De novo assembly of separate haplotypes solves the high-heterozygosity

inconvenience of grapevine genomes

A completely-phased diploid genome assembly for 'Malbec' cultivar (*Vitis vinifera* L.)

1-INTRODUCTION

Grapevine cultivars originate from outcrossing two pre-existing cultivars and are clonally propagated. They have diploid and highly heterozygous genomes, challenging to assemble.
Malbec is the main cultivar for

Argentina wine industry, and its parental cultivars are **Prunelard** and **Magdeleine Noire des Charentes**.

2- METHODS

3- RESULTS

Table 1. Malbec haplomes assembly statistics

Haplome	Size (Mb)	N50 (Mb)	# BUSCO genes (Cost_v3)
Magdeleine	479	6.6	41,866
Prunelard	480.4	7.8	41,884

4- DISCUSSION

- •We obtained two contiguous, complete and truly phased assemblies (haplomes) for Malbec, with the expected size for grapevines' haploid genomes (Table 1).
- •Haplomes were composed by genomic data of the corresponding parental cultivar, with a very small percentage (<0.13%) of miss-assigned blocks (Figure 1).
- •Canu-TB proved to be a valid approach to overcome the high heterozygosity that hampers grapevines' genomes *de novo* assembly.

<u>Calderón L^{*}</u>, Carbonell-Bejerano P, Mauri N, Muñoz C, Bree L, Sola C, Bergamin D, Gomez-Talquenca S, Ibañez J, Martinez-Zapater JM, Weigel D & Lijavetzky D

* lucianocalderon@yahoo.com.ar

