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A B S T R A C T   

CONTEXT: Sustainable intensification (SI) is envisioned as an effective strategy for developing countries to in
crease farm productivity while reducing negative environmental and social externalities. The development of 
regionally appropriate SI options however requires accounting for the knowledge and preferences of key 
stakeholders. In Bangladesh, the Government has requested international donors to support the development of 
dry season rice expansion in the coastal region. Policies however tend to be made without adequate study of 
farmers’ preferences and ambitions; this can render crop intensification efforts ineffective. Understanding 
farmers’ preferences for alternative crops and crop management practices are therefore crucial for success where 
agricultural development investments aim at incorporating the principles of SI. 
OBJECTIVE(S): Using coastal Bangladesh as a case study– we aim to (1) quantify farmers’ preferences for 
alternative irrigated crop and crop management options in comparison to the status quo (land fallowing), (2) 
analyze whether farmers’ preferences are conditioned by concerns regarding the cost and availability of irri
gation and fertilizer inputs in comparison to expected net revenues, (3) understand how the heterogeneity in 
preferences can be attributed to farmer and/or farm characteristics, institutional, and biophysical factors, (4) 
determine how much farmers’ are willing to invest in different crops and crop management options – including 
those reliant and not reliant on irrigation. 
METHODS: Taking 300 farmers in two diverse coastal environments, a choice experiment (CE) was employed to 
explore the heterogeneity in farmers’ preferences for different dry “rabi” season intensification options (‘boro’ 
rice, maize, wheat and mungbean) against the status quo (dry season land fallowing after harvest of the monsoon 
season rice crop). Analyses included random parameter logit modeling followed by willingness-to-invest and 
profit simulations. 
RESULTS AND CONCLUSIONS: Analyses revealed strong farmer preferences against rice and in favor of irrigated 
maize, and also in favor of rainfed or partially irrigated mungbean as an alternative to land fallowing. Irre
spective of their location and environmental conditions, respondents had largely a negative preference for 
irrigation and fertilizer use due to high investment costs and associated production risks in the dry season. 
Nonetheless, a significant positive effect on their willingness-to-intensify cropping was observed where farmers 
felt it feasible to provide in-field drainage to limit waterlogging risks. 
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SIGNIFICANCE: The study signifies the importance of accounting for farmers’ preferences while developing 
context-specific SI policies. Improving agronomic investments, tenure security, market, credit and extension 
support are likely prerequisites, alongside targeted diffusion of stress-tolerant mungbean and maize varieties for 
SI in coastal Bangladesh.   

1. Introduction 

Although most agricultural research for development in South Asia 
has focused on highly productive and less risk-prone areas such as the 
fertile Indo-Gangetic Plains (Krishna et al., 2017), the long-term sus
tainability of agriculture is also crucial for the food security and liveli
hood of more than 400 million vulnerable people inhabiting coastal 
areas. In addition to institutional, economic and policy changes that 
affect prices for inputs and outputs that influence farmers’ decision 
making processes, there are myriad factors that affect the economic and 
environmental sustainability of farms in coastal regions. Among these, 
multiple stressors including resource scarcity, and population pressure 
affect the ways in which farmers in coastal regions decide upon cropping 
options and management (Aravindakshan et al. 2020). Coastal areas in 
Bangladesh, and West Bengal and Odisha in India are also climate risk 
prone and grapple with challenges including soil and water salinity 
(Krupnik et al. 2017). Farmers in coastal areas are also relatively poorer 
and have significantly smaller field sizes (Krishna et al. 2017), calling for 
unique development approaches to mitigate risks and alleviate poverty. 

In Bangladesh, agricultural productivity in coastal areas suffers from 
waterlogging risks, soil and water salinity, cyclones and extreme 
weather events, in addition to long-term sea-level rise (Akter et al. 2016; 
Bell et al. 2019; Mainuddin et al. 2019). Without sustained investment in 
protective coastal embankments, in next 60 years, almost 40% of pro
ductive land is predicted to be lost in coastal Bangladesh for an expected 
0.65 m sea-level rise (World Bank 2013). Along Bangladesh’s central 
coast, tidal movement and inundation and waterlogging of fields are 
severe during the “kharif” season (June–August), though rainfed culti
vation of transplanted ‘aman’ rice (Oryza sativa) using local and deep- 
water varieties is possible and indeed common during this period 
(Krupnik et al. 2017). Over the last half century, coastal embankments 
or dykes known as polders have been constructed to control oceanic 
water intrusion and prevent excessive waterlogging (World Bank 1990). 
Poor maintenance, vandalism, and competition for water resources – i.e. 
farmers who want freshwater for crops competing with saline fish 
farmers who require brackish water – have however rendered many 
polders and their water flow controlling sluice gates non-functional 
(Aravindakshan et al. 2020). Although primarily intended for the 
monsoon season flood control, the construction of polders and sluice 
gates have equally transformed the ways in which agricultural water 
management functions during the cool, dry winter “rabi” season 
(November to April). While farmers within polders experience water 
scarcity and drainage issues due to problems with control and mainte
nance of sluice gates, farmers located just north and outside the polders 
also experience tidal water inundation in the wet season, followed by 
dryer conditions in the winter season during which natural and con
structed water canals experience siltation and may run dry. Cyclonic 
storms and increasing soil and water salinity pose further challenges, 
particularly within polders and as the winter season progresses and 
matures into the early monsoon season. Both within and outside polders, 
farmers tend to fallow their land or grow low risk, low-input ‘opportu
nity’ crops including broadcast pulses such as mungbean (Vigna radiata) 
and lathyrus (Lathyrus sativus) during the rabi season (Fig. 1). In addi
tion, in order to reduce water table drawdown and high energy costs for 
irrigation in the north of the country (Qureshi et al. 2015), the Gov
ernment of Bangladesh has adopted policy recommending measures to 
improved surface water flow and access by farmers in coastal areas. 
While livelihood improvement in the coastal area is important, and 
additional and key objective of these policy initiatives and requests for 

international donor funding support has been to encouraging irrigated 
cropping of rice – the country’s most important staple – on previously 
fallowed or land devoted to pulses (MOA and FAO, 2013). 

Agricultural systems organized around the principles of sustainable 
intensification (SI) aim to increase agricultural productivity while 
minimizing environmental and social trade-offs. SI is now widely 
recognized as an important pathway to food security in developing 
countries (Garnett et al. 2013). In food insecure areas of coastal 
Bangladesh, Krupnik et al. (2017) studied the potential for irrigated dry 
season maize and wheat in comparison to rice in areas both within and 
outside of polders. Where surface water (e.g. freshwater rivers and ca
nals) are accessible through infrastructural improvements and the use of 
low-cost efficient pumps, they suggested that the scope to replace land 
fallowing with irrigated cropping by surface water was approximately 
0.11 M ha in coastal Bangladesh alone. Although they studied cereals, 
pulses may also be an appropriate choice to replace land fallowing while 
generating additional income (Kumar et al. 2019), enhancing nutrition 
and thus contributing to improved rural livelihoods (Paudel et al. 2020). 
In addition, the introduction of nitrogen-fixing pulses could arguably 
assist in the long-term improvement of soil fertility and assist in limiting 
the nutrient mining impact of rice-based crop rotations (Chadha 2010). 
Agricultural development policies however emphasize increasing dry 
season ‘boro’ rice production to replace fallows, despite emerging evi
dence that farmers may prefer pulses and maize (Aravindakshan et al. 
2020). Identifying farmers’ preferences among competing suites of 
available crop options including maize, rice, wheat and pulses as a 
replacement for dry season land fallowing is therefore important to
wards developing context-appropriate SI pathways for coastal 
Bangladesh. 

Accounting for farmers’ preferences and desires is however rarely 
systematically considered in policy design, though it is likely to be pre- 
requisite for success (Dolinska 2017). Because the conversion of fallow 
to cropped land requires farmers to invest time, money, and inputs, 
understanding the ways in which farmers decide upon among baskets of 
alternative crop options – and what drives these decisions – is crucial for 
appropriate and sustainable agricultural policy and development 

Fig. 1. A typical landscape scene from coastal farming systems of south-central 
Bangladesh during dry “rabi” season, where the fields remain fallow without 
any crops. Photo credit: Sreejith Aravindakshan. 
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investments. To address this crucial research gap, we studied farm 
households in coastal Bangladesh to understand farmers’ preferences for 
cropping intensification options (irrigated dry season maize, wheat, or 
rice compared to mungbean) against the predominant counterfactual of 
dry “rabi” season land fallowing in south-central coastal region of the 
country. 

Farmers’ preference of alternate farming options can be studied by 
quantitative ranking procedures (Soltanmohammadi et al. 2010) or 
qualitative focus groups (Mekoya et al. 2008). However, they are of 

limited use for the identification of the relative weight of factors influ
encing farmers’ decision processes. Nor are they well suited for identi
fying trade-offs (Kuehne et al. 2017). Alternatively, farmers’ crop 
choices can also be analyzed using Likert scales or multiple-choice sur
veys. Both can yield somewhat biased results as multiple attributes of 
each option are seldom presented, leading farmers to highly rate the 
expected benefits of alternative crops while underestimating costs or 
risks (Hanley et al. 2001). ‘Serious board’ and role-playing games that 
can simulate stakeholder decisions on intensification options are also 

Fig. 2. Case study area showing districts within and outside polder embankments where choice experiment was carried out.  
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increasingly popular (Ditzler et al. 2018). Nonetheless, gaming ap
proaches are time consuming and often suffer from low sample sizes, 
limiting their generalizability (Barreteau et al. 2003; Rajabu 2007). 

A potentially more robust ex-ante alternative is choice experimen
tation (CE), where farmers choose between multiple crops described by 
both positive and negative attributes. For example, CEs can allow 
farmers to hypothetically compare lower yielding crop with lower 
resource requirements against more productive options with higher 
resource requirements, as well as to the status quo. Instead of solely 
choosing the most profitable choice, farmers are expected to weigh 
options and consider investment costs and risks alongside potential 
benefits, ultimately choosing attribute bundles that maximize their 
(perceived) utility. Farmers are however not homogenous, and decision 
making patterns are likely to vary as a function of environment, and 
level of risk aversion (Singh et al. 2016). As an ex-ante method to explore 
farmers’ investment decisions, CEs provide information on farmers’ 
decision-making based on their perceived utility and costs (see Sections 
3.1 and 3.2 for more details on utility concept). CEs have become an 
increasingly important approach to study preferences and behavior 
regarding the potential adoption of SI practices (cf. Ortega et al. 2016; 
Oyinbo et al. 2019). 

In the current study, a choice experiment was employed to explore 
the heterogeneity in farmers’ preferences for different dry “rabi” season 
intensification options (‘boro’ rice, maize, wheat and mungbean) against 
the status quo (dry season land fallowing after harvest of the monsoon 
season rice crop). 

By taking two contrasting study locations of coastal Bangladesh, i.e. 
agro-environments within and outside the polder systems, we aimed to 
(1) quantify farmers’ preferences of options for fallow land replacement 
with alternative irrigated and non-irrigated crops during the dry season, 
(2) analyze whether farmers’ preferences are conditioned by investment 
requirements on input use (with emphasis on irrigation and fertilizer) 
and/or expected net revenues, and (3) investigate how the heteroge
neity in preferences can be attributed to farmer and/or farm charac
teristics, institutional, and biophysical factors. Finally, (4) this paper 
quantifies farmers’ willingness to invest in different intensification 
options. 

2. Case study background 

Bangladesh’s south central coast is largely encompassed by the 
Barisal administrative division, which has an area of 13,644.85 km− 2 

(Fig. 2), and a population of 8,326,000 people (MOA and FAO, 2013). It 
is comprised of six coastal districts, including Barisal, Barguna, and 
Patuakhali. Eighty-five percent of the population is rural and dependent 
on agriculture for their livelihood (Lázár et al. 2015). The climate is 
humid sub-tropical with an annual rainfall ranging from 1955 to 2100 
mm (BBS 2013). Soils are medium to high textured silty clay loams that 
support the cultivation of a wide range of crops including cereals, veg
etables and pulses (Aravindakshan et al. 2020). Nonetheless, as part of 
the Ganges-Brahmaputra floodplain delta, riparian areas can suffer from 
bank erosion. The area is crisscrossed with tidal canals that can be used 
as an irrigation source (Krupnik et al. 2017), though accretion of sedi
ments in canals and tidal flooding can impede canal water flow in the 
dry season, or result in flooding of fields in the monsoon, respectively 
(Aravindakshan et al. 2020). The region is also vulnerable to extreme 
weather. For example, two mega-cyclones: Sidr and Aila—occurred in 
the region in 2007 and 2009, respectively, resulting in a large number of 
casualties, losses to agriculture, livestock and infrastructure (Aravin
dakshan et al. 2020). 

Although the region has potential for irrigation (Krupnik et al. 2017), 
cropping remains largely rainfed. Farmers tend to grow rice during the 
monsoon “aman” season (June-August). A lack of well-maintained irri
gation infrastructure and irrigation pumps pose challenges to farming 
during the cool, dry winter (November to April) “rabi” season. In south- 
central coastal zones alone, approximately 1.7 million farming 

households fallow their land after the monsoon, contributing to food 
insecurity and subsistence below the poverty line (Krupnik et al. 2017). 

The Government of Bangladesh has requested international donors 
$7 billion for the development of coastal region, out of which $500 
million is intended to encourage double cropping, with emphasis on the 
development of canal water resources for irrigation in south-central 
Bangladesh (MOA and FAO, 2013). The impetus for such policy is 
justified as a means to alleviate pressure on groundwater irrigation in 
the dry season in intensive dry season rice producing areas in the north 
that has resulted in declining groundwater tables, high pumping costs, 
and high energy subsidies in lieu to sustain productivity (Qureshi et al. 
2015). This approach is perhaps narrowly focused on dry season ‘boro’ 
rice production, with far less attention to other cereals (e.g. maize and 
wheat) and legumes (e.g. mungbean) that may be of interest to farmers. 
Crop intensification and diversification could help spread production 
risk; alternatives to energy intensive irrigated boro rice cultivation may 
also be desirable from the standpoint of crop profitability and adapta
tion to climate change (USDA, 2016). 

This coastal region is also vulnerable to sea level rise and seasonal 
soil and water salinity (Krupnik et al. 2017). A series of hydrological 
embankments known as polders, consisting of dykes and sluice gate 
controls were constructed by the Bangladeshi government in 1960s. One 
hundred twenty three polder structures are there now covering an area 
of about 13 million ha. These areas include 6000 km of intra-polder 
channels, 2500 water control structures, and 5000 km of embank
ments (World Bank 1990). These systems have however deteriorated 
over time. Damage from cyclones and poor maintenance of dykes and 
water flow structures have rendered polders dysfunctional and agri
culture less productive. 

These circumstances have resulted in the evolution of farming sys
tems that are distinct within and outside polders (Aravindakshan et al. 
2020). Such diversity is likely to condition farmers’ decision making 
process, thereby affecting their willingness to invest in intensified or 
double cropping through use of irrigation. We therefore account for the 
differences polder and non-polder areas of coastal zones of south central 
Bangladesh, by considering them as distinct socio-ecological systems in 
our analysis. 

Our study area comprises of districts within and outside the polders 
(Fig. 2). Crop production follows two main seasons: the monsoon ‘kharif’ 
(mid-March to mid-November) and rabi (mid-November to mid-March) 
seasons. Kharif season sowing coincides with the onset of monsoon. The 
season is further divided into kharif-1 (mid-March to mid-July) during 
which ‘aus’ rice is grown, and kharif-2 (mid-July to mid-November) 
when ‘aman’ rice is grown. Farmers commonly grow aman rice using 
monsoon precipitation and tidal flooding, creating an adequate condi
tions for paddy production. In the dry ‘rabi’ season, rains are scanty, 
although the availability of surface water in rivers and canals creates 
opportunities for crop production as an alternative to the common 
practice of land fallowing (Krupnik et al. 2017). Expanded use of irri
gation is however complicated by social conditions that result in dif
ferential access to water, tidal flows that create periods of excess or 
water scarcity, and late rabi season water and soil salinity close to the 
coast. 

3. Materials and methods 

3.1. Methodological overview of choice experiment 

Choice experiment (CE) is a socio-behavioral tool to assess people’s 
preferences or decisions in hypothetical scenarios (i.e.in the absence of 
observed data), for instance, before a new product is launched, a new 
technology becomes available, or a new policy is implemented (Colen 
et al. 2016). This ability of CE to provide preference information about 
alternative options even before their dissemination and use is crucial in 
agricultural development for sustainable intensification goals; not only 
to identify the best among the alternatives, but also to avoid expensive 
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and ineffective solutions. We draw conceptually from utility- 
maximizing behavior based on the theory of Lancaster (1966), which 
postulates that decision makers (e.g., farmers) are not interested in 
goods (e.g. crops or technology) per-se, but in the role of attributes or 
characteristics shared by more than one good that give them utility. 
While making decisions on agronomic management or in crop selection, 
farmers weigh among various attributes of available options and choose 
the option with the highest relative utility (McFadden, 1974). Prefer
ence heterogeneity among individuals can hence be understood by 
estimating attribute utilities. The overview of CE is provided in Fig. 3. 

3.1.1. Selection of attributes and levels based on farmer participatory field 
experiment 

Discussions with agricultural experts from local NGOs and Bangla
deshi research institutes were carried out prior to the choice experiment 
to identify the key attributes X1, X2, …, XN, that farmers may consider 
when choosing a crop for the rabi season. A list of three attributes 
consisting of fertilizer investment, irrigation investment and net reve
nues emerged as crucial for decisions to intensify cropping. Therefore, 
these three attributes were included in the choice experiment. Levels of 
these attributes however have to be representative of the actual farming 
systems of the study area. Farmers in south central Bangladesh have 
little prior knowledge on managing crops other than rice. To familiarize 
farmers with the proposed options and mitigate possible bias resulting 
from hypothetical attribute levels and values in CE design, we carried 
out farmer participatory agronomic trials (irrigated mungbean, wheat 
and maize) by involving farmers in the input management and harvest 
operations in locations within and outside the polder. An example of 
field experimental layout is provided in the Supplementary Material 
(Figure SM1). The details of these trials are provided in Schulthess et al. 
(2019). Yields and economic data from these field experiments provided 
region-specific input data to design a realistic CE. For boro or winter rice 
crop, irrigation and fertilizer values were derived from existing farmers 
in the study villages. The following scenarios were explored for which 
the yield and economic benefits are compared for (1) boro rice, (2) 
maize, and (3) wheat and (4) mungbean. The attributes and their levels 
are reported in Table 1. 

3.1.2. Choice experiment design 
In the second stage, choice sets are constructed through experimental 

design procedures by all possible combinations of bundling attributes 
and their levels. A fully factorial design including the selected crops 
potentially suitable as a second rabi season crop after aman rice (i.e. boro 
rice, maize, wheat and mungbean) alongside all possible combinations 
of attributes and levels presented in Table 1 would generate a large 
number of choice scenarios and several arbitrary designs. D-efficient 
designs are used in choice experiments to identify the optimum com
bination of choice sets while still being able to estimate the main effects 
without losing any information (Scarpa et al. 2008). Therefore, the 
goodness-of-fit of our experimental design was measured relative to a 
hypothetical orthogonal (Benchmark) design to yield the D-efficiency.1 

As it is impossible to accommodate all the possible combinations, sub
sets with necessary variation over the attribute levels among alternative 
cropping options are to be provided to respondent farmers. D-efficient 
design generated subsets of the possible combinations that best identify 
attribute preferences. A perfect D-efficient design will have a value of 
100% when it is balanced and orthogonal. 

Our experimental design consisted of an optimal fully fractional 

design assuming zero priors consisting of a single block and 6 choice 
(sub) sets of D-efficiency 87% was selected using Ngene software version 
1.1.1. Each set offered respondents a choice of 5 alternative scenarios 
including fallow as a status quo option. Fallow was included as a status 
quo choice since approximately 50% of farmers in the coastal zones of 
south-central Bangladesh were fallowing their land during the study 
period in the rabi season. Inclusion of fallow as the status quo alternative 
also avoids a forced choice by giving the possibility to choose none of the 
crop alternatives in the choice set, making the design consistent with 
theory of demand. The selected crops, fallow situation, attributes and 
their levels were represented using context-specific pictorial illustra
tions in separate choice cards (Fig. 4). These illustrations were pre-tested 
and corrected to mitigate any possible cognitive difficulties among 
sampled farmers prior to the CE survey (See Figs. SM2 and SM3 in the 
supplementary material for the complete set of choice cards used in the 
study). 

3.1.3. Sample selection and choice experiment implementation 
A farm household level choice experiment survey was conducted in 

six sub-districts of Barisal division in south-central Bangladesh, namely 
Babuganj, Bakerganj and Banaripara (outside polder area) and Patua
khali sadar, Amtali and Kalapara (within the polder area), during 
March–April 2017 (Refer Table 2 for sample characteristics). The CE 
sample in our study consists of 300 farmers, 150 farmers from within 
and 150 from outside the polder embankment. These 300 CE re
spondents were randomly selected from a larger sample of 502 HHs 
previously surveyed in the year 2015, for a related study that charac
terized farm HHs into different farm types (Aravindakshan et al. 2020). 

3.2. Empirical application of the choice experiment 

McFadden (1974) devised the econometric basis for Lancaster’s 
theory of choice under the random utility framework. The random 
utility framework forms the basis of CEs in this study, which assumes 
that farmers derive ‘utility’ from crop selection for their fields. The 
utility of choosing alternative crops is a latent variable that can be 
decomposed into the observable (non-random) deterministic and un
observable (random) components. The deterministic component of 
utility is usually measured as a function of several predictor variables or 
through their interactions. Using the utility-maximization framework, 
we modelled crop choice data of sampled farmers from non-polder and 
polder areas separately. In the first step, we modelled the effect of at
tributes and their levels on farmers’ preference for different crops as 
alternatives to land fallowing. In the second step, we estimated farmers’ 
willingness to invest in crop intensification options in terms of input use 
(fertilizer and irrigation). In the third step, interactions between farmer- 
specific and external factors and crop choices of farmers within and 
outside polder areas were analyzed. The external factors included 
market and infrastructure, institutions and biophysical factors. 

Step 1: Modeling crop choices for fallow intensification and attributes. 
Farmers’ preferences for and the effects of attribute levels on discrete 

crop choices are analyzed using mixed/random parameter logit model 
(RPL) (McFadden 1974). Following the random utility theory, the basic 
multinomial logit (MNL) model takes the form: 

Uij = Vij + εij (1)  

where "Uij" is the utility derived by the farmer "i"from the alternative 
choice "j". The deterministic part of Eq. (1) "Vij"is defined as a function of 
the attributes (Xj) of the various alternatives and (2) the farmer specific 
characteristics(Zi). A random element"εij", represents the “error term”. 
The deterministic part of the utility function that farmer "i" derives from 
choice "j" (boro rice or maize or wheat or mungbean or fallow (status 
quo)) is re-written as follows: 

1 D-efficiency is a function of the geometric mean of the eigenvalues between 
a CE design in question and a reference (benchmark) CE design. D-efficiency is 
given by |(X′X)− 1|1/p, where X′X is the Fisher information matrix of the pa
rameters of an experimental design. The determinant ∣(X′X)− 1∣ is the product of 
the eigenvalues of (X′X)− 1. The pth root of this determinant gives the D-effi
ciency value. 
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Vij = Cj

(

α+
∑

k
γkZik

)

+
(
1 − Cj

)
+

(
∑

q
βqXjq

)

(2)  

where "Cj" is the binary variable which takes the value 1 when a farmer 
"i" choose any of the cropping options (boro rice (j = 1) or maize (j = 2) or 
wheat (j = 3) or mungbean (j = 4) and takes the value 0 when fallow 
(status quo) (j = 5) is selected."α" is the alternative-specific constant 
(ASC) when fallow is opted that captures changes of utility from any 
other crop specific feature not included among choice attributes. The 
"Zik" are the farmer "k" characteristics, while "Xjq" specifies the "q" at
tributes relative to crop choice scenario. "γ" and "β" are the coefficients to 
be estimated with respect to the model’s intercept and attributes 
respectively. Given the probability "P" that a farmer "i" choose alterna
tive "j" from a set of choices, Eq. (2) can be estimated using the maximum 
likelihood procedure (Train 2003). 

Due to advantages in terms of flexible model structure, the MNL is 
the most frequently used model to estimate Eq. (1). The MNL model 

nonetheless derives a linear relationship between farmers’ utility and 
attribute parameters alongside the estimation of an identically and 
independently distributed (IID) error term"εij" (Train 2003). In addition, 
we hypothesized heterogenous preferences for farmer within the study 
areas and between the study areas, which may not hold true for MNL 
models. The RPL model, which is an improvement up on the basic MNL 
model addresses the potential IID assumption violation while account
ing for preference heterogeneity across farmers. The standard MNL 
model (Eq. 1) assumes a fixed "β" vector, while the RPL model considers 
"β" vector as a mixture of random coefficients ("ξ") and non-random 
constants ("φ"). The RPL model becomes: 

Uij = Vij (β) + εij (3)  

rewritten as : φT Wij + ξT Xij + εij (4) 

where "Xij" is a set of explanatory variables with random parameters 
and "Wij" represents the explanatory variables with fixed non-random 
parameters. By including the random coefficients, different crop 
choice outcomes become correlated even though their error terms,"εij", 
are still assumed to be independent and identically distributed. 

Step 2: Willingness to invest on fallow intensification by farmers 
Another essential measure revealed through the estimated prefer

ence structure is the farmers’ willingness to invest in irrigation and 
fertilizer. The willingness-to-invest (WTI) for each attribute is 
commonly computed as the willingness-to-pay (WTP) estimate, which is 
the ratio between the coefficient for each attribute and the price coef
ficient (Train and Weeks 2005). The marginal WTP for attribute "x"is: 

ŵtpx = −
β̂x

β̂p

(5) 

The standard approach in Eq.5, which is also referred to as a WTP in 
preference space, is obtained from procedures based on RPL models 
(Train and Weeks 2005). The WTP space approach re-parameterizes the 
model such that the parameters are the marginal WTP for each attribute 
rather than the marginal utility. Train and Weeks (2005) extended the 

Fig. 3. Conceptual overview of choice experiment depicting the five stages from attribute selection to modeling and estimation. Modified from Mizuyama (2013).  

Table 1 
Attributes and levels in the CE design for all crops.  

Attributes Description Level 

Fertilizer 
investment 

Investment incurred for the buying and 
application of nitrogen, phosphorus and potash 
(NPK) fertilizers (in Bangladeshi Taka) 

Low-level 
High-level 

Irrigation 
investment 

Investment incurred for the buying irrigation 
service provision (in Bangladeshi Taka) 

Low-level 
High-level 

Net returns Net returns obtained from growing a crop (in 
Bangladeshi Taka) 

Low returns 
Medium 
returns 
High 
returns 

Note: - Levels of attributes are crop specific such that the “level of a particular 
attribute” varies with both the amount and frequency of application. For 
instance, low level of irrigation investment for boro rice and maize will not be the 
same because rice requires more irrigation than maize. Same goes for the levels 
of the other two attributes: Fertilizer investment and Net returns. 
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WTP space approach by allowing random parameters in a RPL model. 
This WTP space approach is appealing because it allows estimation of 
WTP heterogeneity distribution directly (Scarpa et al. 2008). Previous 
studies have shown that the WTP space models provide more reasonable 
WTP values with distributions that have lower densities associated with 
extreme values (Train and Weeks 2005). In this study, the maximum 
simulated likelihood estimation of an RPL model in the R package “gmnl” 
(Sarrias and Daziano 2017) is applied to obtain the WTP space values. 

Step 3: Crop choice and interaction of socio-economic, institutional, 
market or biophysical conditions 

The stated RPL model nonetheless cannot explain preference het
erogeneity from external variables of socio-economic, institutional, 
market or biophysical conditions in which the farmers operate (Boxall 
and Adamowicz 2002; Speelman et al. 2015). For detailed description of 
these independent variables and expansion of abbreviations, see Table 2. 
These sources of heterogeneity were captured by allowing interactions 
of these variables with choice specific attributes and/or ASC in the 
utility function. In order to avert potential multicollinearity issues, only 
one external variable was allowed to interact with the three crop attri
butes when modeling. As such, several models were run by employing 
RPL and the interaction coefficients are presented in an abridged table, 
for respondents within and outside polder areas. 

Step 4: Simulation of crop production risk based on farmer preferences 
In coastal farming systems, farmers encounter many production risks 

due to unpredictable weather, cyclonic events or pests and diseases; 

where the set of outcomes such as yield or returns are stochastic rather 
than discrete. The spread of production risk can be mathematically 
represented using a cumulative distribution function (CDF) and can be 
viewed visually. We simulated the net returns from actual crop choice 
data separately for boro rice, maize, wheat and mungbean obtained from 
the choice experiment and analyzed using CDF. 

4. Results and discussion 

4.1. Respondents’ characteristics 

Although the age of farmers differed significantly between polder 
and non-polder areas, there was no significant difference in educational 
level between farmers of the two areas (Table 2). The landholdings were 
on average slightly larger within the polder areas (0.74 ha) compared to 
those outside the polder areas (0.53 ha). The two groups also differed 
significantly in share of fallow land. While the respondents within the 
polder areas had 30% share for fallow land, those outside the polder had 
23%. Other socio-economic variables such as household size, household 
income, off-farm income, risk attitude and involvement in farming were 
significantly different comparing respondents from these two areas. 
Among the market variables, though the distance to the input-output 
markets was not significantly different for the two groups, crop prices 
received in the preceding year varied significantly within vs. outside 
polders. Other infrastructure variables such as distance to and quality of 

Fig. 4. A sample choice card showing attributes and their levels corresponding to each crop option presented to the respondent farmers, where all values are in bigha 
(*1 bigha = 0.13 ha). The status quo (reference land use) option “fallow” has no attributes. Levels of attributes are crop specific such that the “level of a particular 
attribute” varies with both the amount and frequency of application. For instance, low level of irrigation investment for boro rice and maize will not be the same 
because rice requires more irrigation than maize. Same goes for the levels of the other two attributes: Fertilizer investment and Net returns. 
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the main roads, and distance to the irrigation source were significantly 
different. 

4.2. Respondents’ preference for cropping intensification in coastal 
farming systems 

The majority (62%) of the respondents outside the polder areas 
selected mungbean as their primary choice followed by maize (22%), 
boro rice (8%), land fallowing (4%), and wheat (4%). Despite the 
aforementioned differences between respondents in both study envi
ronments, it is quite surprising to note that the preferences of samples 
within the polder area were not remarkably different from their coun
terparts. Around 66% of this group preferred to grow mungbean, while 
22% selected maize, followed by wheat (5%), and boro rice (4%). 
Preference for the crops irrespectively of the profile (ASC) was only 3%, 
i.e. only 3% of the respondent farmers outside polders opted fallow. The 
data obtained from the Agriculture Statistical Yearbook (BBS, 2010- 
2019) and the Department of Agricultural Extension (DAE), Bangladesh 
for the period 2016–2020 justified our results on farmers’ preference 
towards mungbean (See Fig. SM4 for growth in area and production). 
During this period, there has been a substantial increase in both the area 
(55%) and production (81%) of mungbean in the Barisal division. Our 
CE survey coincided with the harvesting of rabi crops including wheat 
sown in October-November 2016. During this period, wheat blast inci
dence that severely affected wheat grain yields was reported for the first 
time in Bangladesh (Mottaleb et al. 2018). The influence of wheat blast 
on crop choice however was not explicitly included in our CE design 
because wheat blast was not an issue during the CE design phase. 
Regardless of this, that the relative low preference for wheat within the 
sample could be due to widespread reporting of crop losses from wheat 
blast incidence from several parts of the country, including our study 
area. The results of the CE are relative to the reference land management 

system (Jaeck and Lifran 2014). Farmers’ preference for a particular 
crop (i.e. mungbean or maize against boro rice or wheat) is relative to the 
status quo: fallow system. 

We first tested different specifications viz. RPL versus MNL. Table 3 
shows that the RPL models had low AIC, high log likelihood and high 
McFadden R2 values compared to the MNL models suggesting a better fit. 
There is also significant difference between standard deviation estimates 
between the RPL models for samples within and outside polders, which 
are shown in the lower part of Table 3. The significance of these esti
mates confirms the existence of heterogeneity in farmers’ preferences 
for the different intensification attributes in the two study environments. 
Given the observed differences between within and outside polder 
samples (Table 3), we also tested whether pooling of the two groups in 
one model permits generalization of our findings for the whole of the 
study area. For this, we estimated separate models for the two sub
samples, which are shown in the second and third columns of Table 3. 

The RPL model estimates the fixed non-random parameters and 
random parameters. The estimates of non-random parameters are con
stants similar to model intercepts for each cropping option while the 
random parameter estimates are of interest since they provide the 
attribute utilities corresponding to farmer preferences. In general for all 
crops, respondents within polders tended to have significant negative 
preference for irrigation investment attribute both in the MNL (P ≤
0.001) and RPL (P ≤ 0.05) estimates. Although also negative, the pref
erence for irrigation was not significant for respondents outside polders. 
However, when the respondents both within and outside polders were 
pooled, this negative preference was significant (P ≤ 0.05) in the RPL 
model but not in the MNL model. For the pooled sample, coefficients of 
all the three attributes are statistically significant in the RPL. Both the 
investments for irrigation and fertilizer were negatively and signifi
cantly related to crop choice, while net returns would increase prefer
ence for cropping system intensification. The salinity reducing effect of 

Table 2 
Sample characteristics and summary statistics.  

Variables Unit/Description Outside polders 
(n = 150) 

Within polders (n 
= 150) 

p- 
valuea 

Mean SD Mean SD 

Landholding (LH) Agricultural land owned by the farm household (ha) 0.53 0.60 0.74 0.52 <0.001 
Share of fallow land in rabi season Share of land fallowed to total cultivable land, during dry rabi season (%) 23.09 30.48 13.08 29.23 0.81 
Education of the farmer (EDN) Formal education attained (years) 6.41 4.19 6.39 3.42 0.47 
Age of the farmer (AGE) Age of the respondent farmer(years) 49.49 12.58 45.41 14.13 0.01 
Household size (HHS) Number of household members living and eating from the household 

(numbers) 
6.11 2.48 5.20 1.69 <0.001 

Respondents’ risk attitude (RAS) A composite risk attitude score developed based on Starkweather 2012. See 
supplementary material (Questions SM2) 

2.15 0.48 3.18 0.52 <0.001 

Annual household income (AI) Annual household income from farm and non-farm activities (US$) 896.29 844.17 1072.11 799.57 <0.001 
Share of off-farm income (SOI) Share of Off-farm income (%) 37.15 32.30 28.86 26.60 0.03 
Farmers’ involvement in farming (IF) Categorical (3 = full, 2 = partial and 1 = no) 2.61 0.50 1.47 0.73 <0.001 
Distance to farm input-output markets 

(DM) 
Distance is measured in kms 1.69 0.83 2.22 1.67 0.09 

Distance to the main road from the main 
field (DR) 

Distance is measured in kms 0.46 0.85 0.95 1.24 <0.001 

Distance to the irrigation sources (DIS) Distance is measured in kms 0.17 0.25 0.49 0.47 <0.001 
Quality of the main road near farm (QR) Categorical (3 = good, 2 = fair and 1 = poor) 1.87 0.83 1.95 0.84 0.41 
Last year crop prices (CP) Cropping decisions are based on last year crop prices; (0 = no, 1 = yes). 0.57 0.50 0.80 0.40 <0.001 
Access to agricultural credit (AC) Dummy (0 = no, 1 = yes). 0.55 0.50 0.27 0.44 <0.001 
Access to agricultural extension (AE) Dummy (0 = no, 1 = yes). 0.51 0.50 0.71 0.46 <0.001 
Access to Irrigation water management 

institutions (AWI) 
Dummy (0 = no, 1 = yes). 0.80 0.40 0.59 0.49 <0.001 

Provision of field drainage (PFD) Dummy (0 = no, 1 = yes). 0.57 0.50 0.60 0.49 0.56 
Tenure rights (TR) Categorical (3 = full, 2 = partial and 1 = no) 2.27 0.90 2.69 0.59 <0.001 
Cyclonic severity (CS) Categorical (3 = severe impact; 2 = moderate impact; 1 = no impact) 1.58 1.15 2.07 0.95 <0.001 
Inundation class (IC) Categorical (3 = high, 2 = medium and 1 = low) 2.13 0.51 1.73 0.63 <0.001 
Optimum field conditions for sowing 

(OFC) 
Dummy (0 = no, 1 = yes). 2.68 0.48 2.86 0.35 <0.001 

Overall soil fertility of the farm (SF) Categorical (3 = high, 2 = medium and 1 = low) 2.08 0.74 2.18 0.79 0.22 
Overall soil salinity of the farm (SS) Categorical (3 = high, 2 = medium and 1 = low) na na 2.37 0.61 na 

1 US$ = 80.9 BDT as per the exchange rates during survey (April 2017). ‘na’ = not applicable. 
a Mann-Whitney U test between farmers outside and within polder embanked areas respectively. 
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irrigation is particularly relevant for locations such as Patuakhali and 
Barguna in southern Bangladesh. But rain is not very reliable in quantity 
and distribution during rabi, and the risk of cyclones is high. In these 
circumstances, farmers are unwilling to invest in irrigation, fertilizer 
and other agricultural inputs because of the risk of crop failure, rather 
they would go for low input high opportunity crops such as mungbean. 
Irrigation generally improves fertilizer use efficiency of crops. In addi
tion, irrigation can also save crops from drought and associated yield 
loss, but farmers may not be willing to invest for irrigation in risky en
vironments (Gebregziabher et al., 2009). Particularly, investments in 
irrigation and fertilizers of farmers in southern Bangladesh are lower 
than that under recommended crop management practices (Schulthess 
et al. 2019). 

4.3. Willingness to invest in double cropping and alternatives to dry 
season fallows 

Even though the respondents had negative preference for irrigation 
and fertilizer while making crop choices, when it comes to increasing net 
returns, both farmers within and outside polders had positive willing
ness to invest in inputs in the case of boro rice, maize and mungbean, but 
not for wheat (Table 4). Outside polders, the willingness to invest to 
potentially increase net returns was higher than within polders. Risk 
taking ability of farmers varies with the biophysical and socioeconomic 
environment they operate (Ullah et al. 2016). Compared to farms 
outside polders, the threat of tidal floods coupled with drainage 

congestion and soil and water salinity is more inside the polders. Within 
polders the WTI for boro rice is almost half of that within polders, which 
may be attributed to environmental riskiness within polders. In polders, 
salinity alone reduces rice yield by 16% (Dasgupta et al. 2018). In 
addition, transportation facilities and road network are very limited 
within polders, which weakens the movement of labor and agricultural 
inputs, and in turn increases input costs. So, farmers within the polder 
would be relatively risk averse compared to those outside the polders. 
Vulnerability to salinity and high input costs disincentivizes polder 
farmers from producing labor and input exhaustive crops such as rice. 

Our WTI results indicate that farmers within and outside polders may 
be more willing to invest in inputs (irrigation and fertilizer) for mung
bean followed by maize and boro rice in that order. Farmers’ preference 
for mungbean in the studied districts is apparent from the area expan
sion of mungbean in the recent period. During the period from 2016 to 
2020, mungbean area doubled from 0.14 Mha to 0.22 Mha with an 
average annual growth rate of 12% in the study area (authors’ calcu
lation based on BBS, 2010-2019 and DAE data). Although not signifi
cant, a negative value of WTI is estimated for wheat both within and 
outside polders meaning that it is less preferred by farmers over the 
status quo (fallowing). It also indicates wheat as a secondary crop grown 
in the dry season that is likely to be feasible only with external inter
vention, e.g., through governmental subsidy programs. Despite wheat’s 
potential suitability from an agronomic standpoint for the region 
(Krupnik et al. 2015), even after pooling the data, the sign and signifi
cance of WTI estimate for wheat remains unchanged implying that the 

Table 3 
Influence of attributes and their levels on crop choice of farmer respondents in coastal Bangladesh.  

Choice/parameters Random parameter/mixed logit models (RPL) Standard multinomial logit models (MNL) 

Outside polders (n =
150) 

Within polders (n =
150) 

Pooled sample (n =
300) 

Outside polders (n =
150) 

Within polders (n =
150) 

Pooled sample (n =
300) 

Non-random parameters (constants) in utility functions Model intercepts 
Rice (boro) 1.258*** (0.380) 1.498*** (0.399) 0.545* (0.230) − 0.229 (0.295) 0.126 (0.334) 0.043 (0.214) 
Maize 0.529 (0.479) 1.936*** (0.457) 0.680* (0.274) − 0.763* (0.377) 0.606 (0.365) 0.094 (0.252) 
Wheat 0.644 (0.378) 1.541*** (0.354) 0.250 (0.213) − 0.844** (0.290) 0.257 (0.287) − 0.243 (0.199) 
Mungbean 1.015** (0.376) 1.705*** (0.383) 1.356*** (0.212) 0.265 (0.264) 1.070*** (0.289) 0.853*** (0.186) 
Random parameters in utility functions Attribute estimates 
Irrigation cost (US$ 

ha− 1) 
− 0.005 (0.003) − 0.011*** (0.003) − 0.004* (0.002) 0.000 (0.002) − 0.005* (0.002) − 0.002 (0.002) 

Fertilizer cost (US$ 
ha− 1) 

− 0.006*** (0.002) − 0.008*** (0.002) − 0.003*** (0.001) − 0.001 (0.001) − 0.003*** (0.001) − 0.002** (0.001) 

Net returns (US$ ha− 1) 0.007*** (0.001) 0.009*** (0.001) 0.005*** (0.001) 0.005*** (0.000) 0.006*** (0.001) 0.005*** (0.000) 
Distribution of random parameters as limits of triangular na na na 
SD of Irrigation cost 0.010** (0.003) 0.010** (0.003) 0.007* (0.002) na na na 
SD of Fertilizer cost 0.009*** (0.001) 0.007*** (0.001) 0.002*** (0.001) na na na 
SD of Net returns 0.004*** (0.001) 0.005*** (0.001) − 0.003*** (0.001) na na na 
Log-Likelihood: − 823.64 − 767.76 − 1688.70 − 896.3 − 832.58 − 1750.00 
McFadden R2: 0.46 0.37 0.40 0.09 0.07 0.07 
LR test: chi2 320.66*** 247.71*** 390.71*** 175.34*** 118.07*** 268.24*** 
AIC 1667.28 1555.53 3397.42 1806.59 1679.17 3514.087 
BIC 1715.30 1603.55 3452.37 1840.21 1712.78  

Notes: - Data source; CE survey (2017),*, **, and *** indicate significance at the 10%, 5%, and 1% levels. Values in parentheses indicate the standard error. SD indicates 
standard deviation. Optimization by bfgs method. “na” = not applicable for MNL. 1 US$ = 80.9 BDT as per the exchange rates during survey (April 2017). 

Table 4 
Respondent farmers’ willingness to invest in fallow intensification.  

Crops Outside polder (n = 150) Within polder (n = 150) Pooled sample (n = 300) 

WTI estimates for 1 US 
$ return from the 
selected crop 

Monetary equivalent of 
WTI in BDT for 1 US$ 
(80.9 BDT) return 

WTI estimates for 1 US 
$ return from the 
selected crop 

Monetary equivalent of 
WTI in BDT for 1 US$ 
(80.9 BDT) return 

WTI estimates for 1 US 
$ return from the 
selected crop 

Monetary equivalent of 
WTI in BDT for 1 US$ 
(80.9 BDT) return 

Rice 
(boro) 

0.563*** (0.200) 45.53 0.335* (0.164) 27.13 0.181 (0.802) 14.61 

Maize 0.632*** (0.238) 51.13 0.417*** (0.146) 33.74 0.367* (0.180) 29.65 
Wheat − 0.469 (0.351) − 37.96 − 0.461 (0.301) − 37.31 − 0.467 (0.343) − 37.82 
Mungbean 0.665*** (0.109) 53.79 0.573*** (0.166) 46.35 0.582*** (0.194) 47.06 

Notes:-*, **, and *** indicate significance at the 10%, 5%, and 1% levels. Values in parentheses indicate the standard error. Simulation based on 10,000 halton draws. 1 
US$ = 80.9 BDT as per the exchange rates during survey (April 2017). 
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farmers in general appear not to be willing to invest in wheat. Therefore 
farmers need to have a reduction in input costs to compensate a shift 
from fallowing their fields to wheat cropping. These results should 
however be considered cautiously given that CEs were conducted the 
year following wheat blast outbreak and as such, this could affect 
farmers; lack of enthusiasm for wheat. Since 2016, Bangladesh has 
however only seen limited incidence of blast. Farmers’ preference for a 
particular crop also depends on the quantity of labor and the potential 
for mechanization, as using mechanized systems requires less labor but 
needs access and availability of agricultural equipment services (e.g. 
hiring operators for land preparation). Agricultural mechanization is not 
well-developed in the study area but the possibility of mechanization for 
different crops and its influence on farmer preference should be explored 
in the future. 

4.4. Influence of socioeconomic factors on crop choice attributes 

We accounted for observed heterogeneity of crop preferences across 
farm households by the estimation of several models where socio- 
economic characteristics interacted with crop attributes (Part A of 
Table 5). Our results suggest that young farmers (<35 years) living 
outside polders had significant and positive interaction (P ≤ 0.05) 

towards investing in fertilizer inputs as well as receiving a higher net 
return. Age however had no significant interaction for their counterparts 
within polders (Table 5). Both within and outside polders, risk averse
ness of respondents were associated with a significant and negative 
preference for fertilizer inputs (P ≤ 0.001) and net returns (P ≤ 0.05). 
Risk neutral behavior of respondents in both the areas however had 
positive and significant preference for net returns (P ≤ 0.001). Our re
sults appear to complement the neoclassical model of decision-making, 
where an unconstrained, risk-neutral farmer who maximizes profits 
would choose to grow only the crop with highest profit potential per unit 
of land (Smale et al. 2001). While within polders risk neutrality had 
significant and positive interaction with fertilizer investment (P ≤
0.001), the interaction of risk-neutral behavior with fertilizer invest
ment was not significant for respondents outside polders though the sign 
was positive. In the polders, risk seeking behavior interacted with fer
tilizer investment to have a positive and significant effect (P ≤ 0.01). 
Although the interaction of fertilizer investment with risk seeking 
behavior within polders was insignificant, risk seeking had a positive 
and significant interaction with both irrigation investment and net 
returns (P ≤ 0.01). An increase in household income in general had 
interacted positively with irrigation and fertilizer investments for re
spondents both within and outside polders, though these effects were 

Table 5 
Interactions showing the effects of select variables on crop intensification attributes (Random parameter logit).  

Socioeconomic characteristics Outside 
polders 

Within 
polders 

Institutions, infrastructure, markets and 
biophysical factors 

Outside 
polders 

Within 
polders 

Irrigation investment × Low education (<10 years) 0.002 0.001 Irrigation investment × Credit 0.012** 0.001 
Fertilizer investment × Low education (<10 years) − 0.001 − 0.001 Fertilizer investment × Credit 0.012*** 0.001 
Net returns × Low education (<10 years) 0.001 − 0.001 Net returns × Credit 0.002** 0.001 
Irrigation investment × High education (>10 years) 0.002 0.007 Irrigation investment × Extension 0.002 0.009* 
Fertilizer investment × High education (>10 years) 0.002 − 0.003 Fertilizer investment × Extension 0.001 0.001 
Net returns × High education (>10 years 0.001 0.002 Net returns × Extension 0.001 0.001 
Irrigation investment × Low age (<35 years) − 0.003 0.001 Irrigation investment × Tenure 0.001* 0.008* 
Fertilizer investment × Low age (<35 years) 0.006* 0.002 Fertilizer investment × Tenure 0.008*** 0.002 
Net returns × Low age (<35 years) 0.003* − 0.001 Net returns × Tenure 0.003*** 0.001 
Irrigation investment × High age (>35 years) 0.001 0.001 Irrigation investment × Drainage 0.004 − 0.005 
Fertilizer investment × High age (>35 years) − 0.005 − 0.001 Fertilizer investment × Drainage 0.004* 0.002* 
Net returns × High age (>35 years) − 0.002 0.001 Net returns x Drainage 0.001 0.003** 
Irrigation investment × Low household size (<5 members) − 0.002 0.001 Irrigation investment × Canal remoteness ¡0.023** ¡0.005* 
Fertilizer investment × Low household size (<5 members) 0.002 − 0.001 Fertilizer investment × Canal remoteness − 0.005 − 0.001 
Net returns × Low household size (<5 members) 0.002 − 0.001 Net returns x Canal remoteness − 0.002 0.001 
Irrigation investment × High household size (>5 members) 0.004 0.005 Irrigation investment × Quality of road − 0.002 0.001 
Fertilizer investment × High household size (>5 members) 0.001 0.002 Fertilizer investment × Quality of road 0.001*** 0.004*** 
Net returns × High household size (>5 members) − 0.001 − 0.001 Net returns x Quality of roads 0.002*** 0.001 
Irrigation investment × Risk averseness − 0.004 0.008 Irrigation investment × market distance − 0.003 − 0.001 
Fertilizer investment × Risk averseness ¡0.012*** ¡0.005*** Fertilizer investment × market distance ¡0.001* ¡0.001* 
Net returns × Risk averseness ¡0.003* ¡0.003* Net returns x market distance 0.001 0.001 
Irrigation investment × Risk neutrality 0.006 0.009 Irrigation investment × Last year prices 0.004 0.011** 
Fertilizer investment × Risk neutrality 0.011*** 0.002 Fertilizer investment × Last year prices 0.004* 0.005** 
Net returns × Risk neutrality 0.003*** 0.007*** Net returns × Last year prices 0.001 0.004*** 
Irrigation investment × Risk seeking − 0.004 0.013** Irrigation investment × Cyclone 0.002 − 0.003 
Fertilizer investment × Risk seeking 0.007** 0.001 Fertilizer investment × Cyclone ¡0.001* ¡0.003** 
Net returns × Risk seeking 0.001 0.007** Net returns × Cyclone 0.000 0.001 
Irrigation investment × Household income 0.002 0.006* Irrigation investment × Inundation class 0.002 − 0.004 
Fertilizer investment × Household income 0.004 0.002* Fertilizer investment × Inundation class 0.007*** 0.004* 
Net returns × Household income 0.002*** − 0.001 Net returns × Inundation class 0.001 0.001 
Irrigation investment × Low off-farm income (<50% share 

in total income) 
0.002 0.007 Irrigation investment × Overall soil fertility 0.001 0.003 

Fertilizer investment × Low off-farm income (<50% share 
in total income) 

¡0.004* 0.002 Fertilizer investment × Overall soil fertility 0.001 − 0.001 

Net returns × Low off-farm income (<50% share in total 
income) 

0.001 ¡0.002* Net returns × Overall soil fertility 0.001 0.001 

Irrigation investment × High off-farm income (>50% share 
in total income) 

− 0.002 − 0.006 Irrigation investment × Overall soil salinity – 0.005 

Fertilizer investment × High off-farm income (>50% share 
in total income) 

0.005** ¡0.003* Fertilizer investment × Overall soil salinity – − 0.003 

Net returns × High off-farm income (>50% share in total 
income) 

0.001 0.002 Net returns × Overall soil salinity – − 0.001 

Note: Abridged version of interaction effects without intercepts and standard deviations and model fit test values. Model parameter estimated using “fallow” as 
reference level. Bold values show significant interaction effect when treated individually. *, **, and *** indicate significance at the 10%, 5%, and 1% levels. Standard 
errors not shown for brevity. Full version of the model estimates are provided in Tables SM1-SM4 
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significant only within the polder sample (P ≤ 0.05). Nonetheless, 
outside polders, an increase in household income showed positive and 
significant interaction with net returns (P ≤ 0.001). Interaction effect of 
off-farm income with fertilizer investment is negative and significant for 
respondents outside the polders when their share of off-farm income to 
total income is less than 50%. Nonetheless, when it comes to the inter
action of off-farm income with the net returns of respondents outside the 
polders, the effect was negative and significant for only those having 
share of off-farm income to total income below 50%. Conversely, the 
interaction effect of fertilizer investment with off-farm income when its 
share is above 50% was positive and significant for respondents outside 
the polders while this interaction was significant and negative for re
spondents within polders. 

4.5. Influence of institutions, infrastructure, markets and biophysical 
factors on crop choice attributes 

Generally, among the institutional factors, increasing tenure rights 
and credit access tended to increase farmers’ preference for intensifi
cation and double cropping. Outside polders, increasing both credit 
access and tenure security appears to drive respondent farmers’ pref
erences for fertilizer and irrigation investments and higher net returns 
(Part B in Table 5). Within polders, while tenure tends to a have sig
nificant and positive influence on interest in dry season irrigation, the 
influence of credit and tenure on the remaining attributes were positive 
but insignificant. Secure land tenure rights are positively associated with 
cropping intensity, i.e., the number of crops grown on the same field 
within one year (Aravindakshan et al. 2020). 

In focus groups, sharecroppers reported aversion to investment in 
land management or irrigation in the absence of secure land rights. We 
believe that tenure insecurity could also reduce farmers’ interest in 
improving soil quality over time as farmers discount future investments. 
At current rates, the cost of securing tenure rights through land regis
tration is roughly 10% of total land value (cf. Aravindakshan et al. 
2020). This is prohibitive to small and marginal farmers in the coastal 
region, which provides evidence on the need for land tenure policy re
forms and improvements in informal land sharing arrangements as pre- 
requisite for land use intensification. In addition, from a welfare 
perspective, it is likely to be important for the government to increase 
farmers’ access to institutions involved in agricultural finance and water 
use rights (Speelman et al. 2010; Manjunatha et al., 2016), since this 
appears to be linked to farmers’ increased WTI for irrigation and 
fertilizer. 

Field drainage tended to be an important variable driving fertilizer 
investment since both within and outside polders, the interaction of 
drainage with fertilizer was found positive and significant. Within field 
drainage is important given the low-lying nature of many fields in the 
study area, and consequent waterlogging risks. Unlike the respondents 
outside polders, for respondents within polders, the interaction of 
drainage with net returns was positive and significant. This implies that 
within polders, respondents’ preference for crops that fetch higher net 
returns are positively correlated with the perception that improved 
drainage is needed. Drainage systems are however complex and will 
require careful coordination to permit land preparation so a diversity of 
subsequent winter season crops can be grown (Krupnik et al. 2017). 
Participatory water management by the community including cleaning 
of irrigation canals and provision of in-field drainage may be explored 
under the ongoing Employment Generation Programme for the Poorest 
(EGPP) (Mannan et al. 2018). The interaction between the distance of 
fields from canals that can be tapped for surface water irrigation and 
WTI for irrigation for respondents both within and outside polders was 
negative and significant. This clearly implies a negative preference for 
irrigation investments with increasing canal distance from the farm. 

In comparison to other parts of the country, coastal Bangladesh has a 
relatively lower density of input and output markets and have relatively 
poor road infrastructure (MOA and FAO, 2013). Farmers both within 

and outside polders therefore have a locational hindrance to the pur
chase of inputs and sales of crops for distant markets. Increasing distance 
to markets from the farm had a significantly negative interaction on 
fertilizer investment. Remoteness not only reduces farmers’ market ac
cess, but can also influence their land use decisions (Tur-Cardona et al. 
2018; Aravindakshan et al. 2018). Improved quality of roads was found 
to positively and significantly influence respondents’ fertilizer invest
ment both within and outside the polders. Among the other variables 
related to markets, increase of prices for any crop was positively asso
ciated to respondents’ preferences for growing that crop in the coming 
season. As evident in our estimates, market prices observed in the last 
year prior to survey had a positive and significant influence on crop 
preferences, except for wheat outside the polders. 

Another qualitative variable considered was ‘Inundation class”. This 
variable was based on the classifications described by Brammer (2013) 
as the average perceived depth of field flooding during the monsoon 
season. This variable is further described in Krupnik et al. (2017) and 
Emran et al. (2019), is widely used by farmers to describe their land 
types. The level of inundation during the monsoon is important in 
determining the variety of rice that can be grown, and the speed at 
which floodwaters vacate following the summer monsoon to permit 
cropping in the early winter season (Krupnik et al. 2017). The official 
land inundation classification system is complex, with five main classes. 
For simplification, we asked farmers to report if their fields on average 
belonged to “low” (>180 cm average water depth), “medium” (30–180 
cm water depth) or “high” (0–30 cm water depth) during the monsoon 
season. Our results indicated that lower inundation depths corre
sponding to higher ‘micro-elevation’ fields) were associated positively 
and significantly with farmers’ preference for fertilizer investments in 
the dry season both within and outside polders (Table 5). 

Importantly, past cyclone severity tends to affect the crop input in
vestment preferences of farmers both within and outside polders, with 
strongly negative effects observed. Our results show a negative and 
significant interaction influence of cyclone severity on preference for 
fertilizer investments. There have been considerable crop losses associ
ated with previous extreme weather events in coastal Bangladesh. Op
portunities for climate services that increase farmers’ ability to 
anticipate and cope with extreme climatic events may also be beneficial 
in reducing risk (Akter et al. 2016). Cyclones and extreme weather are 
widely cited as risk-bearing factors that can limit rural developments 
efforts in coastal South Asia (Akter et al. 2016); options for farm in
surance can also be explored to hedge risks. 

4.6. Production risks and farmers risk attitude in crop choices 

Cumulative probability distribution graphs (Fig. 5) based on attri
bute values for actual crop choices of farmers show the risk spread for 
different crops. At conservative levels of production risk (60th percen
tile), sampled farmers outside polders could make a net profit of 450 US 
$ ha− 1 and 650 US$ ha− 1 for mungbean and maize respectively. The net 
returns for sampled polder farmers at the 60th percentile could be 410 
US$ ha− 1 and 500 US$ ha− 1 for mungbean and maize respectively. Our 
analysis shows a wider risk spread for net returns from maize, which 
ranged from 250 to 1000 US$ ha− 1 outside of polders, and 100–1000 US 
$ ha− 1 within polders (Fig. 5). This indicates that maize is perceived as a 
more risky crop within than outside polders, which is perhaps linked to 
the relatively high investment costs for maize (Schulthess et al. 2019). 
Growing boro rice and wheat, on the other hand, is clearly perceived by 
farmers as less profitable in both study areas, fetching <200 US$ ha− 1. 

5. Conclusion and implications 

This paper considered the range of complex socioecological chal
lenges that undermine increased land use intensity in South Asia’s 
coastal deltas, through a case study in south central Bangladesh. 
Governmental policy has supported efforts to encourage increased land 
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use intensity through double cropping and the replacement of winter 
‘rabi’ season land fallowing with surface water irrigated and intensified 
crop management practices, with strong emphasis on irrigated rice. 
Policies however tend to be made without adequate study of farmers’ 
preferences and ambitions; this can render crop intensification efforts 
ineffective. In response, we employed a choice experiment to investigate 
farmers’ preferences for crops potentially suitable for replacing dry 
season land fallowing, in addition to the nature of attributes and most 
important socio-economic forces driving farmers’ preferences. 

The choice experiment revealed strong farmer preferences for crops 
with less irrigation demand (less irrigated mungbean and irrigated 
maize), against crops requiring high irrigation (‘boro’ rice or wheat). Our 
results indicated that farmers in south-central Bangladesh, irrespective 
of their farm’s location within or outside coastal embankment systems, 
showed negative preference towards irrigation and fertilizer in
vestments while selecting a crop for intensification, hence their stronger 
relative preference for mungbean than maize, ‘boro’ or wheat. Further
more, respondent farmers also showed positive preference for crops 
fetching higher potential net returns. These findings may explain the low 
adoption rates of surface water irrigation investments in coastal 
Bangladesh over the last several years, despite policy investments and 
extensive extension efforts. 

Our results also indicate that farmers within and outside polders may 
be more willing to invest in mungbean followed by maize and boro in 
that order. Bangladeshi government’s policy suggests initiatives to in
crease boro rice production in place of land fallows, which however 
conflicts with the farmers’ preference for mungbean in the winter sea
son. Low paddy prices and relatively higher labor costs provide disin
centive against boro, in addition to high irrigation costs (Aravindakshan 
et al. 2020). Respondents’ negative willingness to invest in wheat both 
within and outside polders indicated its low preference over the status 
quo choice (fallow). Significant supportive measures, likely in the form 
of subsidies, will be required to encourage wheat production. The fact 
that the majority of farmers both within and outside polder areas have a 

preference for mungbean followed by maize points to the need for 
extension to educate farmers on crop management for both crops, 
alongside potential credit support for purchase of inputs and to offset 
irrigation costs. Based on the models on variable interactions, our study 
also indicated a strong link between field drainage and the existence of 
optimum sowing conditions on crop preferences. The severity of previ
ous cyclones in our study area also appears to negatively influence re
spondents’ willingness to invest in inputs, most notably fertilizer. Given 
the vulnerability of farmers in the study areas to extreme weather 
events, developing production risk mitigation for these crops via well- 
designed insurance programs and tailored climate information services 
is highly relevant. This study also revealed that there are significant 
differences among farm household level factors that drive preferences 
for different crops and intensified management practices, including age, 
distance to markets proximity and quality of roads, and level of access to 
agricultural extension and credit. These results have important policy 
implications on the efforts to encourage double cropping and sustain
able intensification. Our study clearly indicates that agronomic in
terventions alone are not perceived to be sufficient; rather, 
comprehensive and integrated development programs are required to 
assist in improving within field water management, asphalted roads, 
context-specific extension and educational programs, alongside access 
to finance for coastal farmers, particularly those interested in maize. 
Lastly, our study documented a strong preference for mungbean to 
replace dry season land fallowing; as such, the development of improved 
mungbean varieties and appropriate management practices appear to be 
important priorities. 
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Fig. 5. Simulation of production risk from crop choice data, based on attribute values for actual crop choices. At conservative levels of production risk (60th 

percentile), sampled non-polder farmers could make a net profit of 450 US$ ha-1 and 650 US$ ha-1 for mungbean and maize respectively. The net returns for sampled 
polder farmers at 60th percentile could be 410 US$ ha-1 and 500 US$ ha-1 for mungbean and maize respectively. Rice (boro) and wheat on the other hand would fetch 
<200 US$ ha-1 in polder and non-polder environments. 
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