

Versatilidad de cereales de invierno para diferentes usos en INTA EEA Marcos Juárez durante el año 2020.

¹Donaire, Guillermo; ¹Bainotti, Carlos; ¹ Reartes, Fernando; ²Arzadún, Martín; ³Moreyra, Federico; ¹Conde, Belén.

¹INTA EEA Marcos Juárez.

² Facultad de Agronomia de Azul, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Cátedra Forrajes y Manejo de Pasturas.

³Asesor privado, Darregueira, Buenos Aires.

donaire.quillermo@inta.qob.ar

Palabras clave: cereales de invierno - doble propósito - verdeos

Introducción

En los establecimientos ganaderos generalmente se incluye cierta proporción de verdeos invernales ya que son fundamentales en los eslabones de la planificación de las cadenas forrajeras por la producción de pasto verde, ya sea, por su calidad o por la abundante producción en períodos desfavorables por el escaso aporte forrajero de las pasturas perennes (naturales o implantadas), manteniendo la estabilidad en la producción de forraje a lo largo de todo el año en los sistemas intensificados de alta productividad. Conocer el momento en el cual el sistema requiere de forraje o se tiene el déficit es de suma importancia. El bache estacional puede presentarse en otoño, durante el invierno o al inicio de primavera. De acuerdo a esto se deberá elegir una especie o varias o el manejo a realizar en cada caso.

En las explotaciones mixtas es muy común que, de acuerdo a la cadena forrajera existente y a la magnitud de los déficits, las mismas variedades sean utilizadas para diferentes objetivos, por lo tanto, esa versatilidad para diferentes usos puede ser muy apreciada.

Debido a que se carece de información actualizada sobre el desempeño de los distintos cereales invernales en la zona de influencia de la EEA Marcos Juárez, la presente publicación tiene como objetivo evaluar la versatilidad del comportamiento de cereales de invierno través de diferentes formas de utilización del forraje y del grano.

Materiales y métodos

Durante el año 2020 en el campo experimental de cereales de invierno de la EEA Marcos Juárez se realizaron ensayos de cereales de invierno para diferentes usos (corte de forraje continuo, forraje diferido, doble propósito, ensilado y producción de grano). Los mismos fueron conducidos en siembra directa, en un lote con rotación agrícola trigo/maíz-soja-soja, la cual ésta última se picó a mediados del mes de febrero en el estadío reproductivo de R3-R3.5. Se aplicó herbicidas para el control de malezas en preemergencia de las mismas y en presiembra (metsulfuron, dicamba y glifosato, en dosis comercial). Se fertilizó en presiembra con 80 kg/ha de UREA granulada al voleo con fertilizadora de arrastre y con 90 kg/ha de fosfato monoamónico incorporado a la siembra. Se pretendía re fertilizar luego de cada corte de forraje y en presiembra en los ensayos de silaje y de producción de granos, pero las ausencias de precipitaciones impidieron realizarla. Durante el ciclo de cultivo se realizaron tratamientos químicos para el control de pulgones y chinches (Lambdacialotrina al 5%).

Se evaluaron en total 9 variedades de diferentes especies. 2 de trigo pan, 2 variedades de avena, 2 de cebada forrajera y 3 de triticale (cuadro 1).

Se utilizó un diseño experimental en bloques completos aleatorios con 4 repeticiones, con una unidad experimental (parcela) para corte forraje de 6 surcos a 0.20 m y 6 m de largo (7.2 m^2) y para cosecha de grano de 5 surcos a 0.20 m y 5 m de largo (5 m^2) .

Cuadro 1. Especie utilizada, nombre del cultivar, origen y ciclo vegetativoreproductivo.

10010000011101			0: 1
Variedad	Especie	Origen	Ciclo
BIOINTA 3005	Trigo	INTA-LDC SEMILLAS	Ciclo largo invernal
MS INTA 415	Trigo	INTA-LDC SEMILLAS	Ciclo intermedio primaveral
ELIZABET INTA	Avena	INTA EEA Bordenave	Ciclo largo
FLORENCIA INTA	Avena	INTA EEA Bordenave	Ciclo intermedio
MARIANA INTA	Cebada forrajera	INTA EEA Bordenave	Ciclo corto
TRINIDAD INTA	Cebada forrajera	INTA EEA Bordenave	Ciclo largo
CONCOR INTA	Triticale	INTA EEA Marcos Juárez	Ciclo largo
MOLLE INTA	Triticale	INTA EEA Marcos Juárez	Ciclo intermedio a largo
BARBOL INTA	Triticale	INTA EEA Marcos Juárez	Ciclo intermedio

Referencias: EEA: Estación Experimental Agropecuaria. INTA: Instituto Nacional de Tecnología Agropecuaria. LDC: Louis Dreyfus Company. MS: Macro Seed.

En el cuadro 2 se presentan los tratamientos, fecha de siembra y objetivo de la evaluación. La siembra y la cosecha de forraje y de grano fueron realizadas con maquinaria experimental para parcela chica. El criterio de corte para la evaluación del forraje fue cuando el 50% de las variedades estaban en EC 3.1 de la escala de Zadoks (Zadoks et al., 1974; Tottman and Makepeace, 1979), o cuando el forraje alcanzó 20 cm. de altura, lo que haya ocurrido primero. Esto se realizó en los tratamientos de corte continuo de forraje, en la cual se realizaron cuatro cortes de forraje y para el tratamiento de doble propósito en donde se realizó sólo 1 corte. En cada corte se determinó rendimiento de materia seca (MS) y se estableció como variable la suma de cortes para totalizar la MS producida en el ciclo. Para el tratamiento de siembra temprana se determinó la acumulación de materia seca al invierno. En ensilado se produjo el corte cuando las variedades se encontraban en el estado de grano lechoso-pastoso. En el tratamiento de producción de granos en madurez de cosecha de grano se realizó la cosecha para evaluar la producción de grano y no se realizaron cortes de forraje durante el ciclo de cultivo.

Cuadro 2. Tratamientos, fecha de siembra v evaluación en cada uno.

Tratamientos	Fecha de siembra	Evaluación
Verdeo largo	09/03	Cortes de forrajes continuos.
Diferido al invierno	09/03	Siembra temprana y acumulación de forraje al invierno.
Doble propósito	15/04	Doble propósito (forraje y grano).
Ensilado	03/06	Ensilado.
Cosecha de grano	03/06	Producción de granos.

Se realizaron análisis estadísticos ANAVA (análisis de variancia) y test de comparación de medias LSD de Fisher de las variables antes mencionadas. Se trabajó con un nivel de significancia de p < 0.05 utilizando el software estadístico Infostat (Di Rienzo *et al.*, 2019).

En los tratamientos ensilado y cosecha de grano se evaluó el comportamiento de los materiales frente a las royas con la ayuda de la escala propuesta por Cobb

modificada por Peterson (Stubbs *et al.*, 1986) y la propuesta en Rust Scoring Guide (CIMMYT, 1986) hacia el final del ciclo del cultivo.

Resultados

En el cuadro 3 se pueden visualizar las condiciones climáticas del año 2020. Las precipitaciones del verano y del otoño permitieron recargar el perfil del suelo garantizando una muy buena emergencia e implantación de las especies a evaluar en los tratamientos de marzo y abril. A partir de mayo las lluvias cesaron y junto con las menores temperaturas mínimas registradas y heladas agronómicas a nivel de superficie, retrasaron en el tiempo la producción de biomasa para los cortes de forraje y perjudicando también a los rebrotes posteriores en donde la acumulación de biomasa fue menor en comparación con trabajos previos (Donaire *et al.*, 2020; Donaire *et al.*, 2020; Donaire *et al.*, 2020), ya sea, en cada corte y en la suma total acumulada de forraje. Los tratamientos para silo y producción de granos se sembraron al inicio del mes de junio teniendo una buena implantación a pesar del estrés hídrico invernal, pero con pérdidas de macollos, tallos principales y hasta muerte de plantas hacia el final del invierno e inicio de primavera por las intensas heladas repercutiendo en las acumulaciones de biomasa tanto para el ensilado como para la producción de granos.

Si bien las fechas de siembras tempranas permitieron una mayor exploración radicular para acceder a estratos más profundos y húmedos del suelo al no registrarse precipitaciones el perfil se fue secando limitando la producción de biomasa sumando a esto que la napa freática nunca tuvo influencia o aportes significativos.

Las precipitaciones retornaron en el mes de septiembre, pero con milimetrajes inferiores a la media al igual que en octubre y noviembre, influyendo en poca medida en las producciones finales de biomasa (cortes de forraje), ya que el perfil se encontraba muy seco en superficie y en coincidencia con el inicio de la mayor demanda de los cultivos (producción de granos en período crítico).

Cuadro 3. Variables climáticas registradas en la EEA Marcos Juárez durante el año 2020.

2020.												
Variable\Mes	Е	F	М	Α	M	J	J	Α	S	0	N	D
Nº de heladas a 5 cm nivel del suelo (Año 2020)	0	0	0	0	8	10	16	10	10	2	0	0
Nº de heladas a 5 cm nivel del suelo (Histórico: 1987-2020)	0	0	0	1	6	11	14	11	6	1	0	0
Temperatura media (°C) (Año 2020)	23.6	23	23.6	17.9	14.1	10.4	8.2	13	14.4	17.6	21.4	22.8
Temperatura media (°C) (Histórico: 1967-2020)	24.2	22.9	21.3	17.7	14.3	10.8	10.4	12.1	14.6	18	20.9	20.9
Precipitaciones (mm) (Año 2020)	161	168.5	109	94.5	0	0	0	0	28.5	51	68.5	70.8
Precipitaciones (mm) (Histórico: 1960-2020)	115	108	112	77	37	20	23	20	46	95	109	126
Nivel freático (Mtrs) (Año 2020)	2.50	2.48	2.45	2.30	1.94	1.98	2.07	2.27	2.35	2.54	2.60	2.70
Nivel freático (Mtrs) (Histórico: 1970-2020)	6.52	6.51	6.51	6.39	6.30	6.27	6.26	6.26	6.30	6.32	6.30	6.33

Fuente: Estación meteorológica EEA Marcos Juárez, Técnico Alvaro Andreucci. SIGA2.

En los cuadros siguientes (cuadros 4, 5, 6, 7 y 8) se observan los resultados productivos de las especies evaluadas en los distintos tratamientos y la significancia de los análisis estadísticos para la variable involucrada en el tratamiento estudiado y para las especies involucradas.

Teniendo en cuenta solo la producción de forraje (cuadro 4), en el tratamiento de corte continuo de forraje, se realizaron 4 cortes de forraje, observándose buenas producciones y acumulaciones finales a pesar de lo acontecido climáticamente. Se observó un desfasaje en todos los cortes de forraje y sobre todo en el segundo corte hacia el final del invierno a 80 días del primer corte. Algo inusual debido al estrés hídrico y a las menores temperaturas mínimas registradas. El último aprovechamiento de forraje (4to corte) fue hacia los primeros días del mes de noviembre con el fin de ciclo de las especies. En general se encontró diferencias en las producciones entre las especies evaluadas. Avena fue la especie con mayor producción y estabilidad en todos los cortes, seguido de triticale, con producciones estables en los dos primeros cortes. Las variedades de avena ELIZABET INTA y FLORENCIA INTA tuvieron las mayores acumulaciones de forraje. Le siguieron en producción los triticales MOLLE INTA y CONCOR INTA y la variedad de trigo de ciclo largo BIOINTA 3005. Las cebadas forrajeras fueron muy afectadas por las heladas al igual que las variedades de trigo y triticale de ciclo intermedio, perjudicando los rebrotes y acumulaciones de biomasa. BARBOL INTA se destacó en el primer corte de forraje debido a su rápido crecimiento inicial, pero con rebrotes posteriores de muy bajos valores.

Cuadro 4. Producción de forraje (MS kg/ha) de los cultivares evaluados y por especie en cada corte y su fecha, en el tratamiento de corte continuo de forraje.

Tratamiento 1: cort		Producción de forraje (Kg MS/ha)					
Cultivar	Especie	1º corte	2º corte	3º corte	4º corte		
FS: 09/03	Fechas de corte	15/05: 67 días de la FS	03/08: 80 días del 1º corte	22/09: 50 días del 2º corte	03/11: 42 días del 3º corte	Suma de cortes	
ELIZABET INTA	Avena	1340	2151	2156	1804	7451	
FLORENCIA INTA	Avena	1437	1154	2003	2028	6622	
MOLLE INTA	Triticale	1337	2406	992	688	5423	
CONCOR INTA	Triticale	1142	1287	1381	1077	4887	
BIOINTA 3005	Trigo	876	994	2299	703	4872	
TRINIDAD INTA	Ceb. Forr.	985	1406	912	701	4004	
MARIANA INTA	Ceb. Forr.	1390	1553	423	524	3890	
BARBOL INTA	Triticale	1969	507	525	238	3239	
MS INTA 415	Trigo	941	1038	114	95	2188	
	CV (%)	23	20	21	26	13	
LSD (5 %)	(Kg MS/ha)	442	417	376	340	620	
Promedio	(Kg MS/ha)	1268 1 º	1388	1200	873	4730	
Especie	Especie		2º corte	3º corte	4º corte	Suma de cortes	
Avena		1389	1653	2080	1916	7038	
Triticale		1483	1400	966	667	4516	
Ceb. Forr.		1187	1480	667	612	3946	
Trigo		908	1016	1207	399	3530	
LSD (5 %)	(Kg MS/ha)	297	281	253	228	620	
Promedio	(Kg MS/ha)	1242	1387	1230	898	4758	

Referencias: CV: coeficiente de variación. %: porcentaje. LSD: diferencia mínima significativa (*p*<=0,05). En color amarillo se destacan los materiales sobresalientes. MS: materia seca. Ceb. Forr.: cebada forrajera.

En el cuadro 5 se puede visualizar los resultados del tratamiento de fecha de siembra temprana y evaluación de la acumulación de forraje diferida al invierno. El corte de forraje se realizó hacia principios del mes de agosto. Las variedades se encontraban en diferente estado de desarrollo debido a sus diferencias en ciclo. En general los ciclos largos estaban en un estado más atrasado con menores acumulaciones de forraje debido a su lento crecimiento inicial y las especies más precoces más adelantados en su ciclo, pero con daño de heladas en hojas y tallos repercutiendo en la producción de biomasa. Se registraron buenas producciones debido a las condiciones ambientales antes mencionadas. Se destacó en acumulación de biomasa la variedad de cebada forrajera MARIANA INTA de ciclo corto siguiéndole la variedad de triticale MOLLE INTA de ciclo intermedio a largo. Las dos variedades de avena presentaron estabilidad en la producción, no así en el resto de las especies en las cuales la acumulación se relacionó al ciclo productivo.

Cuadro 5. Producción de forraje acumulado (MS kg/ha) de los cultivares evaluados y por especie en el tratamiento de fecha de siembra temprana con acumulación de forraje diferido al invierno.

Tratamiento 2: fecha de siemb	Producción de forraje (Kg MS/ha)						
Cultivar	Especie		Acumulación de MS				
FS: 09/03	Fecha de cor	te	Corte: 04/08 (148 días de la FS)				
MARIANA INTA	Ceb. Forr.		5265				
MOLLE INTA	Triticale		4428				
ELIZABET INTA	Avena		3630				
FLORENCIA INTA	Avena		3384				
BIOINTA 3005	Trigo		3368				
MS INTA 415	Trigo		2761				
CONCOR INTA	Triticale		2705				
BARBOL INTA	Triticale		2221				
TRINIDAD INTA	Ceb. Forr.		1571				
	C	V (%)					
	LSD (5 %) (Kg M	S/ha)	505				
	Promedio (Kg M	S/ha)	3259				
Especie			Acumulación de MS				
Avena			3507				
Ceb. Forr.			3418				
Triticale			3118				
Trigo			3065				
LSD (5 %) (Kg MS/ha)			330				
Promedio (Kg MS/ha)			3277				

Referencias: CV: coeficiente de variación. %: porcentaje. LSD: diferencia mínima significativa (p <= 0.05). En color amarillo se destacan los materiales sobresalientes. MS: materia seca. Ceb. Forr.: cebada forrajera.

En la evaluación de doble propósito (forraje y grano), con fecha de siembra a mediados de abril, se realizó un solo corte de forraje hacia el final del invierno con buenas producciones en las variedades de avena (cuadro 6). Le siguieron en producción las cebadas forrajeras MARIANA INTA y TRINIDAD INTA. Se registró una correlación negativa entre la producción de forraje y la producción de granos, en la cual el rebrote con destino a la producción de biomasa para la producción final de granos se vio muy afectado por las heladas tardías y la ausencia de precipitaciones en el inicio de la primavera afectando

negativamente al rendimiento de granos. BIOINTA 3005, FLORENCIA INTA y CONCOR INTA presentaron aceptables rendimientos de grano. La avena FLORENCIA INTA se destacó como la mejor variedad con comportamiento para doble propósito.

En este ensayo no se observó la presencia de enfermedades foliares.

Cuadro 6. Producción de forraje (MS kg/ha) y grano (kg/ha) de los cultivares y especies evaluados para el tratamiento de doble propósito.

Tratamiento 1: dob	-	ón de forraje (Kg MS/ha)			
Cultivar	Especie		1º corte	Rendimiento de	
FS: 15/04	Fechas de corte	05/08: 1	12 días de la FS	granos (kg/ha)	
ELIZABET INTA	Avena		3092	772	
FLORENCIA INTA	Avena		3080	1452	
MARIANA INTA	Ceb. Forr.		2134	338	
TRINIDAD INTA	Ceb. Forr.		1789	343	
MS INTA 415	Trigo		1690	316	
BARBOL INTA	Triticale		1688	599	
MOLLE INTA	Triticale		1478	986	
CONCOR INTA	Triticale		689	1397	
BIOINTA 3005	Trigo		675	2505	
	CV (%)	22	17	
LSD	(5 %) (Kg MS/h	a)	721	279	
Pron	nedio (Kg MS/h	a)	1813	968	
Especie		1º corte	Rendimiento de grano		
Avena		3086	11	12	
Ceb. Forr.		1961	340		
Triticale		1285	1285 994		
Trigo		1183	14	111	
LSD (5 %) (Kg MS/ha)		484	18	87	
Promedio (Kg MS/ha)		1879	964		

Referencias: CV: coeficiente de variación. %: porcentaje. LSD: diferencia mínima significativa (*p*<=0,05). En color amarillo se destacan los materiales sobresalientes. MS: materia seca. Ceb. Forr.: cebada forrajera.

En el cuadro siguiente (cuadro 7) se visualizan los resultados del tratamiento para ensilado. El corte se realizó a mediados del mes de noviembre cuando las especies se encontraban en el período de llenado de granos en la fase grano acuoso a grano pastoso. Se registraron buenas producciones de biomasa acumuladas en el ciclo de cultivo en la cual se destacaron los triticales y la variedad de trigo de ciclo intermedio. BARBOL INTA fue la variedad con mayor producción seguido de CONCOR INTA, MS INTA 415 y MOLLE INTA. Las variedades de cebada forrajera tuvieron producciones medias al igual que la variedad de trigo de ciclo largo (BIOINTA 3005). No así las avenas, en las cuales la acumulación de biomasa fue menor al del resto de las especies, posiblemente por la presencia detectada de roya de la hoja (*Puccinia coronata* f. sp. avenae) y roya del tallo (*Puccinia graminis Pers.* f. sp. avenae) en valores medios, restándole área fotosintética al igual que BIOINTA 3005 en la cual se evidenció la presencia de roya de la hoja causada por *Puccinia triticina* (antes *P. recondita* f. sp. tritici) con valores importantes.

Cuadro 7. Producción de forraje acumulado (MS kg/ha) de los cultivares evaluados y por

especie en el tratamiento de ensilado

Tratamie	nto 5: silo	Producción de forraje (Kg MS/ha)		
Cultivar	Especie	Acumulación de MS		
FS: 03/06	Fecha de corte	Corte: 13/11 (163 días de la FS)		
BARBOL INTA	Triticale	10100		
CONCOR INTA	Triticale	9333		
MS INTA 415	Trigo	8012		
MOLLE INTA	Triticale	7696		
MARIANA INTA	Ceb. Forr.	7418		
TRINIDAD INTA	Ceb. Forr.	7328		
BIOINTA 3005	Trigo	6359		
FLORENCIA INTA	Avena	6077		
ELIZABET INTA	Avena	5068		
	CV (%)	22		
	LSD (5 %) (Kg MS/ha)	2639		
	Promedio (Kg MS/ha)	7488		
Espe	cie	Acumulación de MS		
Triticale		9043		
Ceb. Forr.		7373		
Trigo		7186		
Avena		5573		
	LSD (5 %) (Kg MS/ha)	1723		
	Promedio (Kg MS/ha)	7293		

Referencias: CV: coeficiente de variación. %: porcentaje. LSD: diferencia mínima significativa (p<=0,05). En color amarillo se destacan los materiales sobresalientes. MS: materia seca. Ceb. Forr.: cebada forrajera.

En el cuadro 8 se puede observar la producción de granos de las diferentes especies evaluadas. Trigo y triticale se destacaron por sobre el resto de las especies. Las variedades BARBOL INTA y CONCOR INTA en triticale y MS INTA 415 y BIOINTA 3005 en trigo presentaron los mayores rendimientos de grano. Se observan buenos rendimientos de acuerdo a las inclemencias climáticas que afectaron al ensayo (sequía y heladas tardías), en la cual las avenas y la variedad TRINIDAD INTA (cebada forrajera) fueron las más afectadas. En la variedad de trigo BIOINTA 3005 se observó la presencia de roya de la hoja hacia el final del ciclo de cultivo con valores importantes de severidad e incidencia, pero esto no impidió el alto rendimiento de grano. El caso contrario ocurrió con las avenas en las cuales la presencia de roya de la hoja (Puccinia coronata f. sp. avenae) y roya del tallo (Puccinia graminis Pers. f. sp. avenae) pudieron repercutir en el rendimiento final de granos ya que su detección comenzó cercana al panojamiento (mediados del mes de noviembre).

Cabe destacar que en las variedades de triticale no se vio la presencia de enfermedades foliares como roya del tallo (Puccinia graminis f. sp. tritici), roya lineal (amarilla o estriada) (Puccinia striiformis f. sp. tritici) ni roya de la hoja (Puccinia triticina) por ser materiales resistentes al igual que la variedad de trigo MS INTA 415.

Las cebadas son muy atacadas por manchas foliares, pero las condiciones ambientales no fueron favorables para el desarrollo de estas enfermedades, como, por ejemplo, mancha en red (Drechslera teres), mancha borrosa (Bipolaris sorokiniana) y mancha en red tipo spot (Drechslera teres f. maculata).

Cuadro 8. Rendimiento de grano (kg/ha) de los cultivares y especies evaluados para el

Tratamiento 6: producción de granos			Rendimiento de granos (kg/ha)		
Cultivar	Especie		FS: 03/06		
BARBOL INTA	Triticale		3589		
MS INTA 415	Trigo		3375		
BIOINTA 3005	Trigo		3171		
CONCOR INTA	Triticale		3082		
MOLLE INTA	Triticale		2756		
MARIANA INTA	Ceb. Forr.		2357		
FLORENCIA INTA	Avena		1978		
ELIZABET INTA	Avena		1944		
TRINIDAD INTA	Ceb. Forr.		1461		
		CV (%)	12		
L	.SD (5 %) (K	Kg MS/ha) 542			
P	Promedio (K	(g MS/ha)	2634		
Especie		Rendimiento de granos			
Trigo		3273			
Triticale			3142		
Avena			1961		
Ceb. Forr.		1909			
LSD (5 %) (I	Kg MS/ha)	354			
Promedio (2571		

Referencias: CV: coeficiente de variación. %: porcentaje. LSD: diferencia mínima significativa (p <= 0,05). En color amarillo se destacan los materiales sobresalientes. MS: materia seca. Ceb. Forr.: cebada forrajera.

Conclusiones

Es importante destacar que los programas de mejoramiento cuentan con nuevas variedades de diferentes especies con muy buena aptitud para diferentes usos. Por lo cual es necesario continuar con estos trabajos de investigación y experimentación para generar información con la finalidad de caracterizar los nuevos cultivares liberados y dar la recomendación adecuada a los productores.

Agradecimientos

A Fernando Giménez del INTA EEA Bordenave por proveernos de los materiales vegetales para la realización del ensayo, a Martín Arzadun por ser el ideólogo del proyecto a nivel nacional y a Federico Moreyra por su aporte al manejo de los ensayos.

Este trabajo de investigación pertenece a una red de ensayos que se llevan a cabo junto con Marcos Juárez (Córdoba) en varias localidades de diferentes ambientes productivos del país como Corrientes, Bordenave, Naredo y Azul (Buenos Aires) con dos años de evaluaciones durante los años 2019 y 2020.

Bibliografía

- Di Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M., Robledo C.W. InfoStat. Versión 2019. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.

- Donaire, Guillermo; Bainotti, Carlos; Reartes, Fernando; Arzadún, Martín; Moreyra, Federico; Conde, Belén. 2020. Versatilidad de cereales de invierno para diferentes usos en INTA EEA Marcos Juárez durante la campaña agrícola 2019. INTA EEA Marcos Juárez. Trigo 2020. Informe de Actualización Técnico abril 2020.
- Donaire, Guillermo; Bainotti, Carlos; Reartes, Fernando; Fraschina, Jorge; Alberione, Enrique; Gómez, Dionisio; Conde, M. Belén. 2020. Evaluación de cultivares de trigo para doble propósito (forraje y grano) durante la campaña agrícola 2019 en INTA EEA Marcos Juárez. INTA EEA Marcos Juárez. Trigo 2020. Informe de Actualización Técnico Abril 2020.
- Donaire, Guillermo; Bainotti, Carlos; Reartes, Fernando; Fraschina, Jorge; Alberione, Enrique; Gómez, Dionisio; Conde, Belén. 2020. Evaluación de cultivares de cereales de invierno para doble propósito (forraje y grano) en INTA EEA Marcos Juárez. Campaña agrícola 2019. INTA EEA Marcos Juárez. Trigo 2020. Informe de Actualización Técnico Abril 2020.
- Rust Scoring Guide. International Maize and Wheat Improvement Centrer (CIMMYT). Londres 40 Apdo. Postal 6-641, Mexico 06600, DF Mexico.
- SIGA2. SIGA2 Sistema de Información y Gestión Agrometeorológico. Estación Meteorológica Convencional EEA INTA Marcos Juárez. http://siga2.inta.gov.ar/en/datoshistoricos/
- Stubbs R.W, Prescott J.M., Saari E.E, Dubin H.J. 1986. Manual de metodología sobre las enfermedades de los cereales. CIMMYT. pp: 1-46.
- Tottman, D.; Makepeace, R. 1979. An explanation of the decimal code for the growth stages of cereals, with illustrations, Ann, Appl, Biol.; 93:211-234.
- Zadoks J., Chang T. y Konzak C. 1974. A decimal code for the growth stage of cereals. Weed Res. 14: 415-421.