA and DHA in beef lipids, it is possible to optimize genotypes and animal 

diets. The dietary design will be of great importance to improve the nutritional value of beef. By 

feeding animals correctly, we address the problem of consuming too much n-6 fatty acids at the 

expense of too little n-3 fatty acids, without virtually changing of diet. In conclusion, it is possible to 

manipulate the fatty acid composition of beef toward a more healthy profile. Although these changes 

appear modest, for non-fish eaters, animal products such as beef are the only sources of long-chain n-3 

PUFAs, and any improvement in the fatty acid composition of beef will result in an increase in the 

consumption of n-3 fatty acids. 
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