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Chapter

Synthetic Communities of 
Bacterial Endophytes to Improve 
the Quality and Yield of Legume 
Crops
Mariela I. Monteoliva, Lucio Valetti, Tania Taurian, 
Clara S. Crociara and María Carla Guzzo

Abstract

Plant-associated microbiomes confer fitness advantages to the plant host by 
growth promotion through different mechanisms including nutrient uptake,  
phytohormones production, resistance to pathogens, and stress tolerance. These 
effects of the potentially beneficial microbes have been used in a diversity of 
biotechnological approaches to improve crop performance applying individual 
bacterial cultures. However, healthy plants host a diversity of microorganisms 
(microbiota). Next-generation sequencing technologies have offered insights into 
the relative abundances of different phylogenetic groups in a community and the 
metabolic and physiological potential of its members. In the last decade, researchers 
have started to explore the possibilities to use temporal and functional combinations 
of those bacteria in the form of synthetic communities. In this chapter, we review 
the benefits of using endophytic bacteria in legumes, the available methodological 
approaches to study the effects of bacterial communities, and the most recent findings 
using synthetic communities to improve the performance of legume crops.

Keywords: sustainable agriculture, abiotic and biotic stresses protection,  
food security, endophytic bacteria, synthetic communities

1. Introduction

Plants constitute vast and diverse niches for endophytic organisms, and there 
is not a single plant species devoid of them. The most up-to-date definition for 
endophytes defines them as the microorganisms isolated from surface-sterilized 
plant tissues, which do not cause any noticeable harm to their host plants [1, 2]. 
The most abundant and common microbes living as endophytes are bacteria and 
fungi [3]. Endophytic bacteria are present in any kind of plant, from ferns and 
bryophytes to mono and dicotyledonous species [4]. In nature, mainly the intercel-
lular spaces of the plant host are colonized by the endophytic bacteria [1, 5, 6]. 
But, endophytes have been also found in intracellular spaces of grapevine, barley, 
tobacco, Arabidopsis, and pine [7], suggesting that legumes may also have intracel-
lular endophytes.
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The endophytic bacterial communities make significant contributions to growth 
promotion and plant health in mutualistic (even symbiotic) relationships. The plant 
host protects the bacteria from the environment, while the endophytic community 
provides several benefits to the host. The benefits for the plant may include nutrient 
assimilation (such as nitrogen, phosphorus, or iron), growth stimulation, defense 
against pathogens, and/or protection against environmental stresses [8, 9]. Some of 
these effects might be altered when the plant is under stress [10].

The use of these natural symbionts/mutualists offers an opportunity to maxi-
mize legume crop productivity while reducing the environmental impacts of 
agriculture. For decades, most of the studies (and agricultural applications) have 
been about the effects of individual strains of bacteria, but recently with the bloom 
in bioinformatics and sequencing technology development, the knowledge about 
the plant microbiota has burst, and the potential to use and manipulate complex 
bacterial communities has started to be the target of a large research community.

2. Plant endophytic microbiome

In natural environments, the intracellular spaces of legumes are inhabited by 
numerous microorganisms, such as virus, fungi, nematodes, and bacteria. Here we 
focus on bacterial endophytes that benefit the plant in some way. Those bacteria 
colonize the host by several mechanisms, such as natural opening or injures and 
proliferate within the host. There is a huge taxonomic and functional diversity 
of endophytic bacteria, adapted to the microenvironments that the plant host 
provides. That diversity will be shaped by the microbial community members, the 
plant host, and the environmental conditions.

2.1 Colonization and distribution within the host plant

Colonization mechanisms vary with the type of interaction between the host and 
the bacteria and the life cycle of the microbe. Overall, most of the endophytic bacte-
ria enter the plant through the roots. Since the microbial diversity decreases from the 
root to the leaves, it has been proposed that most of the microbes colonize the plant 
through the roots and proliferate to aboveground tissues [11] (Figure 1). Endophytic 
bacteria are usually “recruited” by plant host root exudates, such as organic acids, 
amino acids, and proteins [12, 13]. Once the bacteria are close to the root surface, 
they enter through lateral root emergence areas or other openings, caused by wounds 
or mechanical injuries. In the early stages, most of the endophytes are first observed 
in root hairs and subsequently in the root cortex [14]. However, endophytes can also 
colonize the leaves through the stomata, injuries in the epidermis, or introduced by 
vectors. In leaves, bacterial endophytes have been observed in the intercellular spaces 
of mesophyll, substomatal areas, and xylem tissues [15, 16].

In addition, the habit of the microbe conditions its colonization strategy. For 
example, obligate endophytes, which depend on the plant metabolic activity for 
their survival, are usually transmitted to the seed (vertical transmission) and 
spread inside the plant or through the action of a vector. On the contrary, most 
of the facultative endophytes, which have a free life in the soil and colonize the 
plant during some stage of their life cycle, colonize the plant through occasional 
wounds [17].

The colonization process itself alters host plant physiology (in a process called 
“niche construction” from the microbe’s point of view) by defense alterations or 
direct shift of the host metabolism [18]. Those microenvironment changes can 
affect the local microbiome structure and functions, by altering relationships 
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among bacterial species and within the host. Furthermore, under particular condi-
tions, part of the response of the plant will stimulate or recruit specific endophytes, 
which may contribute to survival or tolerance of that condition [19, 20]. It was 
proved in tomato cultivars that the transplant of the rhizosphere from a resistant to 
a susceptible cultivar suppressed Ralstonia solanacearum disease symptoms. They 
found a highly abundant flavobacterial genome in the resistant cultivar rhizosphere, 
and the isolated flavobacteria suppressed disease symptoms in the susceptible 
cultivar in pots [21]. In legumes, it was reported that Fusarium-resistant common 
bean cultivars showed a higher abundance of Pseudomonadaceae, Bacillaceae, 
Solibacteraceae, and Cytophagaceae families [22], but no further inquiries have 
been reported.

Another aspect affecting the colonization process of the endophytic bacteria 
is the host defenses. Endophytes live in the same environment as many plant 
pathogens and share close similarities with them. Microbe- or pathogen-associated 
molecular patterns (MAMPs/PAMPs) are conserved and necessary for microbial 
survival, but plants have evolved multiple receptors to recognize them and induce 

Figure 1. 
Diversity gradient of bacterial endophytic microbiota and growth promotion mechanisms to legumes. Legumes 
are surrounded and interact with bacteria in the soil and air (epiphytic bacteria in the rhizosphere and 
phyllosphere) and in the inter- and intra-cellular spaces (endosphere). Those bacteria can be saprophytic, 
pathogenic, or beneficial for the plant. The beneficial bacteria can promote plant growth by direct and indirect 
mechanisms. Direct mechanisms include phytohormone, volatiles, and other compounds production and 
facilitation of nutrient assimilation. Indirect mechanisms include pathogen and abiotic stress protection. ISR, 
induced systemic resistance.
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the plant immune system. Then, the colonization of endophytic bacteria triggers 
plant defenses, and the process needs to be avoided or blocked by the beneficial 
endophytes to be able to colonize and proliferate within the host [2, 23, 24]. It is not 
well understood yet how the beneficial bacteria overcome the defenses, but a few 
mechanisms have been unraveled, including the blockage of MAMPs and defense 
signaling [25]. The beneficial bacteria Bacillus subtilis avoid a strong defensive 
response in the host by blocking the detection of their own flagellin by the secre-
tion of the flagellin-binding peptide subtilomycin [25, 26]. Another mechanism is 
the secretion of bacterial antioxidant enzymes, such as superoxide dismutases and 
glutathione-S-transferases to detoxify the reactive oxygen species that signals the 
plant defense [27]. An alternative mechanism is the suppression of salicylic acid 
(SA)-mediated defense signaling. Sinorhizobium fredii HH103 with defective type III 
secretion system (T3SS) is unable to suppress SA-dependent defenses and subse-
quently fails to promote nodulation on the host [28], indicating that the suppression 
of the SA-dependent defense is critical for endophyte colonization. Some of those 
mechanisms have not been reported in legumes, but if those bacteria are colonizing 
legumes, similar mechanisms might be in action.

The establishment of the endophytic bacterial community in the legume host 
is a complex and dynamic process that has been studied mostly in fragments and 
simplified systems (usually one bacterial strain in one host under one or a few 
conditions), and it must be further understood to take the best advantages of their 
potential benefits for legume agriculture.

2.2 Endophytic bacterial diversity

There is an enormous diversity of bacterial endophytes in legumes, considering 
that the rhizobia are also endophytes. The interaction of rhizobia and legumes has 
been studied for more than a century [29]. Since then, many rhizobial endophytic 
bacteria were isolated from different legumes, particularly root and nodule tissue. 
These bacteria can establish a symbiotic interaction, induce the formation of new 
organs in roots and stems called nodules, and fix atmospheric nitrogen. In addition, 
the so-called “new rhizobia” (or noncanonical rhizobial genera) of Alfa- and Beta-
Proteobacteria has been reported in the last decades. They can form nodules and fix 
nitrogen and mainly belong to Microvirga spp. and Burkholderia spp., respectively 
[30]. Other non-nitrogen-fixer endophytes are present in nodules and sometimes 
improve nodule formation [31–33]. For instance, Hoque et al. [34] isolated rhizobia 
and non-rhizobia endophytes from two wild Acacia species from Australia, and 
nodules were produced by species of the genera Rhizobium, Ensifer, Mesorhizobium, 
Burkholderia, Phyllobacterium, and Devosia, much more than expected. In addition, 
rhizobial species were isolated from other plant tissues apart from nodules [3].

Overall, from a large number of bacterial genera present in legumes, the most 
frequent ones (excluding rhizobia) are Agrobacterium, Bacillus, Enterobacter, and 
Pseudomonas, followed by Acinetobacter, Arthrobacter, Curtobacterium, Devosia, 
Dyella, Herbaspirillum, Klebsiella Micromonospora, Microbacterium, Mycobacterium, 
Ochrobactrum, Paenibacillus, Pantoea, Rhodopseudomonas, Serratia, Staphylococcus, and 
Sphingomonas ([3, 9, 21], and reference therein) (Tables 1 and 2).

2.3 Factors affecting diversity

The composition, diversity, and abundance of the endophytic microbiome are 
influenced by the soil microbial pool; the plant host identity and status (genotype, 
development, and physiology); agricultural practices; and climate and environ-
mental conditions (such as temperature, water supply, and nutrients) [8, 16, 71]. 
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Legume 

species

Organ Treat. Method Most abundant bacterial Functions Ref.

Peanut

Arachis 
hypogaea

Seed 

germs, 

sprout, 

cot.

Develop. 16S Synechococcus; 
Halothiobacillus, 
Paracoccus, Agrobacterium, 
Gallionella; Mycobacterium, 
Rhodococcus, Burkholderia, 
Erwinia, Hyphomonas, 
Devosia

N.D. [35, 

36]

Root Monocrop vs. 

crop rotation

MG, MT Bordetella, Burkholderia, 
Ktedonobacter, 
Ktedonobacter racemifer, 
Opitutus terrae, 
Thermomicrobium roseum, 
Chloroflexus aggregans, 
Thermosediminibacter 
oceani, Dehalogenimonas 
lykanthroporepellens

N, S, P 

metabolisms, 

oxidative 

stress 

resistance, 

antibiotics, 

siderophores, 

IAA synthesis 

genes

[37]

Chickpea

Cicer 
arietinum

Roots, 

nodule

BT-transgene 16S Calothrix, Rickettsia, 
Mesorhizobium, 
Methylobacillus, 
Arthrobacter, Bacillus, 
Streptomyces, 
Saccharopolyspora, 
Rhodococcus, Ramlibacter, 
Propionivibrio, 
Janthinobacterium, 
Kaistobacter, 
Sphingomonas, 
Ammoniphilus, 
Rubrobacter. 
Actinocatenispora, 
Pseudaminobacter, 
Burkholderia Shinella.

N.D. [38]

Rosewood

Dalbergia 
odorífera

Nodule Seedlings, 

rhizobial 

inoculation

16S Bradyrhizobium, 
Chloroplast norank, 
Lactococcus, 
Mycobacterium, 
Bacillus, Rhizobium, 
Mesorhizobium, 
Burkholderia

N.D. [39]

Soybean

Glycine max
Nodule Salty soils 16S Ensifer, Enterobacter, 

Stenotrophomonas, 
Chryseobacterium

N.D. [40]

Root Soil type 16S Klebsiella, Pseudomonas, 
Stenotrophomonas, 
Rhizobium, Acinetobacter, 
Chryseobacterium, 
Acidovorax, Achromobacter, 
Agrobacterium, 
Burkholderia

IAA, BNF, P 

solubilization, 

ACC-DA

[41]

Strigolactone-

related genes

16S Microbacteriaceae, 
Rhizobiaceae, 
Bdellovibrionaceae

N.S. [42]

Root, 

nodule, 

soil

Develop., soil 

type

16S Proteobacteria, 

Actinobacteria, Firmicutes 

and Bacteroidetes

N.D. [43]

Develop. 16S Bacillus, Bradyrhizobium, 

Rhizobium
N.D. [6]
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Legume 

species

Organ Treat. Method Most abundant bacterial Functions Ref.

Alfalfa

Medicago 
sativa

Nodule Synthetic 

community

16S Brevibacillus, Paenibacillus, 
Pantoea, Pseudomonas

Antibiotics [44]

— 16S, 
nodC, 
nodA, 
nifH 
genes

Sinorhizobium, Rhizobium, 
Bacillus Shinella, 
Pseudomonas, Variovorax, 
Novosphingobium, 
Methylibium, 
Bradyrhizobium, 
Mycobacterium

N.D. [45]

Medicago 
truncatula

Leaf, 

nodule, 

root

Genotype, soil 16S, MG Pseudomonas, Niastella, 
cyanobacteria Phormidium. 
Thioalkalibacter, 
Neorhizobium, 
Ohtaekwangia, Nodules: 
Ensifer, Rhizobium, 
Bradyrhizobium, 
Rhizobacter, Shewanella

N.D. [46]

Pea

Pisum 
sativum

Root, 

nodule

Develop. 16S Rizhobium Mezorizhobium, 
Pseudomonas

BNF [47]

Black mung 

bean

Vigna mungo

Nodule — Full-

length 

16S

Ferrmicutes. B. subtilis, 
Paenibacillus taichungensis

P 

solubilization, 

IAA, 

siderophore, 

ammonia, 

HCN, 

ACC-DA

[48]

18S, 16S Candida glabrata, C. 
tropicalis

IAA, 

ACC-DA, 

siderophores, 

ammonia, 

polyamines 

synthesis

[49]

Mung bean

V. radiata
Nodule — 16S Bacillus aryabhattai, 

Bacillus megaterium and 
B. cereus

IAA [50]

Cowpea

Vigna 
unguiculata

Nodule — 16S Rhizobium, 
Paraburkholderia, 
Enterobacter, 
Strenotrophomonas 
Pseudomonas

BNF [51]

Red clover
Trifolium 
pratense

Root — 16S Rhizobia, Pantoea, 
Sphingomonas, 
Novosphingobium, 
Pelomonas

N.D. [52]

Lens 
culinaris, 
P. sativum 
(plus canola 
and wheat)

Root Species, soil 

type

16S Pseudomonas, Arthrobacter, 
unclassified genera 

of Enterobacteriaceae, 
Comamonadaceae

N.D. [53]

A. hypogaea, 
G. max, V. 
radiata, V. 
unguiculata, 
V. mungo

Nodule — 16S Enterobacter cloacae, E. 
ludwigii, Chryseobacterium 
indologenes, Klebsiella 
pneumoniae, Klebsiella 
variicola, Pseudomonas 
aeruginosa.

BNF, P 

solubilization, 

siderophores, 

IAA, ACC 

deaminase 

(nifH gene)

[54]
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Legume 

species

Organ Treat. Method Most abundant bacterial Functions Ref.

Vicia villosa, 
T. repens, T. 
pretense, M. 
sativa

Seed — 16S, MG Acinetobacter, 
Sphingomonas, 
Lactobacillus, Bacillus, 
Pantoea, Salmonella

Energy, amino 

acid and 

carbohydrate 

metabolisms, 

cell growth 

and death 

programs, 

transport, 

genes

[55]

ACC, 1-aminocyclopropane-1-carboxylate; ACC-DA, ACC deaminase activity; IAA, indole-acetic acid; BNF, 
biological nitrogen fixation; Develop., developmental stages; MG, meta-genomics; MT, meta-transcriptomics; N.D. 
not determined; N.S., not significant; Treat, treatment or factor affecting microbiome.

Table 1. 
Culture-independent studies of the endophytic bacterial microbiome in legume crops.

Legume 

species

Organ Treat. Met. Most abundant bacterial Function Ref.

Peanut

Arachis 
hypogaea

Nodule Genotype 16S Rhizobium phaseoli, Bacillus 
tequilensis, B. altitidinus, B. 
tequilensis, B. siamensis, B. 
subtilis, Pantoea dispersa, 
Paenibacillus illinoisensis, 
Kosakonia oryzendophytica, 
Rhizobium mayense, P. dispersa

IAA; ACC-DA; 

P, Zn, and Si 

solubilization, 

siderophore

[56]

Seed — 16S Pseudomonas spp. IAA, P 

solubilization, 

siderophores, 

cellulase, 

protease, control 

of S. rolfsii

[57]

Chickpea

Cicer 
arietinum

Root Soil type 16S Enterobacteriaceae, 
Pseudomonadaceae, 
Xanthomonadaceae, 
Bacillus, Stenotrophomonas, 
Pseudomonas, Enterobacter

N.D. [58]

Root, 

nodule

— 16S Mcrobiospora, Streptomyces, 
Micromonospora, 
Actinomadura

N.D. [59]

— 16S Enterobacter, Rhizobium, 
Stenotrophomonas, 
Pseudomonas, Burkholderia, 
Bacillus, Brevibacillus

IAA, 

siderophores

[60]

Soybean

Glycine max
Nodule Antifungal 

activity

16S Enterobacter, Acinetobacter, 
Pseudomonas, 
Ochrobactrum, Bacillus

BNF, IAA, 

siderophore

[61]

Leaf, 

stem, 

root

RR-transgene 16S Enterobacter ludwigii and 

Variovorax paradoxus

IAA, P 

solubilization

[62]

Leaf, 

stem, 

root, 

nodule

— 16S
nifH

Pseudomonas aeruginosa 

and Bradirizhobium

IAA, P and Zn 

solubilization, 

siderophore, 

ACC-DA, cell 

wall degrading 

enzymes, 

pathogenicity

[63]
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Legume 

species

Organ Treat. Met. Most abundant bacterial Function Ref.

Lentil

Lens culinaris
Nodule — 16S Pseudomonas stutzer, 

Lysinibacillus pakistanensis,
N.D. [64]

Common 

bean

Phaseolus 
vulgaris

Roots — 16S Bacillus velezensis Bacillus 
amyloliquefaciens Bacillus 
halotolerans,Bacillus 
mojavensis,Bacillus 
methylotrophicus, Bacillus 
subtilus Pseudomonas 
frederiksbergensis 
Pseudomonas lini, 
Agrobacterium fabrum 
Glutamicibacter 
halophytocola.

IAA, P 

solubilization, 

siderophores, 

HCN, xylanase 

chitinase, 

lipopeptide 

genes, 

antifungal 

activity

[65]

Cowpea

Vinga 
unguiculata

Nodule — 16S Rhizobium, 
Paraburkholderia 
Enterobacter, 
Strenotrophomonas and 

Pseudomonas

BNF [51]

C. arietinum, 
Pisum 
sativum

Nodule,

root

— 16S, 
RFLP

Pantoea agglomerans, 
Bacillus cereus,B. 
sonorensis, B. subtilis, 
Pseudomonas chlororaphis, 
Ornithinibacillus sp., 

Ochromobacterium sp.,

IAA, P 

solubilization, 

siderophores, 

ammonia, 

organic 

acids, HCN, 

biocontrol

[66]

Crotalaria 

spp.,

Indigofera 

spp.

Erythrina 
brucei

Nodule Genotype 16S Achromobacter, 
Agrobacterium, 
Burkholderia, 
Cronobacter, Enterobacter, 
Mesorhizobium, 
Novosphingobium, 
Pantoea, Pseudomonas, 
Rahnella, Rhizobium, 
Serratia, and Variovorax. 
Bacillus, Paenibacillus, 
Planomicrobium, and 

Rhodococcus.

N.D. [67]

V. mungo,
V. radiata

Stem — 16S Enterobacter, Bacillus, 
Pantoea, Pseudomonas, 
Acromobacter, 
Ocrobacterium

BNF, IAA, P 

solubilization, 

siderophores, 

antifungal 

activity

[68]

P. sativum,

V. faba
Nodule — 16S, 

nodC
Rhizobium leguminosarum, 
R. indigoferae, R. 
hidalgonense, R. sophorae, 
R. laguerrea, R. acidisoli, R. 
anhuiense,

IAA, P 

solubilization, 

siderophores

[69]

A. hypogaea,
G. max,

V. radiata,

V. 
unguiculata,

V. mungo

Root 

nodule

- 16S 

nifH
Enterobacter cloacae, 
Chryseobacterium 
indologenes, Klebsiella 
pneumoniae, Pseudomonas 
aeruginosa, Enterobacter 
ludwigiiy, Klebsiella 
variicola

BNF, P 

solubilization, 

AIA, 

siderophores, 

ACC-DA

[54]
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Comparisons among plant species (canola, wheat, pea, and lentil) in different 
locations and soil types pointed to the genotype influence as the highest effect 
determining endophyte diversity ([72] in Table 1). However, when considering 
close Medicago genotypes (intraspecies comparison), the host genotype effect was 
not significant (1% of contribution to the total variance), but both soil and plant 
genotypes were significant for the root microbiota diversity [53]. In the case of 
the leaf microbiome, the soil reduces its relative importance, since some bacteria 
colonize it from underground organs, but others enter through stomata or vectors 
[46]. Broadly, the soil limits the available microbial pool, while the host genotype is 
a relevant barrier for colonization. Agricultural practices could directly affect the 
microbiome by chemical applications or through changes in the host physiology. 
The effects of biotic and abiotic factors shaping the endophytic bacteria communi-
ties in plants were reviewed by Papik et al. [73]. In addition, the actual diversity 
could be masked by the method used to describe it (such as culture-dependent or 
-independent, see Section 2.4) [16].

2.4 How to study microbiome diversity

Natural communities of endophytic bacteria are conventionally studied using 
culture-dependent and -independent methods [74]. Culture-dependent methods 

Legume 

species

Organ Treat. Met. Most abundant bacterial Function Ref.

Trifolium, 
Lupinus, 
Ornithopus, 
Scorpiurus, 
Medicago, 
Trifolium, 
Vicia

Root Field sites 16S Microbacterium, 
Chryseobacterium, 
Bacillus, Paenibacilus, 
Staphylococcus,Pantoea, 
Erwinia, Achromobacter, 
Lelliotia, Enterobacter, 
Acinetobacter, 
Janthinobacterium, 
Pseudomonas, 
Stenothrophomonas, 
Serratia, Rahnella

IAA, P 

solubilization, 

siderophore, 

cellulase

[70]

Anthyllis, 
Colutea, 
Cytisus, 
Lathyrus, 
Lotus, 
Lupinus, 
Medicago, 
Melilotus, 
Ononis, 
Ornithopus, 
Robinia, 
Trifolium, 
Vicia, 
Wisteria

Nodule Ecoregions 

(Belgium)

16S Bacillus, Paenibacillus, 
Arthrobacter, 
Microbacterium, 
Rhodococcus, Sphingomonas, 
Cohnella, Pseudomonas, 
Herbaspirillum, Pantoea, 
Corynebacterium, 
Chryseobacterium, 
Sphingomonas and 
Xanthomonas

N.D. [31]

ACC, 1-aminocyclopropane-1-carboxylate; ACC-DA, ACC deaminase activity; IAA, indole-acetic acid; BNF, 
biological nitrogen fixation; Develop., developmental stages; MG, meta-genomics; MT, meta-transcriptomics; N.D. 
not determined; N.S., not significant; Morph & Bioch., morphological and biochemical characterization, Treat, 
treatment or factor affecting microbiome.

Table 2. 
Culture-dependent studies of the endophytic bacterial microbiota in legume crops.
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imply the extraction of the microbes and their growth in synthetic media. Those 
strategies allow to isolate the microbe and further study them in vitro and in 
manipulative experiments, but they strongly underestimate the number of bacteria 
(and the diversity of the community), as cultivable bacteria usually represent only 
0.001–1% of the actual bacteria in a sample [16, 75]. Recently, Hartman et al. [52] 
isolated 200 bacteria strains that represent ~20% of the most abundant genera in 
Trifolium roots, which was one-quarter of the ~3500 detected OTUs in a manage-
able effort to increase the cultivated endophytic bacteria from a legume (Table 1).

On the other side, culture-independent methods mostly rely on the extraction 
of bacterial genetic material from plant tissues. The genomic DNA can then be 
analyzed using a range of molecular fingerprinting techniques such as Amplified 
rDNA Restriction Analysis, Gradient Gel Electrophoresis, and Terminal Restriction 
Fragment Length Polymorphism (RFLP) [16]. In recent years, DNA fingerprinting 
techniques have been set aside by more advanced molecular techniques. Those new 
methods involve DNA extraction from the entire bacterial population to sequence a 
specific phylogenetic marker, such as the 16S rRNA gene, or the whole genome [76]. 
In addition, using RNA instead of DNA, it is possible to detect active functional 
diversity, which provides information about the transcriptionally active func-
tions, as well as the massive analysis of proteins (peptides) or metabolites (by high 
throughput analysis of “omics”). The latter two do not provide taxonomic informa-
tion but a functional one.

The sequence-based methods allow a deeper analysis of the endophytic diversity 
than traditional fingerprinting, although some of the species with low abundance 
might be still missed. To minimize those losses, it is important to sequence with 
high depth and carry out rarefaction analysis (to check that the OTU versus the 
diversity or richness reaches the plateau). Other technical considerations for 
sequencing analysis are discussed in detail by Lucaciu et al. [77].

The bacterial diversity of the microbiome can be described taxonomically and 
functionally by different approaches. The most traditional strategy is the taxonomic 
description of the diversity, which identifies the species present in the microbiome 
and quantifies their abundance by genome or specific gene sequencing. From that 
data, researchers have started to uncover what is known as the “core microbiome” 
[78], which is defined as the group of species present in one plant across differ-
ent genotypes, environments, developmental stages, etc. Depending on the scale 
of the analysis, a higher or lower number of species are shared among them. For 
instance, if dicot and monocot species are compared, the number of shared species 
will be lower than if two cultivars of the same species are compared in the same 
environment. A core endophytic microbiome of roots of red clover (Trifolium 
pratense) includes 70% of Rhizobia, and it was dominated by the genera Pantoea, 
Sphingomonas, Novosphingobium, and Pelomonas [52] (Table 1). Glycine spp. nodules 
showed a majority of Ensifer genera, followed by Enterobacter, Stenotrophomonas, 
and Chryseobacterium (>0.5%), and some nonrhizobial bacteria only in soybean 
(Glycine max), including Enterobacter cloacae (3.62%), Stenotrophomonas sp. CanR-
75 (2.79%), and Stenotrophomonas maltophilia (2.41%) [40] (Table 1). Overall, little 
is known about the core endophytic microbiome in legumes, although some core 
rhizospheric microbiomes have been described (e.g., [79]).

In addition to the core microbiome, the “keystone” species have been described 
[80]. Keystones are highly connected species that largely change the structure and 
function of the microbiome when removed. They may be predicted by co-occur-
rence networks (by correlation analysis) and are defined as those whose abundance 
highly correlates with most of the other species [81]. Those correlations can be posi-
tive or negative (i.e., two species are always together or the presence of one excludes 
the other), and the interaction between each other may be indirect (for instance, 
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mediated by a change in the host) [82]. It has been predicted that when the keystone 
species is missing, the abundance and proportion of the community change, and 
occasionally, one species may extremely proliferate over the others. Knowing which 
are the keystone species for one host is critical to effectively design any agricultural 
management strategy to protect a healthy microbial community and improve the 
fitness of the crop.

A second strategy to characterize the microbiome is the functional description, 
based on the metabolic functions present in the microorganisms. According to the 
previous model (with a core microbiome and keystone species), the communities 
in the microbiome are built to occupy functional niches [81]. This means that one 
species might be (at least partially) replaced by another one, which provides the 
same function to the community and/or the host. Those key functions of a particu-
lar species are given by a set of genes that allow the microbe to effectively interact 
and benefit the rest of the microbial community and the plant host under specific 
conditions. These functional traits can be screened and studied by any “omic” 
analysis and then grouped by the presence of specific metabolic functions (see [83, 
85] in Table 1). For instance, the most important genes differentially detected in the 
rhizosphere of pea (Pisum sativum) under different tillage and fertilization treat-
ments were genes coding ABC transporters and secretion systems, transcription 
factors, peptidases, methane metabolism, quorum sensing, and bacterial motility 
proteins [85]. To understand which services the microbial community provides 
and may favor the host plant, the functional analysis may be more useful than 
a taxonomic-only approach. However, both are necessary and provide valuable 
information about the microbiomes.

3. Benefits of endophytic microbiota to the host plant

Once within the plant, endophytes might provide several benefits. We grouped 
them into three different kinds: direct growth promotion, protection against patho-
gens, and protection against abiotic stress (Figure 1).

Direct promotion occurs when endophytes stimulate shoot and/or root growth 
by increasing the availability of limiting nutrients or producing compounds that 
directly stimulate growth. On the other hand, indirect promotion occurs when the 
endophytes can protect the plant against diseases, pests, or environmental stress, 
indirectly improving the host performance [86]. The molecular mechanisms and 
pathways are not exclusive for each direct or indirect growth promotion effect. A 
single endophytic bacterial strain may have more than one of these plant-growth-
promoting traits (e.g. [37, 41, 48, [49, 55] in Table 1, and [56, 57, 63, 65, 66, 68] in 
Table 2).

3.1 Increase of nutrient availability

The main mineral nutrients required for plant growth are nitrogen, phosphorus, 
and iron. There are numerous plant-growth-promoting microorganisms able to 
increase their availability, and some mechanisms have been determined.

3.1.1 Biological nitrogen fixation (BNF)

Nitrogen is crucial for plant growth and health. Approximately 30–50% of the 
N in crop fields results from BNF by soil microorganisms. The ability to fix atmo-
spheric nitrogen (N2) is present in various bacterial species that are either free-living 
or endophytically associated with plant roots. BNF is the most and long-term studied 
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plant-growth-promoting effect of soil microorganisms in legumes [87, 88]. Other 
plant growth promoter bacteria genera, different from rhizobia, are also able to 
enhance the acquisition of N by legumes. Anzuay et al. [89] and Taurian et al. [90] 
observed that endophytic bacteria belonging to Serratia, Acinetobacter, Bacillus, 
and Enterococcus enhanced peanut (Arachis hypogaea) N content. Dey et al. [91] 
reported that the increase in the number of nodules in plants inoculated with growth 
promoter bacteria could be attributed to the enhancement of root growth and root 
length. This enhancement provides more sites for nodulation by rhizobial strains in 
the soil. Furthermore, since BFN is a highly demanding ATP process, phosphorus is a 
critical nutrient for legumes.

3.1.2 Phosphate solubilization and mineralization

Even in phosphorus-rich soils (such as phosphate-fertilized soils), most of this 
element is in insoluble forms, and only a small proportion (~0.1%) is available to 
plants [92]. The solubilization of phosphates in the rhizosphere is one of the most 
common modes of action of growth promoter microbes that enhance nutrient 
availability to plants [93]. Phosphate-mineralizing and phosphate-solubilizing 
bacteria (PMB/PSB) secrete phosphatases and organic acids to convert insoluble 
phosphates (organic and inorganic) into soluble monobasic and dibasic ions [93]. 
Among legume endophytes, there are several phosphate-solubilizing bacteria able to 
promote plant growth, and some studies demonstrated that plant growth promotion 
was directly correlated with the increase of P in the plant tissues [89]. Soybean and 
peanut endophytes solubilize mineral phosphate [90]. In addition, several studies 
described endophytic bacteria with phosphate-solubilizing/-mineralizing ability 
that increase legume growth [89, 90, 94, 95]. The inoculation of pea with phosphate-
solubilizing Pseudomonas spp. isolated from this legume, enhanced the plant biomass 
[96]. Pantoea spp. isolated from root nodules of peanut showed a strong phosphate-
solubilizing activity [97]. However, the inoculation of phosphate-solubilizing bacte-
ria isolated from peanuts did not promote growth when they were inoculated in the 
rapeseed culture [98]. These results point to a specific plant-bacteria interaction that 
directly affects the ability to promote growth or the efficiency of the mechanism.

The main phosphate-solubilizing mechanism in Gram-negative bacteria involves 
the bacterial PQQ cofactor, described as essential in P nutrition and plant growth. 
Mutation in the pqqH gene from Pseudomonas fluorescens caused the loss of the 
phosphate-solubilizing phenotype and plant growth promotion ability on tomato 
plants [99]. In legumes, Ahmed and Shahab [100] observed that a non-producing-
PQQ bacteria (which lost the phosphate solubilization ability) showed a decrease 
in the growth promotion of bean plants. On the contrary, Ludueña et al. [101] 
determined that in the non-producing PQQ strain Serratia sp. promoted the growth 
of peanut at a similar level to the wild type, indicating that PQQ is not essential for 
growth promotion.

3.1.3 Iron uptake

Iron is essential for all living organisms, and its bioavailability in the soil is 
limited. Siderophores are small molecular compounds, secreted by microbes, 
which chelate iron in the soil and generate soluble complexes that can be absorbed 
by plants [97]. Microbial siderophores’ secretion directly stimulates plant growth 
by increasing the availability of iron in the soil surrounding the roots [102]. Plants 
lacking soil bacteria suffered from iron deficiency [103]. Therefore, this mecha-
nism helps plants to thrive in low-iron soils. The inoculation of black mung bean 
(Vigna radiata) with the siderophore-producing endophyte, Pseudomonas sp. GRP3, 
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reduced iron deficiency and chlorotic symptoms and increased the content of 
chlorophyll a and b [104]. Furthermore, since diazotrophic organisms require Fe+2 
and Mo+2 factors for the functioning and synthesis of nitrogenase, iron solubiliza-
tion by microbes also improved nitrogen fixation in legumes [105]. Native peanut 
isolates produce siderophores together with other plant-growth-promoting traits, 
increasing peanut growth and performance [106].

3.2 Phytostimulators

Endophytic bacteria directly promote plant growth by the production of phyto-
hormones, such as auxin or cytokinin, or by lowering the plant ethylene (ET) levels. 
By these mechanisms, bacterial endophytes can also accelerate seedling emergence 
and promote plant establishment under adverse conditions.

3.2.1 Phytohormone-like molecule production

The production of phytohormones-like compounds is considered an important 
trait of endophytes that positively affects the growth and development of many 
plants including legumes [8, 10, 107]. Thus, changes in plant growth frequently 
reflect alterations in phytohormone levels induced by endophytes [3]. But, even 
when production of these compounds by growth promoter microbes has been 
demonstrated, that effect cannot be unequivocally attributed to them.

The five main phytohormones produced by bacteria are auxins, cytokinin, 
gibberellins, ET, and abscisic acid (ABA). It has been postulated that genes encod-
ing biosynthesis of the auxins, cytokinin, and gibberellins are often present in the 
metagenome of plant endophytic bacterial communities [108]; however, it has not 
been yet explored in legumes using any omics approach (ET and ABA are discussed 
in Section 3.4.3).

Among these growth regulators, auxins are the most studied. These compounds 
affect plant growth by inducing cell enlargement and division, root development, api-
cal dominance, increase growth rate, photo- and geo-tropism [109]. The production of 
auxin-like compounds increases seed production and germination along with increased 
shoot growth and tillering. Within these compounds, indole-acetic acid (IAA) is the 
most frequent and indeed most studied phytohormone in growth promoter bacteria. 
IAA produced by endophytic bacteria is one of the most relevant and studied effector 
molecules in growth promotion, pathogen defense, and plant-microbe interactions 
[104]. For instance, rhizobia from soybean, pea, and faba bean nodules not only fix 
nitrogen and produce siderophores, but also auxins (see Refs. [54, 110] in Tables 1 and 
2, and [61]). IAA can be synthesized directly by plant-associated microbes, and ~ 80% 
of the rhizosphere bacteria may produce IAA [69, 111]. For instance, it could be pro-
duced by Alcaligenes, Azospirillum, Pseudomonas, Pantoea, Rhizobium, and Enterobacter 
in the presence of L-tryptophan as a precursor, although there are other pathways and 
a variety of auxins, such as indole-3-butyric acid (IBA), indole-3-pyruvic acid (IPA), or 
tryptophol (TOL), which are also produced by growth promoter bacteria [112].

Cytokinins are another group of growth-stimulating phytohormones that 
are responsible for cell division, plant senescence, seed germination, flower and 
fruit development, and apical dormancy [113, 114]. Although cytokinins are 
produced by several growth promoter microbes, few studies have demonstrated 
their beneficial effects.

Gibberellins are involved in many developmental processes in plants, such as 
flowering regulation, seed germination, stem and leaf elongation [114], but also 
the promotion of nodule organogenesis and the negative regulation of the rhizobial 
infection and root system development [115].
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Several bacteria produce and regulate the production of more than one phyto-
hormone, such as the rhizobacteria Bacillus aryabhattai, which produces ABA, IAA, 
cytokinin, and gibberellic acids in vitro and promotes soybean growth [116]. Thus, 
inoculation with endophytic bacteria may benefit legumes via the production or 
suppression of some phytohormones.

3.2.2 Volatile compounds and other phytostimulators

Some growth promoters’ bacteria can regulate plant growth by releasing volatile 
compounds [86]. For instance, B. subtilis, Bacillus amyloliquefaciens, and E. cloacae 
promote plant growth in legumes by releasing volatiles, such as 2,3-butanediol and 
acetoin [117, 118], while the mutants of B. amyloliquefaciens IN937a and B. subtilis 
GB03, blocked in their biosynthesis, did not promote Arabidopsis growth [118]. 
Studies on growth promotion by Chryseobacterium rhizoplane in mung bean indi-
cate that 2,3-butanediol is the molecule causing growth stimulation [119]. Growth 
promotion mechanisms of volatiles in plants were reviewed by Sharifi and Ryu [120].

Other nonvolatile molecules such as bacterial cell components or secreted 
compounds have been proposed to be plant growth stimulators. The endophyte 
Serratia proteamaculans was able to promote soybean growth by the production of a 
lipo-chitooligosaccharide [121]. And the PQQ peptide, previously mentioned to be 
associated with P solubilization, has also shown growth promotion [99], antifungal 
activity, and the ability to induce systemic resistance [86]. The role of PQQ in plant-
microbe interaction has been reviewed by Carreño-Lopez et al. [122].

Lastly, endophytes can generate allelopathic effects inhibiting the growth of 
neighboring plants or protecting the host plant from allelopathic effects from adjacent 
plants [123]. For example, endophytic bacteria of red clover seem to be responsible for 
the negative allelopathic effects observed over maize, reducing seedling emergence 
and height [124]. Additionally, some weeds have negative allelopathic effects on 
legumes, mediated by their endophytic bacteria, which inhibit nodulation [125].

Overall, there is a body of evidence that suggests that enhancing or regulating 
phytohormone or other phytostimulators via endophytic microorganisms is a viable 
strategy to increased crop production in agriculture [108], and because of these 
attributes, endophytes have gained ground in the area of agricultural sustainability.

3.3 Protection against pathogens

Among the major factors restraining agriculture are crop diseases and pests, while 
one important driver of plant health is the structure and dynamics of the plant-asso-
ciated microbial communities [126]. In recent years, a deeper understanding of the 
endophytic microbiome and its potential has been achieved to become a fundamental 
tool in phytosanitary management and reduce the damage of plant diseases.

Endophytes can decrease the harmful effects of pathogens by different mecha-
nisms, including direct and indirect mechanisms [104]. Direct inhibition of 
pathogens is mainly mediated by the synthesis of inhibitory allelochemicals such as 
antibiotics, hydrogen cyanide, iron-chelating siderophores [127], secretion of lytic 
enzymes, or quorum quenching (QQ ) by degrading pathogens autoinducer signals 
[128]. Indirect biocontrol mainly includes the induction of the plant systemic resis-
tance that inhibits the proliferation of a broad spectrum of phytopathogens [129].

3.3.1 Antibiosis

Most endophytes have been reported to produce secondary metabolites, and 
some of them exhibit antibacterial and antifungal properties, which help to inhibit 
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the growth of phytopathogenic microorganisms [44]. Many metabolites with 
antimicrobial properties synthesized by endophytes have been described so far, 
such as flavonoids, peptides, quinones, alkaloids, phenols, steroids, terpenoids, 
and polyketides. Antimicrobial properties of bacterial metabolites were recently 
reviewed [130]. Hansen et al. [131] studied the microbiome of alfalfa (Medicago 
sativa) nodules and identified two families of molecules produced by Brevibacillus 
brevis in planta, such as antibacterial thyrozidines, and a new set of gramicidin-like 
molecules, britacidins. They conclude that, in addition to nitrogen fixation, it is 
likely that legume root nodules are also a source of active antimicrobial production.

3.3.2 Lipopeptides

Lipopeptides are low-molecular-weight cyclic peptides attached to a hydro-
phobic fatty acid. These molecules are classified into three families: surfactin, 
iturin, and fengycin. Iturins and fengycins show strong antifungal activities while 
surfactins exhibit strong antibacterial activity. Antimicrobial lipopeptides can 
form toroidal-like pores on cell membranes leading to membrane permeation and/
or disintegration and protect plants directly suppressing the growth of pathogens 
or inducing systemic resistance [132]. Recently, 263 different lipopeptides were 
synthesized by 11 microbial genera, with Bacillus being the most abundant [133].

The common bean root microbiome was used to search potential biocontrol 
agents of Fusarium sp., Macrophomina sp., and Alternaria sp. fungi, causal agents of 
root rot disease [65]. Biocontrol assays conducted under controlled conditions dem-
onstrated that B. amyloliquefaciens, B. halotolerans, Bacillus velezensis, Agrobacterium 
fabrum, and Pseudomonas lini displayed the highest protective effect, and lipopep-
tide biosynthetic genes encoding surfactin, iturin, bacillomycin, and fengycin were 
present. These bacteria can produce at least one or more lipopeptides that may be 
involved in biocontrol activity.

3.3.3 Lytic enzymes

During plant colonization, endophytes produce numerous enzymes, which 
successively aid the hydrolysis of the plant cell wall. There are numerous types of 
enzymes such as chitinases, cellulases, hemicellulases, and 1,3-glucanases [70, 134]. 
These enzymes are also capable of degrading fungal (and oomycetal) cell walls 
hyphae, spores, and sporangia, thus contributing to the protection of the plant. The 
isolate Pseudomonas spp. EGN 1 was the most promising bioagent for the manage-
ment of the stem rot (Sclerotium rolfsii) in groundnut, mediated by an important 
protease and cellulase production [57]. While, Brigido et al. [135] evaluated the 
diversity and functionality of the endophytic bacterial strains in the roots of native 
legumes from two different sites in Portugal, finding 15 isolates with a high cellulase 
production.

3.3.4 Hydrogen cyanide

A few bacterial species are known to produce and excrete hydrogen cyanide, a 
potent inhibitor of cytochrome c oxidase and several other metalloenzymes [136]. 
The host plant is unaffected by the bacteria or the hydrogen cyanide produced by 
it. For this reason, hydrogen-cyanide-producing bacteria have an application as 
biological control agent. Zaghloul et al. [137] isolated a total of 167 endophytic 
bacterial from roots, nodules, leaves, and stems of faba bean (Vicia faba), pea, 
fenugreek (Trigonella foenumgracum), lupine (Lupinus spp.), common bean 
(Phaseolus vulgaris), and rice (Oryza sativa) at flowering stage. About 82% of the 
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isolates showed positive results of hydrogen cyanide production. In another recent 
investigation, ~20 endophytic bacteria isolated from roots and nodules of chickpea 
(Cicer arietinum) and pea showed HCN production [66].

3.3.5 Siderophores

As previously mentioned, siderophores chelate iron in the soil making it more 
available for plants. Furthermore, by tightly binding the iron, siderophores reduce 
its bioavailability for plant pathogens and facilitate the death of the phytopathogens 
[138]. Some of the siderophores are known to be produced by endophytes, such as 
hydroxymate, phenolate, and/or catecholate types, confer biocontrol activities [139]. 
Also, the role of siderophores as part of the protective effect of the induced systemic 
resistance has been described in many studies. The production of siderophores is 
very common among Pseudomonas, Frankia, Streptomyces sp. Several researchers 
described endophytic bacteria producing siderophores isolated from different 
legumes as peanut, faba bean, soybeans, chickpea, pea, and bean [65, 66]. Bahroun 
et al., [140] demonstrate that Rahnella aquatilis B16C, Pseudomonas yamanorum B12, 
and P. fluorescens B8P isolated from faba bean nodules suppressed Fusarium solani 
root rot in three faba bean cultivars in greenhouse. The three strains were able to 
produce siderophores and significantly reduced the disease severity. Zhao et al. [54] 
obtained 276 isolates from root nodules of soybean, six of which showed antago-
nistic to the pathogenic fungus Phytophthora sojae 01. The isolates were identified 
as Enterobacter, Acinetobacter, Pseudomonas, Ochrobactrum, and Bacillus genera. The 
high correlation of siderophores production and the fungal inhibition of nodule 
endophytic bacteria in that study supported the idea that the ferrous absorption by 
endophytic bacteria may be a viable inhibitory mechanism.

3.3.6 Quorum quenching

The regulation of gene expression in response to fluctuations in cell-population 
density is known as “quorum sensing.” Many important bacterial processes are 
regulated by it. Quorum sensing regulates gene expression depending on the 
accumulation of a signal molecule in the environment. The signal, called autoin-
ducer, allows the bacteria to perceive the existing population density and jointly 
executed responses. Gram-negative bacteria use acyl-homoserine lactone (AHL) 
as an autoinducer, whereas Gram-positive bacteria utilize modified peptides [141]. 
The bacterial quorum sensing controls a wide variety of physiological processes 
such as virulence, extracellular polymeric substances (EPS) production, mobility, 
and biofilm formation among others, which are essential for the establishment of a 
pathogen in the host plant [142].

Often endophytic bacteria can disrupt quorum sensing. This ability to interfere 
with bacterial cell-to-cell communication was collectively called “quorum quenching” 
and can be crucial to prevent the plant colonization by pathogenic bacteria that use 
quorum sensing to coordinate virulence [143]. Several chemicals and enzymes have 
been identified that target the key components of bacterial quorum-sensing systems 
in the recent years (such as [33]). The mechanisms of quorum quenching may be 
the inhibition of the signal synthesis or detection, signal enzymatic degradation (by 
enzymes such as AHL acylase, AHL lactonase, and oxidoreductases), or synthesis 
of structural analogs of the signal [144]. Lopes et al. [145] reported antimicrobial 
activity against Pseudomonas syringae pv. tabaci or Hafnia alvei 071 in endophytic 
bacteria isolated from common bean. The isolates Microbacterium testaceum BAC1065, 
BAC1100, and BAC2153, Bacillus thuringiensis BAC3151, and Rhodococcus erythropolis 
BAC2162 exhibited a greater ability to inhibit the response of AHL reporter.
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3.3.7 Insecticides

Some metabolites with insecticidal action have been described. The famous B. 
thuringiensis produces crystalline inclusion bodies consisting of delta-endotoxins 
(also referred to as Cry proteins) during sporulation. These proteins, which are 
formed by variable-molecular-weight polypeptides (27–140 kDa), are highly toxic 
for a broad range of pest insects [146]. P. fluorescens strains exhibited a protective 
effect against aphids and some herbivorous beetles and termites [147]. The bacte-
rium Lysinibacillus sphaericus (former Bacillus sphaericus) produces sphaericolysin, 
which is toxic for Spodoptera litura [148].

3.3.8 Induction of systemic response

Induced systemic resistance (ISR) is a term used for the resistance stimulated 
by chemicals agents or signals (elicitors) produced by beneficial microorganisms 
[149], whereby the plant’s innate defenses are potentiated against subsequent biotic 
challenges. In this way, the endophytes enhance the plant defenses against many 
pathogens [129]. The plant hormones jasmonic acid (JA) and ET are responsible 
for the regulation of the group of interrelated signaling pathways required to 
activate ISR. The main routes by which microbes regulate ISR in plants include: (i) 
phytohormones, (ii) pathogen-associated molecular patterns (PAMPs)/microbe-
associated molecular patterns (MAMPs), and (iii) several elicitors (volatile organic 
compounds, siderophores, phytases, miRNAs, among others) [150]. Bacterial 
endophyte-mediated ISR has a broad spectrum of effectiveness. It was demonstrated 
that Acinetobacter, Azospirillum, Rhizobium, Pseudomonas, and Bacillus are beneficial 
inducers of systemic resistance in both leguminous and nonleguminous plants [151]. 
Dey et al. [91] described an endophytic isolate Klebsiella pneumoniae HR1 from the 
root nodules of black mung bean (Vigna mungo) capable of reducing the occurrence 
of Macrophomina phaseolina, which is the causal agent of the root rot disease in 
Vigna. The lowest percentage of disease incidence (18.2%) was observed when K. 
pneumoniae was applied in dual mode (seed bacterization + soil drench application). 
The increased activities of peroxidase (PR9), chitinase (PR3), and β-1,3-glucanase 
(PR2) in leaves indicated that K. pneumoniae HR1 induces a systemic response.

Endophytic bacteria have diverse mechanisms that could contribute, even simul-
taneously, to protect the plant against the attack of different pathogens, having the 
potential to produce a more efficient pathogen control on the fields.

3.4 Abiotic stress tolerance

Under abiotic stress conditions (such as drought, salinity, flooding, heat, chill-
ing, or heavy metals), several metabolic responses are shared among plant species. 
Most of the stresses cause photosynthesis inhibition, oxidative stress, and hormone 
imbalances ending in reductions of shoot growth and yield impairments [10, 97, 
152–154]. In addition, some of the responses are interconnected, for instance, 
reactive oxygen species and hormones mutually affect each other at early and late 
phases of abiotic stress (reviewed by [155]).

Endophytic bacteria can protect the host plant against some of those deleterious 
effects, by at least two different ways (alone or combined): (i) activation of host 
stress response systems soon after exposure to stress (named induced systemic 
tolerance), and (ii) biosynthesis of chemicals, which will contribute to the stress 
tolerance in the host [9]. Here we focus on three mechanisms by which the bacteria 
can protect the plant host against abiotic stress: redox status, water balance, and 
hormone regulation.
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3.4.1 Redox status regulation

Oxidative damage (caused by reactive oxygen and nitrogen species) is a common 
consequence of environmental stress, which may cause damage to lipids, proteins, 
and overall to any subcellular component [156]. Then, the activation of the enzy-
matic and nonenzymatic antioxidant system is critical to tolerate adverse condi-
tions. Several endophytic bacteria mediate a higher induction of the antioxidant 
system under stress. For instance, under salinity, the inoculation of peanut with 
the halotolerant bacteria Brachybacterium saurashtrense JG-06, Brevibacterium casei 
JG-08, or Haererohalobacter JG-11 showed lower oxidative damage, ion leakage, and 
K/Na ratio and higher growth, IAA, and Ca [157], while the inoculation of B. sub-
tilis (alone or combined with Mesorhizobium ciceri) of chickpea reduced hydrogen 
peroxide accumulation and improved plant growth [10]. Soybean plant inoculated 
with Curtobacterium sp. SAK1 induced polyphenol oxidase activity, associated with 
growth protection and hormonal changes [158], while inoculated with Pseudomonas 
simiae increased catalase and peroxidase, but not polyphenol oxidase gene expres-
sion under salinity [159]. Also, soybean inoculated with B. cereus, Pseudomonas 
otitidis, and Pseudomonas sp. showed a reduction of hydrogen peroxide and mem-
brane oxidative damage caused by PEG-induced drought [160]. However, if these 
responses are generated by the plant or bacterial enzymes remains unknown.

3.4.2 Water use efficiency regulation

Under stress, plant tissues usually modulate osmotic and water retention, 
by stomata activity and/or accumulation of osmotically active compounds. The 
latter compounds, also known as compatible solutes, include sugars (e.g., sucrose, 
trehalose, etc.), organic acids (e.g., malate), inorganic ions (e.g., calcium), amino 
acids (e.g., glycine betaine, proline) [161]. An increase in drought tolerance was 
detected after the inoculation of Sphingomonas sp. LK11 (isolated from Tephrosia 
apollinea) in soybean, by the accumulation of sugars and amino acids (glycine, 
glutamate, and proline) [162], and after the inoculation with Rhizobium etli in 
common bean, by the overexpression of trehalose-6-phosphate synthase [163]. 
Trehalose is an osmotically active compound that accumulates both in plants and 
microbes under stress. In particular, the role of trehalose in the tripartite symbiosis 
between plants, rhizobia, and arbuscular mycorrhiza under abiotic stress has been 
recently reviewed [164].

The optimal regulation of water use efficiency is critical to improved crop 
production. On one side is essential to survive dehydration stress (such as drought, 
salinity, heat, and chilling), but a constitutively highly efficient water use may 
reduce yields, by reducing CO2 assimilation. The use of bacteria that contribute to 
transiently intensify stress-tolerance responses can help to improve productivity in 
marginal environments. In addition, if the endophytic bacteria enhance the osmo-
compatible compounds in response to the stress, it is possible to increase not only 
the tolerance to drought, but also the tolerance to chilling, heat, and salinity stress, 
which share a “dehydration” component. In the latter case, we expect a partial toler-
ance due to the ion toxicity, not related to the reduction in water potential.

3.4.3 Hormone regulation

As it was mentioned before, endophytic bacteria can regulate hormone synthesis 
and degradation and synthesize some of the plant hormone-like compounds by 
themselves. In addition, specific hormone regulation could also protect against 
abiotic stress increasing growth, yield, and survival.
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Abscisic acid (ABA) is the main plant hormone related to water stress. It stimu-
lates root growth and optimizes water uptake and nutrient acquisition, regulates 
shoot and root hydraulic conductivity, and upregulates the antioxidant system and 
compatible osmolytes synthesis [161]. The inoculation of Sphingomonas in soybean 
leaves induced ABA accumulation and reduced chlorophyll degradation and growth 
inhibition. However, under drought, ABA levels were lower in inoculated plants. So, 
in this case, the initial increase of ABA might have a role in acclimation to the stress 
induced by the bacteria inoculation [162]. In addition, ABA may interfere with SA-, 
JA-, and ET-mediated plant defenses [165], which may have undesired consequences 
under biotic stress.

Ethylene (ET) is usually considered a plant growth inhibitor, but at low levels, it 
can promote growth in several plant species. At moderate levels, ET inhibits both root 
and shoots elongation, while at high levels, enhances senescence and organ abscission 
[166]. The direct precursor of ET in the plant biosynthetic pathway, 1-aminocyclo-
propane-1-carboxylate (ACC), is exuded from plant roots together with other amino 
acids. The enzyme ACC deaminase cleaves ACC into ammonia and alfa-ketobutyrate. 
Plant growth promoter bacteria that express the enzyme ACC deaminase utilize their 
products (ammonia and ketobutyrate) as nitrogen and carbon sources, respectively. 
Bacterial ACC deaminase is not excreted from the bacterial cytoplasm [167]; hence, 
the decrease of plant ET levels relies on the ability of ACC deaminase expressing 
bacteria to take up ACC before it is oxidized by the plant’s ACC oxidase [167]. When 
those bacteria are present, ET production could be lowered, relieving stress-induced 
growth inhibition [168]. For instance, the inoculation of pea (P. vulgaris) plants with 
Aneurinibacillus aneurinilyticus and Paenibacillus sp., two strains with high ACC 
activity in vitro, increased salt and drought tolerance. The combined inoculation 
reduced plant ET content and increased root and shoot length and biomass, as well as 
chlorophyll content [169]. The inoculation of alfalfa plants with Bacillus megaterium 
NMp082, which can produce ACC deaminase activity and IAA in vitro, also enhanced 
their salt tolerance [170]. Lastly, a novel mechanism was proposed in which salt toler-
ance is mediated by the activation of ET signaling. The inoculation of alfalfa with the 
bacteria Enterobacter sp. SA187 (isolated from a desert plant) increases salt tolerance, 
and studies in Arabidopsis indicate that the bacteria activate the ET signaling pathway 
[171]. The different mechanisms by which microorganisms can interfere with ET 
signaling were reviewed by Ravanbakhsh et al. [167].

Auxins regulate many important physiological processes related to growth and 
development affecting photosynthesis and responses to stress [161]. Under stress, 
auxins stimulate root elongation and density, increasing the water and nutrient 
availability, although they may interfere with SA-dependent plant defenses.

The inoculation of chickpea with Serratia sp. in nutrient-deficient soil induced 
more IAA and higher yields [172], while the same plant inoculated with IAA-
producing B. subtilis NUU4 in combination with M. ciceri IC53 stimulated root and 
shoot biomass and improved nodule formation under salt stress [173]. Soybean 
plants inoculated with B. aryabhattai strain SRB02, which produces IAA, GA, and 
ABA, showed higher drought tolerance through stomatal closure, and higher root 
and shoot rates under high temperatures [116], and the same host treated with 
Sphingomonas sp. LK11 and Serratia marcescens TP1 (which produced IAA in vitro) 
stimulated root and shoot growth with increased ABA and GA and reduction of JA 
[162]. Overall, abiotic stress protection mediated by plant hormones and crop salin-
ity protection mediated by beneficial bacteria have been reviewed [10, 174, 175].

Some primary stresses share the responses among them, such as those that 
generate dehydration (water or temperature deficit) or oxidative stress (dehydration, 
hypoxia, ions). For example, the double inoculation of chickpea with M. ciceri IC53 
and B. subtilis NUU4 reduced the infection rate of root rot caused by Fusarium solani 
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in salty soils [173], although the mechanism was not determined. Then, a bacteria 
strain, inducing a protective mechanism against oxidative stress, can protect the crop 
against a diversity of stress, which generates redox imbalances. Consequently, know-
ing the responses that each stress triggers in the plant may allow us to predict which 
bacteria or group of them could protect the plant against a combination of stresses.

4.  Synthetic communities of plant-associated bacteria to a more 
sustainable agriculture

Natural microbial communities within the plants are complex systems, with 
unknown functions and interrelationships among the microbial species and with 
the host plant. Small consortia of bacteria, with a “designed” composition, called 
“synthetic communities,” reduce the complexity of those systems to be studied 
and used. The goal is to simplify the network while preserving the interactions and 
most of the functions, which may be lost in single plant-microbe interactions [175]. 
The use of synthetic communities allow us to ask questions about the performance 
and stability of the microbial community as well as to study conditions necessary 
to generate interaction patterns required to provide specific benefits. They are not 
only valuable as models but also as assays for biotechnological approaches [176].

4.1 How to study synthetic communities?

Manipulative experiments with synthetic bacterial communities can validate the 
predicted keystone species and, in general, help to find out specific effects of the 
resulting community under some pathogen infection or environmental condition. 
Those studies required in vitro experiments in gnotobiotic (germ-free) systems 
[11], where the plant is inoculated with a few or several microbial species, and the 
diversity is monitored across time. For instance, a gnotobiotic system was used to 
study the bacteria-colonizing alfalfa nodules [131]. The authors inoculate alfalfa 
with the four accessory bacterial members B. brevis Ag35, Paenibacillus sp. Ag47, 
Pseudomonas sp. Ag54, and Pantoea agglomerans Ag15, plus the nodulating strain 
Sinorhizobium meliloti RM1021. They observed that the addition of B. brevis neutral-
ized the cooperation between Pseudomonas sp. Ag54 and Paenibacillus sp. Ag47, 
shifting the community from cooperative to competitive.

Another alternative, it is to use synthetic communities in a non-germ-free envi-
ronment (more accessible and simpler to set up) to evaluate the protective or antago-
nist effect of a small group of species under a particular condition. Overall, only a 
few studies of the kind have been carried out in legumes until now. For instance, Lu 
et al. [177] described the diversity of nonrhizobial bacteria (32 genera) in legume 
nodules inoculated with Bradyrhizobium elkanii H255, Rhizobium multihospitium–like 
HT221, or Burkholderia pyrrocinia with or without the addition of N fertilization. 
The study suggested a vital role of that group of bacteria in N fixation in legumes.

The synthetic communities are a way to understand how microbial communities 
are built in the plants but also the base to a more complex (and likely more effec-
tive) phytostimulation effects, biological control of diseases, and protection against 
abiotic stress.

4.2  Can we manipulate the plant microbiome to improve the fitness or yield of 
legumes?

There are a variety of strategies to manipulate the microbiome of a plant host 
and could be classified according to the direct target: (i) the microbiome itself, 
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(ii) the plant genome, or (iii) the holobiome (plant plus microbial community) 
(reviewed by [39, 178]).

The microbiome (i) can be modified by the exogenous inoculation of the 
microbe, increasing the abundance of a single strain or a few species together. 
The first case is the most traditionally used, and there are thousands of examples, 
such as the inoculation with rhizobia. In those cases, the single strain should be 
compatible with the host genotype and able to overcome the competence of the 
native microbiome and the environmental conditions. The second case is open to 
unexplored scenarios, such as an infinite possibility of a higher number of strains/
species combinations. This strategy is just starting to be explored, such as with non-
nodulating bacterial species present in the nodules (and sometimes in the rest of the 
plant) that promote nodulation. For instance, the inoculation of common bean (P. 
vulgaris L.) with Paenibacillus polymyxa and B. megaterium strains showed a syner-
gistic effect with Rhizobium strains on the plant growth [179]. On the contrary, the 
inoculation of alfalfa with different strains of the mutualistic P. fluorescens, showed 
that the increase in the community richness led to a negative complementary effect 
causing the loss of the protective effect against pathogens [180]. These results 
highlight the importance to evaluate the effects of any agricultural treatment or 
management on the microbial community.

The inoculation with synthetic communities has the advantage (over the use of 
the native microbiome) to allow the design of a community, which includes distant 
species (which may provide complementary benefits), or similar species, which 
increase the efficiency of the community (by using a wider diversity of resources) 
[19]. However, with the number and diversity of species, it also increases the 
complexity to handle the system and to commercialize the inoculants.

The plant genome (ii) could be manipulated by traditional breeding, gene edit-
ing, or transgenesis, changing the ability of the host to interact with the microbes 
(such as changing the exudates or volatiles). Instead of only breeding for pathogen 
resistance or abiotic stress tolerance, this could be a complementary alternative to 
select crop legumes to be more responsive to the presence of beneficial microbes 
[181]. For instance, modern accessions of common bean showed a lower abundance 
of Bacteroidetes and higher of Actinobacteria and Proteobacteria than the wild 
accession [79], with a gain in the diversity of rhizospheric bacterial and a stronger 
effect of the bean genotype [182]. In addition, Mendes et al. [183] showed that 
common bean breeding for Fusarium oxysporum resistance altered the functionality 
of the rhizosphere, unintentionally increasing the host protection against other 
pathogens. We hypothesize that a similar effect is happening in the endosphere, 
although it has not been explored yet. Additionally, when using this approach, it is 
relevant to evaluate that host defenses against pathogens are still functional.

Lastly, the holobiome (iii) could be altered through specific agricultural prac-
tices such as crop rotation, mineral, and organic fertilization, tillage practices, etc., 
favoring a specific community composition or function. Several studies reported 
the effect of agricultural management on the rhizosphere of legumes and its effect 
on crop performance. A meta-study showed the effect of crop rotation, intercrop-
ping, or companion planting on the rhizospheric microbial richness and diversity 
[184]. Those agricultural practices did not always have positive effects in richness 
and diversity, and legume-cereal crop rotation (relevant to reduce N fertiliza-
tion) showed inconsistent results on the microbiome. A recent study showed that 
pea-wheat rotations showed no effect in the diversity index, but they affected the 
specific co-occurrence networks for each crop [185] suggesting a more complex 
effect of crop rotation that needs to be further studied. Certain chickpea cultivars 
select a more beneficial microbiome for the subsequent wheat plants, and they were 
associated with the antagonist species Penicillium canescens [186]. Red clover and 
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potato crops in rotation shared 73% of the bacterial endophytes, and 21% of those 
species promoted plant growth and yield in potato bioassays [187], while 74% of the 
shared species showed some degree of in vitro antibiosis against Rhizoctonia solani, 
a pathogen of both crops. We hypothesize that changing the rhizosphere will affect 
the endosphere too, by changing the available microbial pool, but that effect has not 
been explored at legume endophytic microbiomes.

4.3 Are there collateral impacts of using synthetic communities in agriculture?

Lastly, it is important to consider alive microbes will be released to the environ-
ment and into products used or consumed by humans and animals, so the potential 
risks need to be considered and tested [188]. There is no internationally agreed 
protocol to be complimented, but recently, Vilchez et al. [189] have proposed an 
Environmental and Human Safety Index (EHSI) protocol to determine the safety of 
the bacterial strains. The protocol evaluates microbial and animal sensitivity/patho-
genicity and ecotoxicity in different model organisms, and it has been validated for 
many well-known bacteria. In addition, on the agronomical level, little information 
is available on the nontarget effects on microbial communities and the resulting 
impact on the soil function [32].

5. Final remarks and future directions

Agricultural legume crops are usually treated with synthetic chemicals to increase 
growth, control diseases, and mitigate environmental stress, which has high eco-
nomic, environmental, and health costs. However, there is a myriad of endophytic 
bacteria that colonize the plant at least in part of its life cycle that could replace or 
complement those chemicals with great benefits for the plants. In addition, the huge 
bacterial diversity could be combined to provide several benefits at the same time. For 
that purpose, the use of synthetic communities is critical to study how the microbial 
community evolves within the plant as much as their beneficial effects.

The use of synthetic bacterial communities to improve and make more sustain-
able legume production is still in early stages of development, but it is a promising 
field. Using synthetic communities has the theoretical advantage of combining 
strain benefits and contributing to the survival of the bacteria on the field and 
inside the plant while producing a package of benefits for the legume. Although it is 
expected to have more difficulties at the time of commercial production.

On the other hand, changes in the agricultural management with some specific 
purpose could be a more affordable strategy for most of the small-scale producers in 
low-income countries, which are the ones in more need of sustainable and accessi-
ble technologies. Additionally, the use of soil-native microorganisms could have the 
advantage to reduce possible adverse consequences on the environment and health.

For the moment, the knowledge about endophytic bacteria in legumes, the pos-
sibility to “design” synthetic communities for a specific goal, and to manipulate the 
holobiome by agricultural practices is still incipient. However, the potential benefits 
for current agriculture to improve yields and sustainability have a great unexplored 
potential in the endophytic bacterial microbiome of legume crops.
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