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Abstract

Tree improvement programs often focus on improving productivity-related traits; however,

under present climate change scenarios, climate change-related (adaptive) traits should

also be incorporated into such programs. Therefore, quantifying the genetic variation and

correlations among productivity and adaptability traits, and the importance of genotype by

environment interactions, including defense compounds involved in biotic and abiotic resis-

tance, is essential for selecting parents for the production of resilient and sustainable for-

ests. Here, we estimated quantitative genetic parameters for 15 growth, wood quality,

drought resilience, and monoterpene traits for Picea glauca (Moench) Voss (white spruce).

We sampled 1,540 trees from three open-pollinated progeny trials, genotyped with 467,224

SNP markers using genotyping-by-sequencing (GBS). We used the pedigree and SNP

information to calculate, respectively, the average numerator and genomic relationship

matrices, and univariate and multivariate individual-tree models to obtain estimates of (co)

variance components. With few site-specific exceptions, all traits examined were under

genetic control. Overall, higher heritability estimates were derived from the genomic- than

their counterpart pedigree-based relationship matrix. Selection for height, generally,

improved diameter and water use efficiency, but decreased wood density, microfibril angle,

and drought resistance. Genome-based correlations between traits reaffirmed the pedigree-
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based correlations for most trait pairs. High and positive genetic correlations between sites

were observed (average 0.68), except for those pairs involving the highest elevation,

warmer, and moister site, specifically for growth and microfibril angle. These results illus-

trate the advantage of using genomic information jointly with productivity and adaptability

traits, and defense compounds to enhance tree breeding selection for changing climate.

Introduction

White spruce (Picea glauca (Moench) Voss) is one of the most widely distributed North Amer-

ican conifer species and commercially, one of the most important tree species in the Province

of Alberta (Canada) [1]. To date, most forest tree’ quantitative genetic studies and tree

improvement programs are primarily focused on economically important productivity traits

(productivity-related traits), such as growth and wood quality (e.g., [2–4]). However, the ongo-

ing rapid climate change resulting in higher frequency and severity of drought events has

begun to change the focus of selection. In addition to directly affecting tree productivity,

drought can have a profound effect on tree susceptibility to pests and pathogens [5]. Therefore,

climate change-related (adaptive) traits including plasticity and adaptation to drought, forest

pest and pathogens resistance should be incorporated into existing tree breeding programs [6,

7]. Aligning with this recommendation, and reviewing 260 global tree pest and disease resis-

tance initiatives, Yanchuk and Allard [8] reported very few tree improvement programs that

operationally succeeded in deploying resistant material. Moreover, for a better understanding

of the interplay between productivity- and adaptability-related traits, breeders need to study

which secondary compounds are associated with these traits and understand their inherent

variation.

In the context of global climate change, knowledge of traits’ variance components and their

genetic parameters such as heritability and correlations between productivity-, adaptability-

related traits, and chemical compounds related to defense and drought stress, are vital for the

development of effective tree breeding programs. Moreover, either the simultaneous maximi-

zation/optimization of potential genetic gain for multiple traits, or understanding the

genetic × environment (G×E) interaction from multiple site analyses, are essential to increas-

ing tree resilience toward environmental perturbations, and for ensuring the sustainable long-

term genetic progress of a breeding program [9]. Several studies have reported pedigree-based

(see below) genetic parameters for productivity-related traits, such as growth and wood quality

in white spruce [3, 4, 10–16] as well as pest resistance traits [17–20]. However, few studies have

focused on drought resilience [21] and defense chemical traits [22]. Therefore, the genetic con-

trol, cross-site stability (i.e., G×E), and correlation of most of these adaptability-related traits

remain to be understood.

To obtain precise genetic parameter estimates (or function of them), accurate information

of individuals’ genealogy is required [23]. The individual-tree mixed model utilizes individuals’

contemporary pedigree information to estimate the additive genetic variance using Hender-

son’s average numerator relationship matrix (A-matrix) [24]. However, the A-matrix estimates

ignore all historical relationships beyond that of the contemporary pedigree as all relationships

are based on identity-by-descent rather than actual relationships [25]. Thus, the accuracy of

genetic parameter and predicted breeding value rankings are compromised [26]. On the other

hand, the use of genomic information through molecular markers to infer the realized geno-

mic relationship matrix (G-matrix; [27]) offers an efficient alternative to constructing the
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have been deposited in NCBI SRA BioProject -

PRJNA748443 (https://www.ncbi.nlm.nih.gov/

bioproject/PRJNA748443). Information of the

white spruce trials including pedigree and adjusted

and standardized phenotypic data are available in

the GitHub repository: https://github.com/RESFOR/

quantitative_genetics_R/blob/

e067422f5e56ec7bb98e4265e60e875603bf51b5/

White_Spruce_Phenotype_Pedigree_PLoS2022.

TXT”.
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additive relationship matrix, and effectively estimating individuals’ realized genetic related-

ness. Recently, studies in forest trees have tested the value of molecular markers for estimating

genetic parameters using the G-matrix [2–4, 10, 28, 29]. However, these studies only focused

on growth and/or wood quality traits and limited work examined drought resilience, and/or

pest resistance via chemical defense traits [20, 30].

As part of a large-scale tree genomic study [31] we genotyped 1,540 white spruce trees with

467,224 SNPs and phenotyped them for various productivity-, adaptability-related traits, and

defense monoterpenes. These trees represent a subset of open-pollinated progeny being tested

and grown on multiple genetic test sites throughout the Province of Alberta [31]. The available

genotypic and phenotypic information for these trees offered a unique opportunity to evaluate

the genetic control and relationships of the assessed traits, and the extent of G×E interactions.

Here, we studied 15 growth, wood quality, drought resilience, and defense and drought stress

chemical traits (monoterpenes), and estimated their quantitative genetic parameters (includ-

ing heritability and genetic correlations) within and across-sites. Estimates were obtained and

compared using both pedigree- and genomic-based relationship matrices. The results of this

study are expected to provide critical information needed for the identification and selection

of genetic material for their inclusion in new production populations (seed orchards). New

second generation orchards will replace the aging first generation orchards which currently

supply 65% of all white spruce reforestation stock in Alberta (Andy Benowicz, personal com-

munication). There is an urgent need to change the orchard production profiles from the cur-

rent ones focused on improved growth only, to the ones focused on improved climate

resiliency.

Materials and methods

Genetic material and trial description

Three open-pollinated (OP) progeny trials (Calling Lake: CALL, Carson Lake: CARS, and Red

Earth: REDE) of the Alberta Agriculture and Forestry white spruce Region D1 breeding pro-

gram [32] were used in this study (Table 1 and Fig 1). These trials were planted in a random-

ized complete block design with six replicates and 5- or 6-tree row plots at 2.5× 2.5 m spacing

(Table 1). The entire population being tested in the three progeny trials consisted of 150 fami-

lies from 10 provenances. Based on age-30 tree height, a sub-sample of 80 families were

selected representing low-, average- and high-class heights, each with approximately eight

individual progeny per family for CALL and REDE, and four progeny for CARS (n = 1,483).

An additional 142 potential forward selected trees, previously identified in the three progeny

trials and based on height breeding values, were also included for sequencing. From these 142

forward selected trees, 34 trees were from an additional 19 families, resulting in a total of 1,625

trees from 99 families.

Traits evaluated

Diameter at breast height (1.3 m; DBH) and tree height (HT) were measured at age-30 and

represent the growth productivity traits measured. Wood density (WD) was measured using a

5 mm bark to pith increment cores taken close to breast height on the north facing side of each

tree. Cores were transported in straws to the lab, soxhlet extracted overnight with hot acetone,

precision cut to 1.68 mm thickness with a twin blade pneumatic saw, and allowed to acclimate

to 7% moisture before density analysis. All samples were then scanned from pith to bark by X-

ray densitometry (Quintek Measurement Systems, TN) at a resolution of 0.0254 mm. We

report data as relative density on an oven-dry weight basis. Finally, average WD was calculated

as the weighted WD of the individual tree rings weighted by their annual basal area increment
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(BAI) to better represent the density of the whole tree. Given that juvenile rings have less reli-

able measurements we discarded tree rings prior to 1995. Microfibril angle (MFA) was deter-

mined by X-ray diffraction by determining the 002 diffraction arc (T-values) using a Bruker

D8 Discover X-ray diffraction unit equipped with an area array detector (GADDS) on the

radial face of the individual growth rings, as previously detailed by Ukrainetz et al. [36].

Two dendrochronological indices were calculated from tree ring information: drought

resistance (Resistance) and mean drought sensitivity (Sensitivity). Resistance represents the

ability of a tree to maintain growth during a specific drought episode, in this case it occurred

in 2015, and was calculated using the following equation [37]: Resistance = BAIdrought/BAIpre−-
drought, where BAIdrought is the average BAI of the drought event (2015) and BAIpre−drought is the

average BAI of the four years before the drought event (2011–2014) (see S1 Fig). Resistance

describes how much the incremental growth is reduced during a drought event. As such, a

Resistance value close to 1 represents a tree unaffected by the drought, while smaller values

represent less resistant trees. Sensitivity is a classic dendrochronological index commonly used

to estimate the responsiveness of trees to climate [38], and was calculated as:

Mean Sensitivity ¼
1

n � 1

Xt¼n� 1

t¼1

2ðBAItþ1 � BAItÞ
BAItþ1 þ BAIt

�
�
�
�
�

�
�
�
�
�

where, BAIt is the BAI measured at year t and n is the total number of years measured. Trees

with high climatic sensitivity are able to grow particularly well under good environmental con-

ditions but are more severely affected by drought events.

Table 1. Trial location, sites and climate characteristics, date of planting, experimental design data, and number

of original trees selected in each of the three open-pollinated white spruce trials.

Triala CALL CARS REDE

Location Calling Lake Carson Lake Red Earth

Latitude (˚N) 55˚16’ 54˚34’ 56˚34’

Longitude (˚W) 113˚ 09’ 115˚34’ 115˚19’

Elevation (m) 640 1006 518

Soil texture Clay loam Clay loam Clay loam

MAT (˚C) 1.6 2.9 1.3

MWMT (˚C) 16.3 15.0 16.6

MAP (mm) 467 535 442

MSP (mm) 327 371 300

CMI (mm) 2.2 13.1 -0.5

Planting date May-1986 May-1987 May-1987

Number of replicates 6 6 6

Number of tree per plot 5 6 6

Number of rows 52 60 61

Number of columns 120 102 96

Initial number of trees 4380 5292 5400

Survival at 30 years (%) 90 77 94

Number of trees selected 647 314 603

a MAT mean annual temperature; MWMT mean warmest month temperature; MAP mean annual precipitation;

MSP mean annual summer (May to Sept.) precipitation; CMI Hogg’s climate moisture index. The climate variables

represent the average over the study period 1986–2019, and are based on ClimateBC v7.00 [33].

https://doi.org/10.1371/journal.pone.0264549.t001
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The two residual outside pieces of the cores (slabs), retained during pneumatic processing

of the density specimens along the increment cores radial direction of the cross section, were

used to capture the variation in the stable carbon isotope ratio (δ13C) across all years measured

on each tree. The slabs were dried and ground using a Qiagen TissueLyser II (Qiagen Inc., Hil-

den, Germany). During grinding, each sample was placed into an individual stainless-steel jar

with a 2 cm stainless-steel ball. The ground samples were then analyzed for δ13C at Alberta

InnoTech Stable Isotope Laboratory, Victoria, Canada. The analysis was performed using an

established method on a MAT 253 mass spectrometer with Conflo IV interface (Thermo

Fisher Scientific, Waltham, MA, USA.) and a Fisons NA1500 EA (Fisons Instruments, Milano,

Italy). In brief, approximately 1 mg of solid sample was weighed into tin capsules then placed

into a combustion reactor that produces CO2, which was then analyzed by mass spectrometry

for isotopic estimates. Multiple in-house standards, calibrated relative to international stan-

dards, were run to allow the results to be normalized and reported vs. Vienna Pee Dee Belem-

nite. δ13C values were used as a measure of intrinsic long-term water use efficiency (WUE).

The defense compounds identified and quantified were mainly monoterpenes assessed

from needles collected from south facing branches near the crown of the trees during May—

June (2017), and from the 99 families selected and studied across all three test sites (n = 1,602)

(see S1 Text “Chemical analysis” for details). Briefly, needle samples were kept at -40˚C and

ground to a powder for extraction. Hexane-extractable compounds were identified and quan-

tified with a gas chromatography-flame ionization detector using methods modified from

[39]. We identified 12 hexane-extractable compounds and used seven monoterpenes (α-

pinene, β-pinene, camphene, myrcene, limonene, terpinolene, and camphor), including the

Fig 1. Location of the three white spruce (grey circles) test sites in Alberta, Canada. Abbreviations used for the test

sites are described in the Table 1. This figure was created in ArcMap [34] using Government of Alberta data [35].

https://doi.org/10.1371/journal.pone.0264549.g001
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sum of all hexane-extractable compound concentrations (total monoterpenes), in the charac-

terization of genetic parameters. Many of these compounds can be anti-feedants for Choristo-
neura fumiferana (eastern spruce budworm; [40–42]). The remaining chemical compounds

did not fit model assumptions and were not included in the analyses.

Logarithmic transformations were applied to MFA and all monoterpene compounds to

improve data normality (see S2 Fig). Additionally, prior to the multivariate analyses, all the pheno-

typic data were spatially adjusted [43] using the design effects. Design adjusted phenotypic data

were obtained for each tree for each trait and site by subtracting the estimated replication effects

from the original phenotype. Finally, data of all traits were standardized (mean = zero and vari-

ance = 1). The list of traits, number of trees for each trait, and summary statistics for all the pheno-

typic traits in their original scale (i.e., without design adjustment) are presented in Table 2.

Genotyping-by-sequencing

Following Chen´s et al. [44] genotyping-by-sequencing (GBS) protocol, the DNA from each

needle sample was prepared with EcoT22-I (ATGCA) restriction enzyme digestion. Sequenc-

ing reads of 1,625 trees were aligned to the most up-to-date white spruce assembly

(WS77111-v2, [45]) using BWA [46] and TASSEL-GBS [47]. Of the total 30 million SNP read

tags constructed, ~ 26 million tags (87.5%) were aligned to the genome assembly and 4.5 mil-

lion SNPs were determined with an individual site depth at 4x coverage. A set of 1,599 trees

and 467,224 (467K) biallelic SNPs were obtained based on filtering the SNP data set for a maxi-

mum missing data proportion of 30%, a minor allele count of one, and maximum site read

depth< = 70. Missing data were imputed using the mean observed allele at each locus.

Pedigree correction

Using the filtered SNP subset, we validated and corrected the pedigree of the OP families

based on the comparison of the expected versus observed additive genetic relationships using a

Table 2. Phenotypic mean for the 15 traits assessed in the white spruce population.

Trait Unit n Mean SD CV Min. Max.

HT cm 1,516 947.32 1.72 0.18 200 1350

DBH cm 1,516 14.94 3.32 0.22 1.6 26

WD kg.m-3 1,448 377.32 28.94 0.08 304.07 497.64

MFA ˚ 1,510 21.18 3.93 0.19 17.15 56.79

Resistance - 1,435 0.57 0.14 0.25 0.23 1.33

Sensitivity - 1,445 0.23 0.07 0.30 0.03 0.45

δ13C - 1,509 -25.9 0.68 -0.03 -28.14 -23.55

α-Pinene ng mg-1 1,418 169.67 151.33 0.89 13.99 1502.32

β-Pinene ng mg-1 932 30.49 20.02 0.66 8.18 215.51

Camphene ng mg-1 1,362 367.39 356.03 0.97 10.43 2585.76

Camphor ng mg-1 1,183 758.19 677.58 0.89 17.79 5769.53

Myrcene ng mg-1 1,472 358.54 377.38 1.05 13.79 5644.61

Limonene ng mg-1 1,472 429.13 425.42 0.99 10.9 3590.68

Terpinolene ng mg-1 906 39.36 22.76 0.58 8.17 169.09

Total monoterpenes ng mg-1 1,495 2934.11 2425.41 0.83 13.1 18719.14

Number of trees for which trait values were used in the quantitative parameters analyses (n), and statistics: mean, standard deviation (SD), phenotypic coefficient of

variation (CV), minimum (Min.), and maximum (Max.) values observed. Abbreviations used for the traits are described in the text. Monoterpene concentrations are

reported on a dry weight basis.

https://doi.org/10.1371/journal.pone.0264549.t002
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custom R-script. Samples’ pairwise additive relationship coefficients of the G-matrix (see

below) were examined for large deviations from their expected values (e.g. 0.25 for half-sib)

and corrected parentage was assigned or reassigned manually.

We removed 59 sampled trees for parent conflicts. Of the final set of 1,540 trees, 202 trees’

pedigree records were modified or corrected. These changes mostly stemmed from the identi-

fication of 5 phantom mothers and 100 pollen donors (fathers), which increased the number

of identified parents for the 1,540 white spruce trees from 99 (original pedigree) to 204 (cor-

rected pedigree). The number of genotyped trees per mother had a range of 1–20, and from 1

to 8 per site.

Quantitative genetics analyses

Our single-trait single-site analysis used a univariate individual-tree mixed model as following:

y ¼ Xβþ Zdd þ Zaaþ e ð1Þ

where, y is the vector of phenotypic data; β is the vector of fixed effects genetic groups formed

according to provenances; d is the vector of random design effects, including replications,

however, given that in general just one RES-FOR trees was sampled from each 4-tree row plot,

the plot effects were not fitted; a is the vector of random genetic effects following a normal dis-

tribution with zero mean and (co)variance matrix As2
a, where A is the average numerator rela-

tionship matrix and s2
a is the additive genetic variance; and e is the vector of the random

residual effect following also a normal distribution with zero mean and (co)variance matrix

Is2
e , where I is the identity matrix and s2

e is the residual error variance. X, Zd, and Za, are inci-

dence matrices relating fixed and random effects to measurements in vector y.

Genetic correlations between different traits measured from the same individual, and

genetic correlations between sites, considering measurements from different sites as different

traits, were estimated based on the following multiple-trait individual-tree mixed model:
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where, ½y0ij � � � jy
0
j� included the individual-tree spatially adjusted phenotypes for all traits and

sites; the genetic groups effects for each trait or site are included in ½β0ij � � � jβ
0

j�; the genetic

effects (breeding values) of all individuals for all the traits or sites are included in ½a0ij � � � ja
0
j�,

and ½e0ij � � � je
0
j� is the residual vector. The incidence matrices Xi�� � �� Xj, and Zai

� � � � � Zaj

related observations in ½y0ij � � � jy
0
j� to elements of ½β0ij � � � jβ

0

j� and ½a0ij � � � ja
0
j�, respectively. The

symbols
L

and ’ indicates the direct sum of matrices and transpose operation, respectively.

Finally, the expected value and variance-covariance matrix of the genetic effects in model (2)

are respectively equal to:
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where, s2
aii

and s2
ajj

are the genetic variances for the traits or sites i and j respectively, saij
is the

genetic covariance between traits or sites i and j, and A is defined above for the single-trait
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single-site model. The symbol� indicates the Kronecker products of matrices. The expected

value and variance-covariance matrix of e are equal to:
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The residual variances for traits or sites i and j were s2
ei

, and s2
ej

, respectively, seij
is the residual

covariance between traits i and j, and I is the identity matrix. Given that the sites were assessed

separately, the residual covariances across-sites were assumed to be zero.

In the genomic-based approach, the pedigree-based relationship matrices A (A-matrix) for

genetic effects, of the previous mixed models (1) and (2), were substituted by the correspond-

ing genomic relationship matrix (G-matrix) based on 467K SNPs.

G ¼
WW0

2
P

pið1 � piÞ

where, W is the n ×m (n = number of individuals, m = number of SNPs) rescaled genotype

matrix following M—P, where M is the genotype matrix containing genotypes coded as 0, 1,

and 2 according to the number of alternative alleles, and P is a vector of twice the allelic fre-

quency, pi.

Estimates of pedigree- and genomic-based variances for the genetic effects (ŝ2
a,) and resid-

ual errors (ŝ2
e), were re-parameterized to individual-trait narrow-sense heritability (ĥ2) and

genetic correlations (r̂ a) between traits, or sites i and j, as follows:

ĥ2 ¼
ŝ2

a

ŝ2
a þ ŝ

2
e

; r̂ a ¼
ŝai;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

ai;i
� ŝ2

aj;j

q

Visualization of genetic correlations between traits was done using the corrplot function in R-

package corrplot [48]. Correlations between traits or sites were considered strong if r̂ a � 0.70,

moderate if 0.70 > r̂a > 0.40, and low or weak when r̂ a � 0.4.

Univariate model (1) and multivariate model (2) were fitted in R (www.r-project.org) with

the function remlf90 from the package ‘breedR’ [49], using the Expectation-Maximization

(EM) algorithm followed by one iteration with the Average Information (AI) algorithm to

compute the approximated standard errors of the variance components [50]. The remlf90

function in the R-package ‘breedR’ is based in the REMLF90 (for the EM algorithm) and AIR-

EMLF90 (for the AI algorithm) of the BLUPF90 family [51]. The program preGSf90, also from

the BLUPF90 family [51], was used to create the inverse of the G-matrices calculated with the

467K SNPs markers, and then used to fit models (1) and (2) with the ‘breedR’ package.

Results

Pedigree- and genomic-based relationship estimations

To study the expected (pedigree) and realized (genomic) relationship structures in the geno-

typed population, individual pairwise relatedness was estimated using either genome-wide

marker data or pedigree (after correction) to determine the proportion of self-relationship

(1.00 relatedness), full-sibs (0.50), half-sibs (0.25), and unrelated (0.00) individuals. For the

1,540 genotyped trees, we determined a total of 2,371,600 pairwise relationships. After pedi-

gree correction, the value distribution showed that 98.81% (2,343,490) of which involved
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estimates for unrelated individuals (according to the pedigree), while half-sibs represented

1.11% (26,210) and full-sibs 0.02% (360) (Table 3). A comparison of the pedigree expected and

genomic realized relationship matrices is also depicted using the distribution of the number of

pairwise additive relationships (S3 Fig). A good pedigree control in the production of the unre-

lated, half-sib and full-sib families is shown, although SNP marker data, by capturing the real-

ized genetic relationships, provided considerably more refined estimates of the continuous

distribution of true relatedness in the genotyped population.

Heritability estimates

Overall, narrow-sense heritability estimates based on genomic relationship matrices were gen-

erally (35 out of 42 site-trait combinations) higher than those based on the pedigree relation-

ship matrices (average of 0.54 and 0.43 across traits and sites, respectively; Fig 2). However,

standard errors for heritability estimates were found to be lower for the pedigree- (0.16 aver-

aged across traits and sites) versus genomic-based (0.19) models (Table 4).

Across test sites and relationship matrices, heritability estimates for growth traits (HT and

DBH) ranged from low to high with an average estimate of 0.73 (range: 0.06–0.97). Wood

quality traits (WD and MFA) showed low to moderate narrow-sense heritability estimates,

averaging 0.34 (range: 0.05–0.78). Among the test sites, CARS showed significantly lower heri-

tability estimates for DBH and WD, and the lowest MFA heritability estimate was found at the

REDE. Both dendrochronological drought indices, Resistance and Sensitivity, showed moder-

ate to high heritability estimates for CALL and REDE with values ranging from 0.25 to 0.80

(average 0.49). However, these values were near zero for CARS, i.e., with no heritable variation

(additive genetic variation). For the trait δ13C, moderate to high heritability estimates were

found with values ranging from 0.57 to 0.98 (average 0.81). Heritability estimates for monoter-

pene compounds, however, showed a lack of consistency, with values ranging from 0.00 to

0.96 (averaged of 0.45). Total monoterpenes showed slightly lower heritability estimates than

the individual monoterpenes, ranging from 0.08 to 0.64 (average 0.39). Again, CARS showed

lower heritability estimates than the other white spruce test sites for total monoterpenes (see

Table 4 for details).

Traits genetic correlations

Overall, genomic-based relationship genotypic correlation estimates are equivalent to those

from the classical pedigree-based relationship with a similar average (of 0.23) across the 105

trait-pair combinations; and varied from -0.81 to 0.99 and -0.79 to 1.00, for pedigree- and

genomic-based genetic correlation estimates, respectively (Fig 3 and S1 Table). However,

Table 3. Statistics of pairwise relatedness coefficients. Statistics of pairwise relatedness coefficients for self-relationship coefficients, full-sibs, and half-sibs and unrelated

genotyped trees, for both the pedigree (after pedigree correction A-matrix) and genomic information from all available SNPs (467K) (G-matrix).

Self-relationships Full-sib Half sibs Unrelated

A-matrix G-matrix A-matrix G-matrix A-matrix G-matrix A-matrix G-matrix

n 1540 1540 360 360 26210 26210 2343490 2343490

Mean 1.000 1.120 0.500 0.377 0.250 0.176 0.000 -0.002

Minimum 1.000 0.628 0.500 0.205 0.250 0.045 0.000 -0.027

Maximum 1.000 1.281 0.500 0.517 0.250 0.405 0.000 0.283

SD 0.000 0.080 0.000 0.059 0.000 0.043 0.000 0.005

CV 0.000 0.071 0.000 0.156 0.000 0.243 0.000 -2.547

Number of relationships (n), mean (Mean), minimum value (Minimum), maximum value (Maximum), standard deviation (SD), and coefficient of variation (CV).

https://doi.org/10.1371/journal.pone.0264549.t003
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dispersion along the 1:1 line can be observed in S4 Fig, especially at the CARS site for the cor-

relations between mean drought sensitivity (Sensitivity) and the monoterpene compounds.

Across test sites and relationship matrices, estimates of genetic correlations between DBH

and HT were consistently high and positive, ranging between 0.87 and 0.93 (average 0.90).

Low to moderate negative or positive correlations were apparent between growth and wood

quality traits (WD and MFA) (range: -0.50–0.33), with some inconsistency across sites espe-

cially between growth traits and MFA. Generally, consistently low to moderate negative corre-

lations between growth variables and growth resistance (Resistance) were found within and

across sites (range: -0.18 –-0.65). However, correlations between growth and Sensitivity traits

were high and positive (range: 0.40–0.78) for CALL and REDE, and negative (range: -0.31

–-0.08) for CARS. The correlation between growth traits and δ13C varied from 0.20 to 0.70.

Genetic correlation estimates between growth traits and monoterpene compounds and total

monoterpenes were low to moderate. For CALL, correlation coefficients were mostly positive

(range: -0.11–0.28), whereas in CARS and REDE low and negative correlations were generally

found (range: 0.08 –-0.49) (Fig 3 and S1 Table).

Fig 2. Scatter plot between estimated narrow-sense heritability estimated from the pedigree- (A-matrix) and

genomic-based (G-matrix) relationship matrices for the 15 studied traits in each of the three white spruces sites.

Abbreviations used for the sites are described in the Table 1.

https://doi.org/10.1371/journal.pone.0264549.g002
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The genetic correlations between the two wood quality traits (WD and MFA) were consis-

tently negative across sites (range: -0.10 –-0.42). Negative correlations were also identified

between WD and the drought indices (-0.08 to -0.26 for Resistance, and -0.15 to 0.15 for Sensi-

tivity). In contrast to WD, MFA showed strong and positive correlation values with Resistance

(range: 0.39–0.77), while the genetic correlation between MFA and Sensitivity remained low to

moderate, and negative (range -0.45–0.19). Genetic correlations between WD and monoter-

pene compounds and total monoterpenes were generally low and positive, meanwhile MFA

also showed generally low but both positive and negative genetic correlation estimates with the

various monoterpene compounds.

The adaptability-related Resistance trait showed a low negative correlation with δ13C

(range: -0.37 –-0.01) and in general positive correlation with Sensitivity (range: -0.01–0.24).

Further, the correlations between the two drought resistance traits varied across sites. For

example, the genetic correlations between Resistance and Sensitivity averaged across the two

relationship matrices were, -0.80 for REDE, -0.14 for CALL and, with an important variation

across the two relationship matrices, 0.19 for CARS. Resistance showed statistically significant

low and negative correlations with monoterpenes for CALL, low to moderate positive correla-

tion for CARS, and was low but statistically not significant for REDE. For the Sensitivity and

monoterpene associations, strong positive genetic correlations were found for CALL (range:

0.33–0.63), while in REDE, these correlations were mostly non-significant (range: -0.12–0.09,

Fig 3 and S1 Table). Correlation estimates between δ13C values and monoterpene compounds

and total monoterpenes also varied across sites, with low and negative values for CARS and

positive relationships in the remaining sites, although statistically non-significant with rela-

tively large standard errors. Finally, the genetic correlation estimates between monoterpene

compounds (including total monoterpenes) were generally moderate to strong, positive and

consistent across sites (Fig 3 and S1 Table).

Table 4. Estimated narrow-sense heritability and their approximate standard error (SE), for each growth, wood quality, drought resilience and chemical traits in

the white spruce population. Heritability estimates were estimated using the pedigree- (A-matrix) and genomic-based (G-matrix) relationship matrices constructed from

all available SNPs (467K). Abbreviations used for the traits and sites are described, respectively, in the text and Table 1.

Site CALL CARS REDE

Trait A-matrix G-matrix A-matrix G-matrix A-matrix G-matrix

HT 0.747 (0.164) 0.930 (0.216) 0.858 (0.264) 0.971 (0.016) 0.855 (0.169) 0.948 (0.012)

DBH 0.592 (0.156) 0.782 (0.209) 0.064 (0.212) 0.368 (0.347) 0.731 (0.162) 0.913 (0.219)

WD 0.424 (0.133) 0.546 (0.185) 0.166 (0.227) 0.334 (0.347) 0.554 (0.158) 0.781 (0.225)

MFAb 0.350 (0.134) - 0.233 (0.218) 0.238 (0.319) 0.045 (0.105) 0.049 (0.131)

Resistance 0.249 (0.128) 0.336 (0.172) 0.002 (0.003) 0.002 (0.003) 0.426 (0.158) 0.660 (0.227)

Sensitivity 0.326 (0.131) 0.499 (0.190) 0.021 (0.211) 0.008 (0.008) 0.580 (0.155) 0.801 (0.225)

δ13C 0.574 (0.150) 0.743 (0.202) 0.769 (0.236) 0.922 (0.355) 0.853 (0.164) 0.982 (0.030)

α-pineneb 0.491 (0.145) 0.647 (0.197) 0.001 (0.002) 0.001 (0.002) 0.420 (0.151) 0.520 (0.202)

β-pineneb 0.328 (0.153) 0.419 (0.211) a a 0.332 (0.175) 0.304 (0.218)

campheneb 0.843 (0.166) 0.956 (0.006) 0.008 (0.008) 0.008 (0.008) 0.527 (0.159) 0.652 (0.216)

camphorb 0.302 (0.131) 0.411 (0.183) a a 0.551 (0.160) 0.630 (0.210)

myrceneb 0.786 (0.168) 0.947 (0.215) 0.380 (0.241) 0.544 (0.348) 0.519 (0.169) 0.563 (0.215)

limoneneb 0.486 (0.143) 0.600 (0.189) 0.189 (0.231) 0.205 (0.319) 0.513 (0.162) 0.594 (0.211)

terpinoleneb 0.648 (0.197) 0.666 (0.247) a a 0.316 (0.151) 0.358 (0.197)

total monoterpeneb 0.477 (0.149) 0.635 (0.199) 0.129 (0.221) 0.082 (0.309) 0.482 (0.159) 0.522 (0.202)

a Heritability and their approximate standard errors were not estimated at the CARS site due to insufficient phenotypic data.
b Logarithmic transformed.

https://doi.org/10.1371/journal.pone.0264549.t004
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Across sites genetic correlations

On average, across all traits, genetic correlations across sites were similar (in terms of magni-

tude and direction) regardless of the relationship matrix employed, with only one exception,

Sensitivity (S5 Fig). Although the average correlation values among the two multivariate mod-

els were similar (0.59 vs. 0.58), the average standard error from the genomic model were dou-

ble (0.16 vs. 0.32) (S2 Table). Overall, genetic correlations between sites were positive with

relatively small standard errors. However, inconsistency was observed, potentially reflecting

the climatic conditions between CARS and the other two sites (CALL and REDE) (see Table 1

and discussion below). While average genetic correlation estimates across traits and relation-

ship matrices were strong for the CALL and REDE pair (0.76), the lowest correlations were

obtained between the sites CALL and CARS (0.48) and REDE and CARS (0.52), in particular

for the growth and MFA traits (Fig 4 and S2 Table).

Fig 3. Estimated genetic correlations between the different traits from the multiple-trait analysis using the

pedigree- (A-matrix, above diagonal) and genomic-based (G-matrix, below diagonal) relationship matrices for the

white spruce population. The genetic correlations are shown in each cell. The color of each individual cell reflects the

strength of the genetic correlation, with dark blue and yellow reflecting negative and positive correlations, respectively.

Abbreviations used for the traits and sites are described, respectively, in the text and Table 1. NOTE: NA = Correlation

were not estimated at the CARS site due to insufficient phenotypic data. Transformed data were used for the

correlation estimates of MFA and all monoterpene compounds.

https://doi.org/10.1371/journal.pone.0264549.g003
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For the growth traits (HT and DBH), the average across pedigree- and genomic-based rela-

tionship estimates of genetic correlations between pairs of sites was moderate (0.44 and 0.53,

respectively). However, as we mentioned above, these correlations were inconsistent for the

Fig 4. Estimated genetic correlations between sites for each trait from the multiple-site model using pedigree- (A-

matrix) and genomic-based (G-matrix) relationship matrices for the white spruce population. The estimated

genetic correlations are shown in each cell below the diagonal, and the light to dark blue color of each individual cell

above the diagonal reflects the strength of the genetic correlation. Abbreviations used for the traits and sites are

described, respectively, in the text and Table 1. NOTE: NA = Correlation were not estimated at the CARS site due to

insufficient phenotypic data. Transformed data were used for the correlation estimates of MFA and all monoterpene

compounds.

https://doi.org/10.1371/journal.pone.0264549.g004
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pairs of sites that involved CARS, with significantly lower and imprecise (relatively large stan-

dard errors) site-to-site genetic correlations. For wood quality traits, genetic correlations

among sites were high and consistent across pairs of sites for WD (average 0.98, range 0.97–

0.98), while estimates for MFA across sites showed some degree of variability (average 0.66,

range: 0.37–0.92) with the lowest correlations (and largest standard errors) also for the pairs

involving CARS.

For the adaptability-related drought indices, the genetic correlation among sites for Resis-

tance and Sensitivity, ranged from -0.02 to 0.93, but in general, these estimates were associated

with relatively large standard errors, except for Sensitivity between CALL and REDE. Further-

more, significant positive genetic correlations for the WUE related isotopic δ13C values were

found across sites and the two relationship matrices studied (average 0.92, range: 0.80–0.97,

Fig 4 and S2 Table).

Genetic correlations for the monoterpene compounds among sites were positive, and ran-

ged from moderate to strong with an average of 0.70 (range: 0.15–0.94). Potentially owing to

the smaller sample size (n< 1,183, Table 2), the standard errors of the genetic correlations for

β-pinene, camphor, and terpinolene between CALL and REDE were larger. Moreover, CARS

was not included in these multiple-site analyses of these three compounds as there was insuffi-

cient phenotypic data (n< 30) available. For total monoterpenes, genetic correlations among

sites were positive and strong, and consistent across sites, with an average across the two rela-

tionship matrices of 0.90 (range: 0.86–0.96).

Discussion

Considerable effort have been committed to quantitative genetic analyses of several tree spe-

cies’ growth and wood quality productivity-related traits. While the need to identify adaptabil-

ity-related trait genotypes grows, less effort has been directed towards the selection of pest and

disease resistant trees, and even less for the selection of drought resistant/resilient individuals.

Here, we provide a comprehensive quantitative pedigree and genomic analyses of growth,

wood quality, drought resilience, and monoterpene traits in a white spruce breeding popula-

tion. Accurate estimates of narrow-sense heritability and genetic correlation estimates among

traits within and across-sites were obtained and are expected to provide valuable information

to breed and assist in the selection of resistant/resilient genetic material for increasing produc-

tivity and adaptability of future white spruce forests.

Trait genetic control

Genetic parameters and their function, such as heritability and correlations, play an important

role in the selection of parents in a breeding program. However, these values are context

dependent, as they depend on the relative contributions of genetic and environmental varia-

tions in a specific population, and vary among traits and across measurement ages [52]. While

height (HT) heritability estimates (Table 4) showed values somewhat higher than those

reported in earlier white spruce studies [10, 14, 16], likely as a result of unintentional sampling

artifacts, heritability estimates for diameter (DBH) are consistent with earlier observations in

other forest tree species [10, 53]. Although wood density (WD) heritability estimates were

comparable to those reported earlier, the pedigree- and genomic-based relationships produced

variable results, similar to earlier observations [3, 4, 14]. Microfibril angle (MFA) showed low

to moderate genetic control, consistent with results from other white spruce studies [4].

Recent quantitative studies in conifers using population [54], family structure [21], or geno-

mic [55–57] information have used tree-ring traits, such as the short-term index resistance, to

analyze the genetic variation and genetic architecture in drought responses. Here, we studied
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two short-term indices (i.e., Resistance and Sensitivity) and both produced low to moderate

heritability estimates, results similar to those reported by Depardieu et al. [21] in white spruce

at a single-site. However, some variation across sites was observed, at CARS for Resistance and

Sensitivity, results similar to those reported by Zas et al. [54] who quantified the genetic varia-

tion of resilience and resistance indices in two different sites located in central Spain subjected

to similar drought events (intensity, timing and duration) in maritime pine (Pinus pinaster
Ait.). Zas et al. [54] indicated that differences between sites in response to extreme drought

events should not be attributed to differences associated with the extreme event itself, but to

other microenvironmental factors such as topography, soil depth and stoniness that existed

between sites. CARS is the highest elevation site with higher summer precipitation and lower

summer temperatures, when compared to the other two white spruce test sites (Table 1). It is

therefore plausible that trees in CARS were not exposed to equivalent or severe drought condi-

tions compared to the other two sites to express differences in Resistance and Sensitivity over

the same time period (2011–2015).

Resistance to stress is often difficult to measure and depends on a complex network of func-

tional traits at multiple scales [58]. In trees, stable carbon isotope ratio (δ13C) values can be

used as an index of integrated long-term water use efficiency (WUE), expressing the ratio of

carbon fixed to water lost as related to stomatal function. Moreover, δ13C may serve as a guide

for parental selection decisions for seed production, to identify genotypes with contrasting

growing strategies, elucidating the underlying mechanisms of complex physiological traits

[59], or selecting genotypes for high WUE without compromising yield [60]. In our study, we

showed that there is significant potential for selection using δ13C information, as the genetic

variation in δ13C was moderate to high, and comparable to earlier reports (Johnsen et al. [61]:

Picea mariana (0.54); Prasolova et al. [62]: Araucaria cunninghamii (range: 0.40–0.72)); how-

ever, lower estimates have also been reported (Pinus pinaster: Marguerit et al. ([63]; range:

0.23–0.41) and Brendel et al. ([64]; 0.17); Pinus taeda: Baltunis et al. ([59]; 0.14 and 0.20 for

two sites in Florida and Georgia, respectively)).

Maximizing growth in future climate scenarios with increased pest activity and drought

events requires an understanding of the natural variability of quantitative resistance to disease

[65] and drought tolerance. In a review on conifers, Kopaczyk et al. [66] indicated that plant

secondary metabolites such as terpenes are not involved in vital processes, but may be essential

for some conifers to adapt to unfavourable abiotic conditions such as drought stress by

increasing levels of constitutive defenses. For instance, total monoterpenes increased signifi-

cantly in Pinus sylvestris (39%) and Picea abies (35%) trees under a severe drought relative to

that of the control [67]. When Picea abies was subjected to water stress, the contents of tricy-

clene, α-pinene, and camphene were significantly higher than the control trees [68]. Therefore,

trees showing resistance to insect attacks or drought events can produce higher levels of sec-

ondary chemicals compared with trees susceptible to insects or non-drought stressed trees. In

spite of the importance of these compounds in relation to adaptability-related traits, few stud-

ies have focused on the genetic control (i.e., heritability estimates) of secondary compounds in

forest trees. Hanover [69] reported heritability estimates of five monoterpenes (four of which

are included in our study) in Pinus monticola ranging from 0.38 to 0.95, with heritability values

all within the ranges obtained in our study.

Overall, our results showed that estimates of heritability using the genomic relationship

matrix from 467K SNP markers were greater than those estimated using the pedigree relation-

ship matrix (average across traits and sites 0.54 vs. 0.43, respectively; Fig 2), demonstrating

that the genetic variance captured depended on whether a pedigree- or genomic-based rela-

tionship matrix was used. These results agree with those reported by Tan et al. [70], in Eucalyp-
tus, where heritability estimates obtained from genomic information were higher than those
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from the pedigree, for both growth and wood quality traits. In contrast, Lenz et al. [71] and

Gamal El-Dien et al. [72] found heritability estimates from the genomic relationship matrix

lower than those estimated from the pedigree relationship matrix for growth and wood quality

traits in Pice mariana and Picea glauca × Picea engelmannii, respectively. However, similar

heritability estimates from pedigree and genomic information were obtained for HT in Picea
abies [73] and HT and MFA in lodgepole pine [29]. These results highlight the differences in

genetic parameter estimates that exist between different relationship matrices. The cause of

these differences may be attributable to different causes, like different data sets or noise due to

uncertainty in the estimates [74]. Interestingly, differences in genetic variance estimates may

also exist as a consequence of the fact that pedigree- and genomic-based relationships matrices

refer to different base populations, where genomic relationship matrices reflects the genotyped

population whereas the pedigree relationships reflects the founders of the pedigreed popula-

tion [74].

Relationship among traits

Trait genetic correlations are important for demonstrating their associated genetic responses

(how selection on one trait affects the mean and potentially genetic variation in another). This

is particularly important for breeders to better understand the interplay between the produc-

tivity-related and/or adaptability-related traits. Although higher genetic correlations were

observed among growth traits (i.e., DBH and HT) (Fig 3 and S1 Table), such correlation values

indicate that selection for any one of these traits alone would give a high correlated response in

the other traits, providing an opportunity to efficiently allocate assessment efforts. Our results

confirmed previous observations in white spruce [75] and other conifer species [36, 76, 77].

For example, Rweyongeza [75] using progeny trials from the same white spruce series studied

here, reported DBH-HT genetic correlation estimates of 0.76 to 0.94 (average 0.85) for age-20

and 30 measurements.

The reported genetic correlations suggest that the selection for rapid growth could result in

a small decrease in WD (Fig 3 and S1 Table). Earlier studies in several tree species have shown

that genetic correlations between growth traits and WD are negatively correlated, but may also

vary with environmental factors (e.g., location, site conditions) [78]. Moreover, different

results concerning the relationships between growth rate and WD may be expected, given that

WD is a complex trait influenced by many factors [79]. For instance, either negative [13], or

no/minor and negative [14] genetic correlation relationships were reported for WD and HT in

white spruce. Our results also showed that the genetic correlation between growth traits and

MFA depended on the site, as the genetic correlations were low to moderate, as well as negative

or positive. A low and negative correlation (-0.31) between MFA and HT was obtained by

Park et al. [13] in white spruce; but high and positive or negative correlations (0.71 and -0.52

were reported for MFA and DBH) [80] or moderate correlations (0.40 and 0.39 at age 10 and

25, respectively) [81] in Norway spruce.

Unfavourable results were obtained for the relationship between growth traits and the

short-term index Resistance; therefore, selection of larger trees (greater in height and diame-

ter) could result in a decrease in resistance to drought under climate change. Mean drought

sensitivity (Sensitivity) also showed an unfavourable relationship with growth traits in CALL

and REDE but favourable in CARS, highlighting that differences in relationships can be associ-

ated with local environmental conditions [54] (see discussion in the following sub-section).

Trujillo-Moya et al. [55] showed that drought resistance was found to be positively correlated

with mean annual increment in a 35-year-old Norway spruce provenance test, however, Mon-

twé et al. [82] also showed some contrasting results depending on the origin of the climatic
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regions from which 35 lodgepole pine provenances where selected. Montwé et al. [82] also

found a trade-off between tolerance to drought and growth only for the most southern (U.S.

A.) lodgepole pine population, while the central and southern interior British Columbia (Can-

ada) populations showed an ability to tolerate drought and to maintain comparatively good

long-term growth.

Our results showed that faster-growing trees were positively correlated with higher WUE

(higher δ13C values) and this association was strong (Fig 3 and S1 Table). Therefore, these

results suggest that δ13C is a useful criterion for selecting fast growing genotypes with higher

WUE. The positive genetic correlation between growth and WUE could arise from several

mechanisms. First, the genetic variation in WUE might be driven by the variation in carbon

assimilation rate, which in turn, was positively correlated with growth [63]. An alternative

interpretation could suggest that the genetic variation in WUE was driven by the variation in

stomatal conductance, and taller trees might have lower stomatal conductance due to hydrau-

lic constraint, as found in Pinus pinaster (maritime pine) [83]. However, further research is

needed to elucidate if our δ13C findings were driven by the genetic variation in assimilation

rate or by stomatal conductance in the studied population, and to explore the causes of the

stronger association found between δ13C and growth traits. Previous studies evaluating field

trials did not show the existence of a general trend between growth traits and WUE [61, 63,

84–86]. For instance, in Picea mariana, negative [61] and positive [63] correlations between

growth and δ13C were found.

Wood characteristics have been suggested as screening traits for drought sensitivity to iden-

tify drought tolerant individuals [87, 88]. Denser wood is typically associated with xylem that

is more resistant to hydraulic failure [89]. Our analysis generally showed some unfavourable

relationship between WD and Resistance (negative and low correlation), suggesting that aver-

age WD values could be a poor predictors of mean drought sensitivity and thus other physio-

logical parameters may be required. Sebastian-Azcona et al. [90] found no differences in

cavitation resistance between different provenances of white spruce, which also suggests that

other traits such as root water uptake or stomata regulation might have a stronger effect on the

inherent differences to drought resistance. George et al. [91], in the genus Abies, found that the

average ring density had either a negative relationship to resistance or positive relationships to

recovery, resilience and relative resilience, as well as no or only weak correlations with differ-

ent drought events. Other physical properties of wood structure such as MFA may also provide

information about tree sensitivity to drought events. Our results suggest that higher MFA val-

ues are associated with more drought tolerant trees (higher values of Resistance; positive corre-

lation). Higher MFA may enable the tracheid to bear higher hoop stresses when a tracheid is

under high tension given greater resistance against cell collapse during drought events [92].

However, changes in MFA as a reaction to the environment are still poorly understood [92].

In summary, various wood characteristics may be related to drought sensitivity, because the

vulnerability of the xylem conduits to hydraulic failure depends on lumen diameter and length

as well as on cell wall thickness [55].

In general, our results showed positive genetic correlations between WD and δ13C, with the

highest correlations for CALL and REDE (average across the two relationships of 0.23 and

0.30, respectively). Previous studies in Fagus sylvatica [93], showed that the phenotypic rela-

tionship between WD and δ13C differed between dry and wet years across sites. For wet years,

WD and δ13C was negatively correlated and, in dry years δ13C increased with increasing wood

density (i.e., positive correlation). Therefore, the higher values observed in the mentioned sites

probably are associate with dryer environments. This conclusion can explain the results

obtained for CALL and REDE as they are at lower elevation and are drier sites as compared to

CARS, located at a higher elevation with relatively moist conditions (Table 1).
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Resistance and Sensitivity drought indices were marginally negatively or positively corre-

lated with δ13C, respectively, suggesting that trees most resistant to a drought event have low

WUE (i.e., low δ13C values), at least in CARS and REDE, the sites with the highest correlation

values (average across relationships, -0.28 and -0.35, respectively). Jucker et al. [86] showed

that δ13C values provided a reliable and powerful indicator of drought across a wide range of

forest tree species growing in different environmental conditions. As stated above, they did

not find enough evidence to suggest that the increase in δ13C was associated with the signifi-

cant decline in stem growth; however, they showed a clear association between increased δ13C

and decreased growth under drought conditions in four sites along a Picea abies latitudinal

gradient (-31.7% on average, see Fig 2 in Jucker et al. [86]), confirming our results.

There is evidence that terpenes are important components of conifer defenses [94, 95]. It has

been shown that some types of stress conditions, such as drought or temperature fluctuation

enhance or inhibit the production of terpenes, modify their emission pattern or/and quantity

[66]. Thus, the effect of abiotic stress on monoterpenes could explain the different responses

across the study sites. For instance, the most resistant trees to drought stress showed low and

negative correlations with all the monoterpenes studied at CALL (average correlations across

monoterpenes and relationships was -0.25) and positive at CARS (average correlations across

monoterpenes and relationships was 0.41). The correlation with the α-pinene concentration (a

foliar protectant against Choristoneura fumiferana feeding [42]) was the most negative at CALL

(-0.34) and the most positive at CARS (0.58). Moreover, it has also been demonstrated that pro-

tective compounds produced by plants subjected to biotic stress may enhance their tolerance to

abiotic stress [66], the so called “cross-talk” between biotic and abiotic stress responses [96].

Finally, our study also compared the genetic correlation estimates between traits using the

classical infinitesimal model from the pedigree information with those estimates from the

genomic information. From theory, standard pedigree-based linear models capture expected

genetic covariation, whereas marker-based models capture genetic covariation that is marked

by SNPs [97]. Therefore, it is expected that for some of these traits, the estimated correlations

may depend on the type of information. Our results showed that genome-based correlations

generally reaffirm the pedigree-based correlations, but some pairs of traits disagree, either with

missing correlations (i.e., the pedigree estimates were higher than those from SNP markers) or

excessive correlations (i.e., the SNP markers estimates were higher than those from pedigree)

(S4 Fig). Momen et al. [97] highlighted that some care should be taken when interpreting and

using genetic parameters estimated via molecular markers, as predictions for complex traits

based on pedigree data may differ from those based on SNP data, simply due to chance or

other reasons, such as the extent of linkage disequilibrium (LD) between markers and the

unknown quantitative trait loci (QTL). To potentially capture parts of the genetic covariance

among traits that are not accounted for by either pedigree or genomic information alone, we

recommend combining the pedigree and genomic information using the single-step GBLUP

approach that combines pedigree and genomic relationship matrix [98] as applied to white

spruce [3, 14] and lodgepole pine [2].

Genetic-environmental correlations

The availability of multi-environmental forest genetics trials makes it feasible to evaluate both

the magnitude and importance of the genotype by environment (G×E) interactions [99].

When these interactions are high (genetic correlations < 0.70), breeders must decide whether

to select for performance stability and accept a slower rate of population improvement or to

develop populations specifically adapted to each environment for gain maximization, however,

the latter strategy is usually associated with greater program costs [100].

PLOS ONE Quantitative analysis of productivity and climate-adaptability traits in white spruce

PLOS ONE | https://doi.org/10.1371/journal.pone.0264549 March 17, 2022 18 / 28

https://doi.org/10.1371/journal.pone.0264549


Despite being in the same breeding region (D1), the climatic conditions varied across the

test sites, with the mean annual temperature (MAT) and precipitation (MAP) ranging from

1.3 to 2.9˚C and 442 to 535 mm during the trial period 1986–2019 period, respectively

(Table 1). Among the test sites, CARS is higher in elevation, with the highest MAT and lowest

mean warmest month temperature (MWMT; i.e., coolest summer), and highest annual precip-

itation and moisture (see Table 1), while the lower elevation CALL and REDE sites experi-

enced warmer summers, and had lower annual precipitation and moisture index. Overall,

these climate differences between CARS and both CALL and REDE sites might explain the

high G×E interactions observed for the site-to-site pairs involving CARS, while the climate

similarity between CALL and REDE may explain the low G×E interactions between these two

sites (Fig 4 and S2 Table), in spite of the large geographic distance between them (Fig 1). It

should also be mentioned that CALL and REDE were attacked by white pine weevil (Pissodes
strobi Peck), a pest that destroys the leading shoot growth.

For HT and DBH, higher G×E interactions were observed for the analyses involving CARS

(Fig 4 and S2 Table), suggesting selection for growth at CARS should be considered indepen-

dently for its unique climate, as well as the absence of damage by white pine weevil. In contrast,

for wood quality traits, such as WD and MFA, our results indicated a neglectable G×E effect.

Similar results have previously been reported for several conifer species [2, 101–105]. These

studies revealed that G×E interaction for WD is not very important (lodgepole pine: Ukrainetz

and Mansfield [2] > 0.78; Pinus radiata: Baltunis et al. [104]> 0.74 and Gapare et al. [105]>

0.70; Chen et al. [102]> 0.74; Pinus taeda: McKeand et al. [103] = 0.77). Furthermore,

although we identified G×E effect at the higher elevation CARS site, previous studies showed

little G×E interactions for MFA. For instance, Baltunis et al. [101] showed a mean Type B

genetic correlation [106] of 0.87 in Pinus radiata families from two second-generation progeny

trials. In two large open-pollinated progeny trials of Norway spruce, established in southern

Sweden, Chen et al. [102] also observed high Type B genetic correlations (0.85) for MFA.

The importance of examining the genetic variation in drought resilience across a range of

extreme climate events and across sites has been emphasized [54]. However, to date, most

studies have focused on single test sites [21, 55, 56]. Our findings showed high variability in

genetic correlations between study sites with relatively large standard errors for the drought

response indices, except for mean drought sensitivity (Sensitivity) between CALL and REDE.

We have concluded that selection for drought resistant genotypes can only be made for sites

with similar climate indices (such as the CALL and REDE in this study). How forests and trees

react to drought is complex and varies across stands, sites, regions, and continents depending

on multiple factors including climate conditions [107]. Moreover, as we mentioned before,

these differences are likely due to other microenvironmental factors that existed between these

three white spruce test sites, as indicated by Zas et al. [54].

The small G×E interaction reported in our work for δ13C are in agreement, generally, with

other previous conifer studies [61, 108]. Johnsen et al. [61] showed no evidence for a G×E

interaction for foliar carbon isotope discrimination in Picea mariana. Guy and Holowachuk

[108] reported no significant G×E interactions for δ13C in 10 lodgepole pine provenances

tested on three sites in British Columbia (Canada) with contrasting soil moisture and climate.

However, Baltunis et al. [59] observed a lower value of Type B total genetic correlation (0.64)

in 1,000 Pinus taeda cloned full-sib families tested on two contrasting sites. Cregg et al. [109]

also observed strong G×E interaction for stable carbon isotope discrimination in mature Pinus
ponderosa at two contrasting locations in the Great Plains (USA), caused by growth phenology

variation among seed sources. Information on G×E interaction for δ13C of white spruce field

trials is extremely limited.
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Finally, in agreement with two previous studies [110, 111] we observed, with only a few

exceptions, low G×E interactions in the monoterpene compounds and total monoterpenes.

Few studies have investigated G×E interaction of monoterpenes, probably, as stated by Ott

et al. [111], due to the need for spatially replicated field trials of trees with known pedigree that

are of an appropriate age for biotic challenges of interest. Hanover [110] showed that five corti-

cal monoterpene concentrations (four used in this study) were quite stable across three clonal

Pinus monticola trials established in contrasting sites in Idaho (USA). Ott et al. [111] also

found that only a few monoterpene compounds from phloem tissue showed significant

family × environment interactions in two OP progeny trials of lodgepole pine established in

north central British Columbia. Based on these results, we can conclude that monoterpene

compounds found in needles are relatively independent of climate and site characteristics, at

least, within the studied D1 white spruce breeding region.

Implications for white spruce breeding

The ultimate goal of forest tree breeding and testing programs is to evaluate parents and their

offspring across multiple sites, and for a reasonable duration to make reliable selection for the

next breeding cycle. These efforts allow for the establishment of seed orchards for the reliable

and abundant production of improved seed needed for reforestation programs today, and typ-

ically for the life of the orchard. Here, we tested and genotyped 80 of 150 families from a white

spruce breeding population planted on three sites within one breeding zone for multiple traits

including growth, wood quality, drought resistance, and chemical compounds associated with

biotic and abiotic resistance using genomic (SNPs) and pedigree derived relationships. We

compared the target attributes’ genetic parameters (estimates of heritability, genetic correla-

tion, and G × E interactions) using the two relationship methods to reach a reliable conclusion

on selecting the appropriate genetic evaluation method as well as understanding the interplay

among the selection traits to allow for more rapid evaluation without compromising the selec-

tion accuracy. The choice of selection attributes is of vital importance considering the time

and effort needed for phenotypic traits evaluation, understand the correlated responses among

the target traits, and finally the G × E interactions. In this regard, a number of findings can be

made based on the results of this study aiming at improving white spruce breeding efforts chal-

lenged with the need to increase the scope of selections attributes and target deployment envi-

ronments. The key findings include the following: a) use of δ13C as a relatively easy to measure

trait and is an excellent proxy to WUE and growth rate, b) use of secondary chemical com-

pounds (monoterpenes) as an indicator of a selected trees propensity to show insect and/or

drought resistance, c) while the G-matrix provided better genetic parameter estimates than the

A-matrix, the inconclusiveness of the former in some cases indicated that a blind approach

(i.e., single-step GBLUP approach) of these relationships would be best, d) the existence of pos-

itive and negative genetic correlations among the studied traits cannot be overlooked during

selection, e) the unfavourable relationship between growth and wood quality traits with

drought resistance indices (negative correlations), indicating the importance of proper trait(s)

choice for selecting under expected increasing drought environment with climate change, f)

the value of chemical compounds “cross-talk” as an indicator for tolerance to biotic and abiotic

stress, g) the magnitude and trajectory of G × E interaction as it determines the selection strat-

egy (i.e., specialists vs. generalists), which is essential for seed orchards establishment, and h)

the value of multiple site testing, especially for drought resistance, as variability among testing

sites provide insight into site differences even if they are within one breeding zone. We believe

that the lessons learned from this study will provide valuable information in the future selec-

tion and breeding of the white spruce population in Alberta and elsewhere.
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the pre-drought period considered to calculate the Resistance index.
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sites. Logarithmic transformations were applied to MFA and all monoterpene compounds to

improve data normality. Abbreviations used for the traits and sites are described, respectively,

in the text and Table 1.
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S3 Fig. Pedigree and genomic relationships. Distribution of the number of pairwise additive

relationships (excluding the diagonal elements) from the pedigree (after pedigree correction,

left) and genomic (right) relationship matrices. Note that y-axis (Frequency) were cut at

40,000 (A-matrix, out of 2,343,490) and at 10,000 (G-matrix, out of 1,555,212) in order to

more clearly visualize the differences between relationship matrices.
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S4 Fig. Scatter plot between estimated genetic correlation between pairs of traits from the

pedigree- (A-matrix) and genomic-based (G-matrix) relationship matrices in each of the

three white spruce sites. Abbreviations used for the sites are described in the Table 1.
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pedigree- (A-matrix) and genomic-based (G-matrix) relationship matrices in each of the
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S1 Table. Estimated genetic correlations (and approximate standard errors) between the

different traits from the multiple-trait analysis using the pedigree- (A-matrix, above diago-

nal) and genomic-based (G-matrix, below diagonal) relationship matrices for white spruce

in each of the three test sites. Abbreviations used for the traits and sites are described, respec-
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