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Abstract

were investigated.

Background: Babesiosis is an emerging and potentially zoonotic disease caused by tick-borne piroplasmids of the
Babesia genus. New genetic variants of piroplasmids with unknown associations to vectors and hosts are recognized.
Data on the occurrence of Babesia spp. in ticks and wildlife widen the knowledge on the geographical distribution and
circulation of piroplasmids in natural foci. Questing and rodent-attached ticks, rodents, and birds were screened for the
presence of Babesia-specific DNA using molecular methods. Spatial and temporal differences of Babesia spp.
prevalence in ticks and rodents from two contrasting habitats of Slovakia with sympatric occurrence of Ixodes ricinus
and Haemaphysalis concinna ticks and co-infections of Candidatus N. mikurensis and Anaplasma phagocytophilum

Results: Babesia spp. were detected in 1.5 % and 6.6 % of questing /. ricinus and H. concinna, respectively.
Prevalence of Babesia-infected |. ricinus was higher in a natural than an urban/suburban habitat. Phylogenetic analysis
showed that Babesia spp. from [. ricinus clustered with Babesia microti, Babesia venatorum, Babesia canis, Babesia
capreoli/Babesia divergens, and Babesia odocoilei. Babesia spp. amplified from H. concinna segregated into two
monophyletic clades, designated Babesia sp. 1 (Eurasia) and Babesia sp. 2 (Eurasia), each of which represents a yet
undescribed novel species. The prevalence of infection in rodents (with Apodemus flavicollis and Myodes glareolus
prevailing) with B. microti was 1.3 % in an urban/suburban and 4.2 % in a natural habitat. The majority of infected

rodents (81.3 %) were positive for spleen and blood and the remaining for lungs and/or skin. Rodent-attached . ricinus
(accounting for 96.3 %) and H. concinna were infected with B. microti, B. venatorum, B. capreoli/B. divergens, Babesia sp. 1
(Eurasia), and Babesia sp. 2 (Eurasia). All B. microti and B. venatorum isolates were identical to known zoonotic strains from
Europe. Less than 1.0 % of Babesia-positive ticks and rodents carried Candidatus N. mikurensis or A. phagocytophilum.

Conclusion: Our findings suggest that /. ricinus and rodents play important roles in the epidemiology of zoonotic
Babesia spp. in south-western Slovakia. Associations with vertebrate hosts and the pathogenicity of Babesia spp.

infecting H. concinna ticks need to be further explored.
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Background

Babesia spp. are tick-transmitted hemoprotozoans infect-
ing a number of mammalian and some bird species, and
together with Theileria spp. they are referred to as piro-
plasmids (order Piroplasmida) [1]. Species of Babesia vary
in their virulence and can cause babesiosis in humans and
animals [2]. The first case of human babesiosis in Europe
was reported from Croatia in 1957 [3]. Since then, the
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number of cases in Europe has increased [4, 5]. Three
cases of human babesiosis have been reported from
Slovakia since 1991 [6]. Based on classical taxonomy, piro-
plasmids include three groups: (i) Theileria, i.e. Theileria
capreoli (Clade V as defined in [1]); (ii) Babesia (sensu
stricto), i.e. Babesia canis, Babesia venatorum, Babesia
odocoilei, Babesia divergens and B. capreoli (Clade VI as
defined in [1]); and (iii) Babesia (sensu lato), i.e. Babesia
microti (Clade I as defined in [1]) [1, 7]. Molecular phylo-
genetic analyses confirmed that B. microti is a species
complex, consisting of genetically diverse isolates that fall
into a number of different clades [8]. Within these clades,
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the zoonotic “Jena” type [9] and the non-zoonotic “Mun-
ich” type [10] can be discriminated between rodent iso-
lates from Europe. Common causative agents of human
babesiosis in Europe are Babesia divergens and the B.
divergens-like species, B. venatorum, and B. microti-like
species [2].

Ixodid ticks are the primary vectors of Babesia spp. Zoo-
notic species of Babesia are transmitted mostly by species
of the genus Ixodes. Ixodes ricinus is a common tick spe-
cies in Slovakia [11] and in some areas it is known to co-
occur with other species, such as Ixodes trianguliceps [12],
Dermacentor reticulatus [13] and Haemaphysalis concinna
[11, 13]. The immature stages of L ricinus, H. concinna
and Dermacentor spp. ticks feed on small and medium-
sized mammals and, in addition, immature I ricinus and
H. concinna ticks are ectoparasites of birds [14, 15]. In
contrast, adults of these tick species parasitize medium
and large-sized mammals. Large domestic and wild-
living ruminants (e.g. cattle and roe deer), but also
ticks, due to transovarial transmission, can serve
as reservoirs for B. divergens and B. venatorum.
Small mammals are reservoirs for the transtadially-
transmitted B. microti [16, 17]. Some bird species can
potentially contribute to the spread of piroplasmids by
carrying infected ticks, infect ticks via infectious blood,
or act as hosts for transmission of pathogens between
ticks through co-feeding [18].

Data on the presence of piroplasmids and their med-
ical and veterinary importance in Slovakia are rare and
limited to a few studies. Some studies focused on Babe-
sia spp. present in I ricinus [13, 19] and rodents [12],
while others dealt with B. canis infections in D. reticula-
tus ticks or dogs [20, 21]. Although the presence of piro-
plasmids in H. concinna was confirmed in neighbouring
countries [22, 23], to our knowledge the competence of
H. concinna to transmit Babesia parasites has not been
studied in Slovakia.

Recently, the geographic area where piroplasmids have
been detected in ticks and cases of babesiosis have been
recognized has expanded and new species of Babesia
have been found [23-25]. Therefore, local investigations
are essential to assess the emergence of new parasites
and the potential risk of human and animal diseases.

The main objective of this study was: (i) to investigate
the presence and determine the prevalence and diversity
of Babesia spp. in selected wild-living vertebrate hosts,
focusing on rodents and birds, and on questing ticks and
ticks feeding on rodents in two different habitat types of
south-western Slovakia with sympatric occurrence of I
ricinus and H. concinna ticks; (ii) to assess ecological as-
sociations and phylogenetic relationships of the Babesia
spp. found in ticks and vertebrate hosts in the study
area; and (iii) to assess co-infections of Babesia-infected
ticks and rodents with other microorganisms.
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Methods

Study area, collection of ticks, trapping of rodents and
birds, ethical approval

The two study sites are located in the Small Carpathian
Mountains (south-western Slovakia) and differ in their
habitat type. The first site (48.17-48.20 N, 17.07-17.10E) is
characterized by significant human intervention and repre-
sents an urban/suburban habitat in Bratislava used for
relaxing, cycling, dog walking, and jogging among others.
The second site (48.37—-48.38 N, 17.30—17.32E) is a natural
habitat at Fugelka represented by a non-fragmented forest,
predominantly perambulated by hikers, foresters, and
gamekeepers [for details, see 11]. Collection of questing
ticks and trapping of rodents were performed as described
previously [26]. In brief, questing ticks were collected
from year 2011 to 2013 by dragging the vegetation and
subsequently their species identity and life stage was de-
termined. Rodents were livetrapped from year 2012 to
2014 by using Swedish bridge metal traps and sacrificed
according to current laws of the Slovak Republic, ap-
proved by the Ministry of Environment of the Slovak
Republic, Regional Environmental Office in Bratislava (li-
cence ZP0O-594/2012-SAB). Blood samples were obtained
from sinus orbitalis, spleens, lungs, skin biopsy samples
taken from ears (further as “skin”), and rodent-attached
ticks were gathered from each rodent (at least five speci-
mens of each tick species and life stage, respectively) for
further analysis. Ornithological mist nets were used to
trap wild-living birds in the urban/suburban habitat dur-
ing 2012-2013. Each captured bird was identified, ringed,
inspected for ectoparasites (data not shown) and blood
samples were taken from the vena ulnaris cutanea before
release as described in [27]. Birds were handled under the
permission of the Ministry of Environment of the Slovak
Republic, No. 9368/2011-2.2.

DNA extraction

Genomic DNA was isolated from individual ticks and
rodent tissues by using the Macherey-Nagel NucleoSpin®
Tissue kit (Diiren, Germany) according to the manufac-
turer’s instructions. Quantity and quality of the isolated
DNA was assessed with a spectrophotometer Nanodrop
2000c and stored at -20 °C until further studied.

PCR amplification and sequence analysis

DNA amplification by PCR was carried out following
the protocol described by [28]. Babesia genus-specific
BJ1 (5-GTC TTG TAA TTG GAA TGA TGG-3") and
BN2 (5-TAG TTT ATG GTIT AGG ACT ACG-3)
primers were used to amplify a 450 bp region of the 18S
ribosomal RNA gene. PCR reactions were carried out in a
volume of 25 pl containing 5 pl of DNA template and
20 pl of PCR mix: 0.125 pl of HotStarTaq Plus DNA Poly-
merase (5 U/ul; Qiagen, Hilden, Germany), 0.5 ul of each
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primer (10 pM), 0.5 pl of ANTP (10 mM), 2.5 ul of Coral
Load PCR buffer (containing 15 mM MgCl,), 1 ul of
MgCl, (25 mM) and 14.875 pl of nuclease free water.
Negative as well as positive controls were included in each
run. Amplification was performed in a BioRad t 100 ther-
mal cycler (USA). The thermal cycle reaction consisted of
an initial denaturation step (5 min at 95 °C), followed
by 35 cycles of denaturation (1 min at 94 °C), annealing
(1 min at 55 °C), and elongation (2 min at 72 °C). A
final extended amplification step of 5 min at 72 °C was
carried out. PCR products were separated by electro-
phoresis in a 1.5 % agarose gel and treated with Good-
View™ Nucleic Acid stain (SBS Genetech, China) to be
visualized by UV transillumination.

PCR positive samples were purified and analysed by se-
quencing with forward and reverse primers used for PCR
amplification by Macrogen (Amsterdam, the Netherlands).
Sequences were deposited in the GenBank database
under accession numbers KU362887 — KU362905 and
KU550676 — KU550699.

Phylogenetic analysis

Determined 18S rRNA gene nucleotide sequences were
used as query in a BLASTn search in order to identify and
download most closely related 18S rRNA gene sequences
of well-defined piroplasmid species from GenBank. In
addition, 18S rRNA gene sequences of representative piro-
plasmid species were downloaded in order to allow spe-
cies delineation in the phylogenetic analysis. A multiple
alignment of the hypervariable region of 95 18S rRNA
gene sequences comprising selected and analysed se-
quences including the 18S rRNA gene of Cardiosporidium
cionae was done using MUSCLE [29]. Positions contain-
ing gaps and missing data were eliminated from the 514
nucleotide-alignment to finally result in 385 positions in
the final dataset. After estimation of shape parameter, the
K2 + G +1 parameter model was applied to generate a
maximum likelihood tree [30]. Phylogenetic analysis was
carried out using the MEGAG®6 software [31].

Statistical analyses

Differences in the prevalence of infection with Babesia spp.
in questing ticks, ticks attached to rodents, and in rodents
were analysed between habitats, years, and rodent species
and genders applying Fisher’s exact test, supplemented with
Mantel-Haenszel common odds ratio estimate and its 95 %
confidence interval in cases when two prevalences were
compared. Rodents positive for spleen, blood and/or lungs
were considered Babesia-positive. The 95 % confidence in-
tervals of the prevalences in questing ticks, rodent-attached
ticks and rodents were computed using a bootstrap tech-
nique. Logistic regression was used to estimate the effect of
habitat type and year on the probability of tick infection
and the effect of habitat type, rodent species and gender on
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the probability of rodent infection. Backward stepwise
method was used to find the set of variables significantly af-
fecting the probability of tick and rodent infection. Tests
for the significance of the effects in the model were per-
formed via the Wald statistic. Results on the presence of A.
phagocytophilum and Candidatus N. mikurensis (CNM) in
the same questing ticks, and rodents available from previ-
ous studies [26, 32], were used to calculate the probability
of co-infections with Babesia spp. and analyse the depend-
ence of the microorganisms on the habitat type using
Fisher’s exact test. Differences were considered significant
at P < 0.05 in all tests. Statistical analyses were performed
with IBM SPSS Statistics, version 22 [33] and Statistica
software, version 12 [34].

Results

Babesia spp. in questing ticks

A total of 5057 I ricinus (3158 nymphs and 1899 adults)
and 91 H. concinna (59 nymphs and 32 adults) were exam-
ined, resulting in an overall Babesia spp. infection
prevalence of 1.5 % (Table 1) and 6.6 % (Additional file 1:
Table S1), respectively. The overall prevalence of Babesia-
infected I ricinus ticks was significantly higher in Fugelka
than in Bratislava (2.0 % vs 1.2 %; P=0.022; OR =1.7; CIL:
1.1-2.7) (Table 1). Differences in prevalence of infection be-
tween sites were also significant for tick females (P = 0.016;
OR =10.4; CI: 1.2-89.5), but not for males (P = 0.560;
OR = 0.6; CI: 0.2-2.1) and nymphs (P =0.088; OR = 1.6;
CI: 0.9-2.7) (Table 1). No significant differences were
found between infection prevalence in I ricinus nymphs
and adults (Bratislava: P=0.218; OR=1.7; CI: 0.8-3.4;
Fagelka: P=0.134; OR =1.8; CL: 0.8-3.9). By comparing
the prevalence of infection with Babesia spp. in I ricinus
between the three years (2011-2013), significant differ-
ence was revealed only for nymphs and for total preva-
lence in Bratislava (Table 1).

Overall prevalence of Babesia spp.-infected H. concinna
ticks was higher in Bratislava compared to Figelka, but the
difference was not significant (8.9 % vs 2.9 %; P =0.400;
OR =3.3; CL: 04-29.8) (for details see Additional file 1:
Table S1).

By comparing the two tick species, overall prevalence of
infection with Babesia spp. was found to be significantly
higher in H. concinna than in I ricinus from Bratislava
(8.9 % vs 1.2 %; P=0.001; OR = 8.2; CI: 3.1-21.9). In con-
trast, no significant difference between the prevalence of
infected H. concinna and I ricinus was found at Fagelka
(2.9 % vs 2.0 %; P=0.511; OR = 1.4; CL: 0.2-10.8).

The occurrence of various species of Babesia in quest-
ing I ricinus differed between habitats as well as be-
tween nymphs and adults (Fig. 1). The dependence of
the occurrence of Babesia spp. on the habitat was sig-
nificant (P =0.002). Ticks infected with B. microti pre-
vailed in the natural habitat (Bratislava: 27.3 %; Fugelka:
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Table 1 Prevalence of Babesia spp. in questing Ixodes ricinus per site in 2011-2013

2011 2012 2013 Fisher's Total
Site % (pos/ex) 95% Cl % (pos/ex) 959% Cl % (pos/ex) 95 % Cl  exacttest P % (pos/ex) 95 % Cl
Bratislava ~ Nymphs 0.9 (8/883) 03-16 4.1 (8/195) 1.5-7.2 1.3 (6/455) 04-26 0007 14 (22/1533)  08-20
Females 3 (1/367) 0-0.8 0 (0/61) - 0 (0/156) - 1.000 2 (1/584) 0-0.5
Males 9 (4/437) 02-18 5 (1/68) 0-44 8 (5/177) 06-56  0.189 5 (10/682) 0.7-2.5
Adults total 6 (5/804) 0.1-12  08(1/129) 0-23 1.5 (5/333) 03-30 0316 9 (11/1266)  04-1.3
Total 8 (13/1687) 04-1.2 8 (9/324) 0.9-4.6 4 (11/788) 06-23 0.010 2(33/2799) 08-16
Fugelka Nymphs 22 (23/1067)  13-3.1 34(10/295)  14-54 5 (4/263) 04-30 0319 3 (37/1625)  1.6-30
Females 3 (5/150) 0.7-6.7  0(0/59) - 0 (0/76) - 0.128 8 (5/285) 04-35
Males 6 (1/164) 0-24 0 (0/82) - 2.0 (2/102) 0-4.9 0450 9 (3/348) 0-2.0
Adults total 1.9 (6/314) 06-35  0(0/141) - 1(2/178) 0-28 0.294 3 (8/633) 05-22
Total 2.1(29/1381)  14-29 23 (10/436) 09-37 14 (6/441) 05-25 0.554 0 (45/2258) 14-26
Total 14 (42/3068) 09-18 25(19/760)  14-37 14 (17/1229)  0.7-20 0.086 5(78/5057)  1.2-19

(pos/ex), number of positive/number of examined; 95 % Cl, confidence interval

72.7 %), whereas the proportion of ticks infected with B.
venatorum was similar between both habitats (Bratislava:
53.8 %; Fugelka: 46.2 %) (see Additional file 1: Table S2).
Babesia canis (from four nymphs and one male) and Babe-
sia odocoilei (from one nymph) were exclusively found in
L ricinus from Bratislava. Babesia capreoli/B. divergens was
found in adult L ricinus ticks from Bratislava and in one L
ricinus nymph from Fagelka (Fig. 1). Furthermore, Babesia
sp. 1 (Eurasia) (from four nymphs and one female from
Bratislava) and Babesia sp. 2 (Eurasia) (from one male from
Fugelka) were found to infect questing H. concinna ticks.
The occurrence of Babesia spp. also differed signifi-
cantly between years (P=0.004). The proportion of
B. microti-infected ticks was the higest in 2011 (50.0 %)
and the lowest in 2013 (11.4 %). The proportion of
B. venatorum-infected ticks was also the higest in 2011
(57.7 %) but it was the lowest in 2012 (7.7 %) (see

Additional file 1: Table S3). There was also a significant
difference in the proportion of tick developmental stages
infected with B. microti and B. venatorum (P =0.012).
This was most obvious for B. microti, which was more
prevalent in nymphs than in adults (86.4 % vs 13.6 %).
In the other Babesia spp. the trend was not so strong
(see Additional file 1: Table S4).

In addition to Babesia spp., Theileria sp. DNA was
detected in two H. concinna nymphs from Bratislava.

The analysis of simultaneous effects of habitat and
year on the probability of the overall infection of L rici-
nus with Babesia spp. by logistic regression resulted in a
significant effect of habitat (Bratislava: parameter esti-
mate B =-0.533, exp(B) =0.587, P=0.021). The variable
removed by backward method was year. Considering
only infections with B. miicroti, logistic regression con-
firmed the significant effect of habitat, with about three

~N

O B.microti

@ B.venatorum

W B.capreoli/B.divergens
B B.canis

B. odocoilei

Fig. 1 Babesia spp. in Babesia-infected questing Ixodes ricinus ticks in two different habitat types in south-western Slovakia. Bratislava, urban/suburban
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times lower probability of infection of ticks in the
urban habitat (Bratislava: parameter estimate B =-1.064,
exp(B) =0.345, P=0.002). In contrast, none of the vari-
ables were found to predict the infection of L ricinus with
B. venatorum.

Babesia microti in rodents

Altogether, 606 rodents of six species (356 Apodemus
flavicollis, 227 Myodes glareolus, 19 Microtus arvalis, 2
Apodemus sylvaticus, 1 Microtus subterraneus, 1 Micro-
mys minutus) were screened for the presence of piroplas-
mids. Babesia microti was detected in spleen and/or blood
and/or lungs of 1.3 % and 4.2 % of the examined rodents
from Bratislava and Fugelka, respectively (Table 2), with
statistically significant difference between the two sites
(P=0.046; OR =3.3; CI: 1.1-10.2). DNA of the parasite
was also detected in lungs and skin biopsies from ears of
rodents with positive spleens: in 3 lungs and 2 skin sam-
ples from rodents in Bratislava, and in 8 lungs and 7 skin
samples from rodents in Fagelka. Out of the 17 positive
rodents, 47.1 % belonged to A. flavicollis, 47.1 % to
M. arvalis and 5.8 % to M. glareolus. By comparing total
B. microti infection prevalence between mice (the group
comprises A. flavicollis, A. sylvaticus and M. minutus),
M. glareolus, and Microtus spp. (the group comprises
M. arvalis and M. subterraneus), a significant difference
was determined (P<0.001), with higher prevalence in
Microtus spp. Overall, the parasite was found in 2.2 % (CI:
0.8-3.9 %) of mice, in 0.4 % (CI: 0.0-1.3 %) of M. glareolus
and in 40.0 % (CL 20.0-60.0 %) of Microtus spp. In
addition, out of the rodents from Fagelka (not included in
the statistical analyses) that had negative spleen, blood
and lungs, two M. glareolus females had positive skin.

The prevalence of infection with B. microti was signifi-
cantly higher in male rodents (4.4 % vs 1.1 %; P =0.014;
OR=4.3; CI: 1.2-15.1), but no significant differences
were found between genders of individual species except
for Microtus spp. in Fagelka (Table 2).
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Significant difference in the overall prevalence of infec-
tion with B. microti was determined between years: 3.7
and 25.0 % of rodents were found to be positive in 2012
and 2013, respectively, but no rodent was found to be
infected in 2014 (P =0.004) (Table 3). Considering habi-
tat, the difference between years was statistically signifi-
cant in Fagelka, but not in Bratislava (Table 3).

Simultaneous effects of habitat, rodent species, and
gender on the probability of infection with B. microti,
analysed by logistic regression, resulted in a significant
effect of species (mice: parameter estimate B=-4.142,
exp(B) =0.016, P<0.001; Myodes: parameter estimate
B =-5.755, exp(B) =0.003, P<0.001) and gender (males:
parameter estimate B = 2.345, exp(B) = 10.431, P =0.004).
The variable removed by backward method was habitat
(see Additional file 1: Table S5). The probability of infec-
tion was the highest for Microtus spp., and the risk of in-
fection of rodent males was ten times higher than that of
females.

Babesia spp. in rodent-attached ticks

In total, 2003 engorged ixodid ticks were collected from ro-
dents: 1089 and 840 I ricinus, 30 and 39 H. concinna from
Bratislava and Fuagelka, respectively, 4 I trianguliceps from
Bratislava and 1 D. reticulatus from Fugelka. Altogether,
1140 (695 and 445 from Bratislava and Fuagelka, respect-
ively) rodent-attached ticks were screened: 1075 I ricinus
(1044 larvae, 28 nymphs, 3 females), 60 H. concinna (56
larvae, 4 females), 4 I trianguliceps (2 larvae, 2 nymphs),
and 1 D. reticulatus larva. Piroplasmids were detected in L
ricinus (immature stages and 1 female) and H. concinna
(larvae and females), but not in L trianguliceps and D.
reticulatus (Table 4).

Thirty-eight out of 1140 (3.3 %; CI: 2.3-4.5 %) rodent-
attached ticks were positive for Babesia spp., whereby 30
of them were collected from B. microti-positive rodents
and the remaining from Babesia-negative specimens
(Table 4). Individual B. microti-positive rodents carried 1
to 14 Babesia-positive ticks, whereby 9 of 300 (3.0 %; CIL:

Table 2 Prevalence of Babesia microti in rodents per species, gender and site

Males Females Fisher's Total
Site Species % (pos/ex) 95 % Cl % (pos/ex) 95 % ClI exact test P % (pos/ex) 95 % Cl
Bratislava Mice® 4.1 (4/97) 1.0-82 0 (0/84) - 0.125 2.2 (4/181) 06-5.0
M. glareolus 0 (0/65) - 0 (0/54) - - 0 (0/119) -
Total 2.5 (4/162) 0.6-4.9 0(0/138) - 0.127 1.3 (4/300) 03-27
Fugelka Mice® 3.1 (3/98) 0-7.1 1.3 (1/80) 0-38 0.629 2.2 (4/178) 0.6-4.5
M. glareolus 1.9 (1/53) 0-5.7 0 (0/55) - 0491 0.9 (1/108) 0-3.7
Microtus spp.” 75.0 (6/8) 37.5-100.0 16.7 (2/12) 0-41.7 0.019 40.0 (8/20) 20.0-60.0
Total 6.3 (10/159) 2.5-10.1 2.0 (3/147) 0-4.8 0.089 4.2 (13/306) 20-6.5
Total 44 (14/321) 22-65 1.1 (3/285) 0-25 0.014 2.8 (17/606) 1.7-43

(pos/ex), number of positive/number of examined; 95 % Cl, confidence interval; *Mice comprise Apodemus flavicollis, Apodemus sylvaticus (1 female from Bratislava,
1 male from Fugelka) and one Micromys minutus male from Fugelka; PMicrotus spp. comprises of Microtus arvalis and one Microtus subterraneus female
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Table 3 Prevalence of Babesia microti in rodents per site in 2012-2014

2012 2013 2014 Fisher's exact test P
Site % (pos/ex) 95 % Cl % (pos/ex) 95 % Cl % (pos/ex) 95 % Cl
Bratislava 1.1 (2/185) 0-2.7 33.3 (2/6) 0-66.7 0 (0/109) - 0.532
Fugelka 5.9 (13/222) 2.7-95 0 (0/2) - 0 (0/82) - 0.023
Total 3.7 (15/407) 1.7-5.7 25.0 (2/8) 0-62.5 0 (0/191) - 0.004

(pos/ex), number of positive/number of examined; 95 % Cl, confidence interval; “only years 2012 and 2014 were compared

1.3-5.3 %) and 6 of 306 (2.0 %; CI: 0.7-3.6 %) rodents
carried Babesia-positive ticks in Bratislava and Fugelka,
respectively. The prevalence of infection in rodent-
attached ticks did not differ significantly between the
two sites (P =0.445; OR =1.5; CL: 0.5-4.4). In addition
to the most prevalent B. microti, a few rodent-attached L
ricinus ticks carried B. venatorum and B. capreoli/B.
divergens. In rodent-attached H. concinna, B. microti,
Babesia sp. 1 (Eurasia), Babesia sp. 2 (Eurasia) and Thei-
leria sp. were detected (Table 4).

Co-infections in ticks and rodents

With regard to co-infections and prevalence patterns, we
analysed results for Babesia spp. and data from previous
studies on prevalences of A. phagocytophilum and CNM in
ticks and rodents [26, 32]. Out of the 3874 questing I rici-
nus screened for the presence of the three microorganisms,
co-infection of Babesia spp. and A. phagocytophilum was
detected in two ticks (0.05 %; one male infected with B.
venatorum and one nymph infected with B. canis from
Bratislava). Co-infection of Babesia spp. and CNM was

Table 4 Dissemination of Babesia microti in infected rodents and infestation of rodents with Babesia (Theileria)-positive ticks

Rodents Engorged I. ricinus, H. concinna, I trianguliceps
Site Species Gender Spleen Blood Lungs Skin ;z;;/::/to tal pNg/Sr/rgl/ltso al gc?sl;}:t; Jtotal Piroplasmid species
Bratislava 4. flavicollis & 0/4/4, *1/1/1 0 0 Babesia sp. 2 (Eurasia)

A. flavicollis & 0/2/2 0/1/1 0

A. flavicollis & 4/7/7 0 0 Babesia sp.

A. flavicollis @ 0/9/9 0 1/1/1 Babesia sp.

A. flavicollis & 0/5/64 1/10/16 0 B. venatorum

A. flavicollis & 5/5/35 8/10/16 *1/1/1 B. microti

A. flavicollis & 1/2/2 0 0 B. capreoli/ B. divergens

A. flavicollis 9 0/1/1, *1/1/1 0 0 Babesia sp. 1 (Eurasia)

M. glareolus & 1/1/1 0 0 B. venatorum

M. glareolus 0/5/9, *2/2/2 **0/1/1 0 Babesia sp. 1 (Eurasia)
Fugelka A. flavicollis & 0/1/1, *1/1/1 0 0 B. microti

A. flavicollis & 0/2/4, *1/1/1 0 0 Babesia sp. 1 (Eurasia)

A. flavicollis & 0 0 0

A. flavicollis & NA 0/2/2 0 0

A. flavicollis @ 4/7/7, *0/1/1 0 0 B. microti

A. flavicollis & 0 0 0

M. arvalis 3 2/2/2 1/1/1 0 B. microti

M. arvalis Q 0 0 0

M. arvalis ) NA 0/7/7, *0/7/7 0 0

M. arvalis 3 0 0 *1/1/1 B. microti

M. arvalis a3 *1/1/1 0 1711 B. microti

M. arvalis 3 NA 0/1/1 0 *1/2/2 Theileria sp.

M. arvalis Q NA 0 0 0

M. arvalis 3 0 0 0

M. glareolus & NA 0 0 0

Grey, Babesia-positive; white, Babesia-negative; pos/ex/total, number of positive (positive by amplification of the 185 rRNA gene fragment/number
of examined ticks/number of total ticks infesting a rodent); NA, not available. The table displays all B. microti-positive rodents (infested and
uninfested with ticks) and out of the Babesia-negative those specimens which were infested with Babesia (Theileria)-positive ticks. * H. concinna,

** |. trianguliceps
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found in three ticks (0.08 %; nymphs from Fugelka, two in-
fected with B. microti and one infected with B. venatorum).
Triple infections were not detected. Comparison of the pro-
portions of ticks infected with the microorganisms revealed
significant differences between the two habitats (P < 0.001).
Ticks infected with Babesia spp. (62.3 %) and CNM
(65.5 %) prevailed in the natural habitat, and ticks infected
with A. phagocytophilum (74.7 %) prevailed in the urban/
suburban habitat (see Additional file 1: Table S6).
Altogether, five out of the 606 examined rodents (0.83 %;
one A. flavicollis male from Bratislava, one A. flavicollis fe-
male, two M. arvalis females and one M. arvalis male from
Fugelka) were co-infected with B. microti and CNM. The
proportions of rodents infected with the two microor-
ganisms did not differ significantly between the two
habitats (P =1.000). Rodents infected with B. microti
(75.0 %; 9 out of 12) and CNM (75.0 %; 27 out of 36)
prevailed in the natural habitat. No co-infection of B.
microti and A. phagocytophilum was observed.
Considering rodent-attached ticks, only co-infection of
B. microti and A. phagocytophilum was detected in three
L ricinus nymphs feeding on a B. microti-positive A. fla-
vicollis male from Bratislava. The remaining infected
engorged ticks carried only one microorganism.

Babesia spp. in birds

In total, 58 blood samples from birds representing 11
species were screened for Babesia spp. (Appendix 1).
None of the birds was found to be infected.

Phylogenetic analysis

All piroplasmid-positive PCR products from questing
ticks, ticks attached to rodents, and rodents originating
from both study sites were sequenced and are listed in
Additional file 1: Table S7. The phylogenetic analysis
shows that the majority of isolates segregate with a
highly significant bootstrap into clades of Theileria sp.,
B. microti, B. venatorum, B. canis, B. odocoilei, and a B.
capreoli/B. divergens clade, respectively. However, some
isolates segregate into two novel clades strongly suggest-
ing that they represent previously unrecognized species
designated in this study as Babesia sp. 1 (Eurasia) and Babe-
sia sp. 2 (Eurasia), respectively (Fig. 2). In the phylogenetic
analysis, all identified B. microti isolate sequences clustered
with strong support into a single clade with the Jena/
Germany genotype (Fig. 2). Sequences of 17 isolates
(KU362887-KU362896 and KU550676-KU550682; from
questing and rodent-attached I ricinus, rodent-attached
H. concinna and from rodents) corresponding to 114 ana-
lysed 18S rRNA gene sequences show a 100 % sequence
identity with the pathogenic B. microti Jena/Germany
genotype (EF413181). Other isolates displaying a 100 % se-
quence identity not included in the tree analysis are a B.
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microti isolate from a rodent (KJ649297) and from a
questing 1. ricinus from Slovakia (KJ649287).

18S rRNA gene sequences of eight isolates (KU362897
-KU362900 and KU550683-KU550686; from questing and
rodent-attached I ricinus) corresponding to 28 analysed
nucleotid sequences segregated with a significant boot-
strap into a single clade with the B. venatorum genotype
(FJ215873) known to cause zoonotic babesiosis in Europe.
Other deposited sequences found to be 100 % identical to
those of this study were a B. venatorum isolate from I rici-
nus from Slovakia (KJ152840) and the Czech Republic
(KJ465867), but also to a B. venatorum isolate identified in
Ixodes persulcatus from Mongolia (KR493908).

18S rRNA gene sequences from isolates from five quest-
ing L ricinus (KU362904 and KU362905) segregated with
highly significant support into a clade with B. canis isolate
AY072926 identified in a dog in Croatia. Isolate sequences
identified in the GenBank database that were found to
be 100 % identical represent B. canis from a naturally
infected domestic dog from Poland (KT844907) and
an isolate identified from D. reticulatus from Russia
(AY649326).

18S rRNA gene sequences isolated from questing L rici-
nus (KU362901 and KU362902) and a sequence from a
rodent-attached I ricinus (KU362903) clustered in a
strongly supported clade with sequences of B. capreoli and
B. divergens. ldentified sequences were also found to be
100 % identical with sequences deposited in the GenBank
database from B. capreoli from I ricinus from the Czech Re-
public (KJ465869) and with a strain isolated from roe deer
from Germany (JX627353), and 99 % identical with B. diver-
gens isolated from a roe deer from Slovenia (AY572456).

Four isolates from questing and rodent-attached H. con-
cinna were placed into a strongly supported single clade
with isolate Babesia sp. Kh-Hc232 from H. concinna
(KJ486560) and Babesia sp. Irk-Ip525 from L persulcatus
(KJ486566). This clade represents a novel species of Babesia
here designated as Babesia sp. 1 (Eurasia). The 18S rRNA
gene sequence of the isolate KU550694 differs from isolate
sequences KU550690-KU550693 by a single base pair.

Sequences isolated from questing and rodent-attached
H. concinna ticks (KU550688 and KU550689) appeared in
a strongly supported clade with the sequence of Babesia
sp. Kh-Hc222 strain from H. concinna identified in Russia
(KJ486568). The sequences in this clade have been desig-
nated as Babesia sp. 2 (Eurasia) as they most probably
represent an additional novel species.

Other 18S rRNA gene sequences isolated in this
work from I ricinus (KU550687) clustered in a strongly
supported clade with B. odocoilei isolates U16369,
KC460321, AY294206, and AY144689 that are 99 % identi-
cal with the former. However, the sequence KU550687 is
also placed with strong support as sister to this clade and
may represent a geographical variant of this species. Other
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Babesia sp KUS50692 isolate L433HB rodent-attached Haemaphysalis concinna lana Bratislava Slovakia (1)
Babesia sp KUS50693 isolate L244HF rodent-attached Haemaphysalis concinna lanva Fugelka Slovakia (1)
Babesia sp KUS50691 isolate F117B questing Haemaphysalis concinna female Bratislava Slovakia (1)

Babesia sp KUS50690 isolate N141B questing Haemaphysalis concinna nymph Bratislava Slovakia (4)
Babesia sp. 1 (Eurasia)

Babesia sp KJ486566 Irk-Ip525

Babesia sp KJ486562 Irk-Ip279

Babesia sp KJ486560 Kh-Hc232

Babesia sp KU550694 isolate L355HB rodent-attached Haemaphysalis concinna lana Bratislava Slovakia (2)

Babesia cf crassa AY260177 isolate GU184 Turkey

Babesia crassa AY260176 sheep Iran

Babesia major EU622907 isolate France 1

Babesia major GU194290 clone2M4 France

Babesia major AY603399 Yili China

Babesia sp KJ486568 Kh-Ho222

Babesia sp KUS50688 isolate MS8F questing Haemaphysalis concinna male Fugelka Slovakia (1) Babesia sp. 2 (Eurasia)

Babesia sp KU550689 isolate L189HB rodent-attached Haemaphysalis concinna lanva Bratislava Slovakia (1)

Babesia bovs HQ264112 isolate USDA IA clone 6

Babesia ovis AY533146
Babesia motasi AY260179 sheep Ameland

99 | Babesia motasi AY533147

Babesia bigemina FJ426361 isolate BRCO2

Babesia ovata AY603400 isolate Zhangjiachuan

Babesia occultans HQ331479 isolate 68

Babesia orientalis AY596279

Babesia rossi DQ111760 isolate Dog44 Sudan

Babesia caballi AY534883 strain EB1

Babesia sp KU362904 isolate N30B questing Ixodes ricinus nymph Bratislava (3)

Babesia sp KU362905 isolate M398B questing Ixodes ricinus male Bratislava (2)  |Babesia canis

Babesia canis AY072926 dog Croatia

Babesia vogeli HQ148664 strain TWN2 canine Taiwan

Babesia sp KU362897 isolate N1768 questing Ixodes ricinus nymph Bratislava Slovakia (7)

Babesia sp KU362898 isolate F1F questing Ixodes ricinus female Fugelka Slovakia (1)

Babesia sp KU362899 isolate L8HB rodent-attached Ixodes ricinus lanva Bratislava Slovakia (1)

Babesia sp KU362900 isolate N253HB rodent-attached Ixodes ricinus nymph Bratislava Slovakia (1)

Babesia sp KU550683 isolate N497F questing Ixodes ricinus nymph Fugelka Slovakia (9) Babesia venatorum
Babesia sp KU550684 isolate F56B questing Ixodes ricinus female Bratislava Slovakia (1)

Babesia sp KU550685 isolate M54B questing Ixodes ricinus male Bratislava Slovakia (6)

Babesia sp KU550686 isolate MB9F questing Ixodes ricinus male Fugelka Slovakia (2)
Babesia venatorum FJ215873 human

Babesia odocoilei KC460321 isolate 138BZAA032 elk canada

g7 | Babesia odocoilei U16369

Babesia odocoilei AY294206 isolate Wisconsin 1 reindeer USA Babesia odocolei
Babesia odocoilei AY 144689 deer USA

Babesia sp KUS50687 isolate N149B questing Ixodes ricinus nymph Bratislava Slovakia (1)

Babesia gibsoni EU084677 isolate WM-1

Babesia divergens 248751 North Ireland

Babesia divergens AY572456 roe deer Slovenia

Babesia divergens U16370 (bovine Texas)

Babesia capreoli AY726009 isolate BAB1220 France

Babesia capreoli FJ944827 isolate 2770 clone F6

Babesia capreoli FJ844828 isolate 2801 France Babesia capreol/Babesia divergens
Babesia capreol FJ944828 roe deer France

Babesia sp KU362901 isolate NA1F questing Ixodes ricinus nymph Fugelka Slovakia (1)

Babesia sp KU362902 isolate M340B questing Ixodes ricinus male Bratislava Slovakia (1)

Babesia sp KU362903 isolate L302HB rodent-attached Ixodes ricinus lana Bratislava Slovakia (1)
Babesia divergens AY046576 clone BAB105

Babesia sp KU550682 isolate AF63F rodent Apodemus flavicollis Fugelka Slovakia (4)

Babesia sp KU550681 isolate F1HF rodent-attached Haemaphysalis concinna female Fugelka Slovakia (1)
Babesia sp KU550680 isolate N1HF rodent-attached Ixodes ricinus nymph Fugelka Slovakia (1)

Babesia sp KU550679 isolate L27HF rodent-attached Ixodes ricinus lana Fugelka Slovakia (6)

Babesia sp KU550678 isolate MBF questing Ixodes ricinus male Fugelka Slovakia (1)

Babesia sp KU550677 isolate M518 questing Ixodes ricinus male Bratislava Slovakia (1)

Babesia sp KUS50676 isolate N178F questing Ixodes ricinus nymph Fugelka Slovakia (27)

Babesia sp KU362896 isolate MG15F rodent Myodes glareolus Fugelka Slovakia (1)

Babesia sp KU362895 isolate MA20F rodent Microtus analis Fugelka Slovakia (7)

%8 Babesia sp KU362894 isolate AF122B rodent Apodemus flavicollis Bratislava Slovakia (4) Babesia microti (infecting rodents and humans)

Babesia sp KU362893 isolate F262HB rodent-attached Haemaphysalis concinna female Bratislava Slovakia (1)
Babesia sp KU362892 isolate L126HF rodent-attached Haemaphysalis concinna larva Fugelka Bratislava Slovakia (2)
Babesia sp KU362891 isolate F2HF rodent-attached Ixodes ricinus female Fugelka Slovakia (1)

Babesia sp KU362890 isolate N263HB rodent-attached Ixodes ricinus nymph Bratislava Slovakia (8)

Babesia sp KU362889 isolate L275HB rodent-attached Ixodes ricinus lanva Bratislava Slovakia (5)

Babesia sp KU362888 isolate FA3F questing Ixodes ricinus female Fugelka Slovakia (4)

Babesia sp KU362887 isolate N233B questing Ixodes ricinus nymph Bratislava Slovakia (11)

Babesia microti U09833 mouse South Africa

Babesia microti EF413181 isolate Jena d
Babesia wipes AF188001 Spain

99 L Babesia sp FJ654660 isolate HN3 racoon Korea
Babesia rodhaini M87565

Babesia leo AF244911 lion South Africa

Babesia felis AF244912 cat South Africa

:|Babes\e Vulpes and Babesia microti complex (infecting carnivors)

98 — Babesia conradae AF158702 canine California
Babesia duncani HQ285838 isolate BAB2

Theileria uilenbergi AY262116

Theileria sergenti GU143087 isolate 056

Theileria sinensis HM538203 clone 56 China

Theileria buffeli DQ104611

Theileria luwenshuni AY262119

Theileria separata AY260175

Theileria ceni KP407020 isolate 13WYs1a China Theileria sp.

Theileria cenii AY735125 isolate WTD 183 clone 3 Oklahoma USA
Theileria ovis AY260171

Theileria capreoli JX134576 isolate JH65

Theileria capreoli AY726011 isolate BAB1158 Galicia Spain

Theileria sp KUS50695 isolate N419B questing Haemaphysalis concinna nymph Bratislava Slovakia (2)

Theileria sp KU550696 isolate F4HF rodent-attached Haemaphysalis concinna female Fugelka Slovakia (1)

Cardiosporidium cionae EU052685

Fig. 2 (See legend on next page.)
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(See figure on previous page.)

Fig. 2 Phylogenetic tree of hypervariable 18S rRNA gene sequences of Babesia and Theileria parasites using maximum likelihood. The sequence of
each isolate is labelled with its gene accession number, isolate designation, host (questing tick, rodent-attached tick, and rodent), and geographic origin.
The bootstrap values based on 1,000 replicates are displayed next to the branches. The tree is rooted using Cardiosporidium cionae as outgroup [1].
Wherever applicable, the number of identical sequences of a given isolate type is given. All clades marked by brackets display a highly significant bootstrap
value (= 85). The evolutionary distance is shown in the units of the number of base substitutions per site

sequences identified in GenBank that are 99 % identical
with KU550687 are, e.g. the Norwegian strain Babesia sp.
00-2012 (JX083978) from I ricinus, the Austrian strain
Babesia cf. odocoilei (JN543180) from red deer, and the
German strain B. odocoilei (JX679176) from L canisuga.

18S rRNA gene sequences isolated from questing H. con-
cinna (KU550695 and KU550696) belong to the genus
Theileria as evidenced by their placement into this strongly
supported clade. Placement of species of Theileria within
this clade displays non-significant bootstraps and thus the
species identity of KU550695 and KU550696 cannot be fi-
nally verified. However, these are most closely related to
Theileria capreoli isolates JX134576 and AY26011 display-
ing a 99 % identity. Isolate sequence KU550695 is 100 %
identical to GenBank deposited sequences of a Theileria
sp. isolate from fox from Croatia (HM212629) and to a
strain from roe deer from Spain (DQ866842) while se-
quence (KU550696) is 100 % identical with a Theileria sp.
isolate from red deer from Poland (DQ520836). The 18S
rRNA gene sequence of isolate KU550695 differs from iso-
late sequence KU550696 by a single base pair.

Other Apicomplexa detected in ticks and rodents
Isolates from four questing I ricinus showed identity
with Hepatozoon canis DNA. Hepatozoon spp. DNA was
also identified in 26 M. glareolus and one A. flavicollis
(manuscript in preparation).

18S rRNA gene sequences from six isolates from rodent
skin biopsies showed identity with corresponding se-
quences of Sarcocystis spp. Four identical sequences from
M. arvalis (KU550697) revealed a 96 % identity to the 18S
rRNA gene sequence of Sarcocystis sp. from the large orien-
tal voles (Eothenomys miletus) from China (KF309698 and
KF309699). One sequence from M. glareolus (KU550699)
showed a 97 % identity to the same strains (KF309698 and
KF309699). One sequence obtained from M. glareolus
(KU550698) showed a 97 % identity to the sequence of Sar-
cocystis rodentifelis from a rodent in the Czech Republic
(AY015111), Sarcocystis rileyi from a mallard duck (Anas
platyrhynchos) from Lithuania (HM185742), Sarcocystis
speeri from an opossum (Didelphis virginiana) from
Argentina (KT207459), and Sarcocystis sp. from a brown
bear (Ursus arctos) from USA (EF564590).

Discussion
There are only a few studies of piroplasmid parasites as-
sociated with ticks and wildlife from Slovakia. This calls

for further investigations on the distribution and diver-
sity of piroplasmid species and their relevance to public
and animal health in the region. In the present study,
questing and rodent-attached ticks, rodents and birds
were screened using molecular methods for the presence
of Babesia spp. to investigate the vector — host — patho-
gen associations in the urban/suburban and natural
habitats of south-western Slovakia. The study area is
characteristic of a sympatric occurrence of I ricinus and
H. concinna ticks and a great diversity of wildlife [11].

We found 1.5 % of questing L ricinus and 6.6 % of H.
concinna ticks to be infected with Babesia parasites. In
previous studies from Slovakia, the prevalence of infec-
tion with Babesia spp. in questing L ricinus was similar
and varied from 0.4 to 2.7 % [12, 13, 19] while no re-
ports exist on the presence of piroplasmids in questing
H. concinna. Generally, Babesia spp. prevalences from
0.4 to 2.7 % have been reported for questing I ricinus in
temperate latitudes of Europe [28, 35-43]. Yet at
particular sites 4.6 to 9.6 % of questing I ricinus were
found to be infected with Babesia spp. [17, 44]. Relation-
ships between the prevalence of infection with Babesia
spp. of ticks and habitat type could be determined at
several sites. Similar to our findings, a significantly higher
proportion of Babesia-infected I ricinus was found in a
natural habitat than an urban area in Germany [40], but
no Babesia spp. were found in L ricinus from an urban
habitat in the Czech Republic [42]. In contrast to
L ricinus, the overall prevalence of Babesia-infected
H. concinna from our study was higher in the urban/
suburban habitat than in the natural habitat. We assume
that the observed variations in the overall prevalence of
infection with Babesia spp. between sites and tick species
are associated with the vector competence of ticks for par-
ticular species of Babesia and the presence and abundance
of competent reservoir hosts.

Babesia microti and B. venatorum as emerging zoo-
notic species and in some studies also B. divergens, have
frequently been detected in questing I ricinus in Europe
[12, 17, 28, 38-40, 42, 43]. In previous reports from
Slovakia, B. microti was the most common species de-
tected in field-collected I ricinus ticks [12, 19]. Our results
confirmed these observations. The parasite significantly
prevailed in ticks from a natural habitat, as has been also
reported in a study from Germany [40].

Phylogenetic analysis of partial 18S rRNA gene se-
quences from our study revealed their identity to those



Hamsikova et al. Parasites & Vectors (2016) 9:292

of the zoonotic B. microti Jena/Germany genotype. Zoo-
notic B. microti genotypes have been found to be associ-
ated with microtine rodents and shrews [45, 46]. In our
study, B. microti was the only species detected in ro-
dents and the same B. microti strain was also identified
in questing and rodent-attached ticks. The overall preva-
lence of infection in rodents as reported by us is in ac-
cordance with previous findings from eastern Slovakia
[12]. Prevalence of infection varying from 1.4 up to
27.2 % was reported for rodents from other European
countries [17, 45, 47-51].

Babesia microti-like piroplasmids were previously de-
tected in small mammals from central Europe based on
morphological studies of blood and tissue preparations. For
example, a 0.4 % prevalence of infection was determined in
bank voles (M. glareolus) in former Czechoslovakia [52].
Relatively low proportions of bank voles were found in-
fected by applying molecular methods in the present
study (0.4 %) as well as in eastern Slovakia (1.1 %) [12],
although detection rates of blood parasites would be
expected to be higher when using molecular methods
rather than microscopic examinations [50]. In other
central European countries, prevalence of infection
with B. microti varied in bank voles from 0.0 to 4.9 %
[17, 50, 51, 53], whereas 6.1 to 15.9 % of bank voles
were found to be infected in Slovenia and Croatia [45, 49].
In the study at hand, the single B. microti-infected bank
vole was positive for blood, but not infested by ticks. Para-
site DNA was also detected in the skin of two other bank
voles, suggesting local infections.

Previous studies on the yellow-necked mice (A. flavicol-
lis) in central Europe reported a prevalence of B. microti
infection ranging from 0 to 1.6 % [17, 47, 51, 53] compar-
able to findings from eastern Slovakia [12] and also to our
results. In contrast, higher percentages (11.8 to 16.2 %) of
B. microti-infected mice were found in Slovenia and
Croatia [45, 49].

Voles of the genus Microtus are considered to be the
main reservoirs of B. microti in natural foci of Europe.
Prevalences of infection from 8.3 to 14.3 % were reported
for the common vole (M. arvalis) from different European
sites [47, 51, 53]. A high proportion of infected common
voles (40.0 %) was also confirmed in our study whereas
none or only 0.7 % of the common voles were found to be
infected in other sites of Slovakia [12, 52].

The presence of B. venatorum, a species recognized
as a human pathogen [54], was confirmed in one third
of Babesia-positive questing I ricinus from our study.
The occurrence of this parasite in questing ticks has
been reported from a few sites of Slovakia only recently
[13, 55, 56]. In contrast to B. microti infections, the
proportion of ticks infected with B. venatorum did not
differ between the two explored habitats. The roe deer,
suggested to be the main reservoir host of this parasite
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species, [57] is present in both studied habitats. As
transovarial transmission of B. vematorum has been
demonstrated [58], it is probably also maintained in
natural foci of Slovakia through its vector tick.

Babesia capreoli/B. divergens accounted for 2.6 % of
the Babesia-positive I ricinus ticks. The B. divergens-like
hypervariable 18S rRNA gene region analyzed in our
study showed identity with those of B. capreoli and B.
divergens of which B. divergens has been demonstrated
to be a zoonotic species [59]. Although cattle are consid-
ered the principal host of B. divergens, infections were
also detected in deer assumed to function as reservoir
host [60-62]. The presence of B. divergens in L ricinus
was noted once in Slovakia using the Reverse Line Blot
Hybridization method [19]. In contrast, B. capreoli, a para-
site of roe deer which differs marginally in the 18S rRNA
gene sequence from B. divergens, is unable to infect
humans [63]. To our knowledge, there are no published
data on the presence of this species in Slovakia.

Babesia odocoilei, known to parasitize American white-
tailed deer (Odocoileus virginianus) and to cause babesiosis
in cervid and occasionally in bovid species in Europe
[62, 64—-66], was found in a questing I. ricinus nymph
in our study. Related genotypes, e.g. Babesia cf. odo-
coilei, have been found to infect I ricinus in Europe
[39, 44], but their zoonotic potential is unknown.

The presence of B. canis, the most frequent causative
agent of canine babesiosis in central Europe, has previ-
ously been shown in D. reticulatus ticks of Slovakia
[20] and also in blood samples from naturally infected
dogs [21]. Importantly, we report here for the first time
B. canis infection of I ricinus from Slovakia. Thus, we
confirm the previous conjecture of the infection of I
ricinus with B. canis as noted in a study from Poland
[67, 68]. However, our finding does not allow us to
draw conclusions on the competence of I ricinus as a
vector of this parasite. We assume the B. canis DNA
identified in I ricinus ticks from the urban habitat
may have originated from blood meals taken from in-
fected dogs.

In the present study, B. microti-positive engorged I rici-
nus ticks were sampled from infected rodents, but the
parasite was also detected in a few larvae that fed on unin-
fected rodent specimens. Interestingly, we also found a
few semi-engorged B. microti-positive . ricinus females at-
tached to rodents, however, it is uncertain if they can
complete feeding on these hosts, as they generally prefer
medium-sized to large mammalian hosts [69]. Babesia
microti-positive I ricinus larvae and nymphs were also
found on rodents captured in eastern Slovakia [12] and
Switzerland, where the pathogen was detected in xenodi-
agnostic ticks from infected bank voles [70]. In addition,
we detected B. microti in a few H. concinna ticks feeding
on infected rodents and in one larva collected from an
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uninfected yellow-necked mouse. There are no GenBank
data on B. microti isolates from H. concinna and to the
best of our knowledge, infection of this tick species by the
parasite has not been reported. Babesia microti is thought
to be incompetent for transovarial transmission in ticks
[16, 71] and the positivity of tick larvae might have re-
sulted while feeding on infected hosts or co-feeding with
infected ticks. Accordingly, we assume that the positive H.
concinna larva collected from an uninfected yellow-
necked mouse acquired the infection via feeding on an in-
fected host and, after interruption, subsequently attached
to an uninfected rodent. Our results particularly underline
the potential reservoir role of A. flavicollis and M. arvalis
for B. microti at our study sites. In addition to B. microti,
rodent-attached L ricinus infected with B. venatorum and
B. capreoli/B. divergens were found. As vertical transmis-
sion has been described for the latter two species of Babe-
sia [7], we assume that these tick specimens acquired the
infection from an infected female.

A number of Babesia spp. genetic variants that are
closely related to small ruminant piroplasmids, Babesia
crassa, Babesia cf. crassa, Babesia motasi, and to the cattle-
infecting Babesia major have been found in H. concinna in
Europe and Asia [1]. Babesia motasi is known as an agent
of mild sheep and goat babesioses in various countries of
Europe, Africa and Asia, while B. crassa and B. crassa-like
piroplasmids have been detected in sheep blood in Iran and
Turkey, and B. major in cattle from Europe and Asia [1].
In the inferred phylogenetic tree, Babesia spp. sequence
variants identified in H. concinna from Slovakia clustered in
two strongly supported monophyletic clades suggesting that
each represents a novel species designated Babesia sp. 1
(Eurasia) and Babesia sp. 2 (Eurasia), respectively. Our
results corroborate a wide distribution of these two novel
piroplasmid species in H. concinna from Europe and
Asia supporting recent findings [23, 72]. Their presence
across a large area may be related to the broad
geographic distribution of H. concinna in Eurasia and
connection of habitats via longitudinal migration of
birds which are known to be preferred hosts of this tick
species [14, 15].

Piroplasmids of the genus Theileria found in H. con-
cinna in the present study are known to infect a broad
spectrum of free-ranging ungulates in neighbouring
countries of Slovakia as well as in other regions of Eur-
ope [22, 23, 73]. The same or closely related strains of
Theileria sp. were found in questing H. concinna from
Austria [22], Hungary [23] and in rodent-attached and
questing H. concinna from our study. The presence of
Theileria sp. in H. concinna from Slovakia indicates that
the tick species may be a suitable vector of species of
Theileria in this region.

Detection of Hepatozoon spp. and Sarcocystis spp.
DNA in rodents support former findings demonstrating
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that rodents are hosts of a large spectrum of apicom-
plexan parasites [17]. However, further molecular ana-
lyses of the isolates obtained during our study are
necessary to reveal their identity with species of Hepa-
tozoon and Sarcocystis.

Birds contribute to the geographic distribution of
various tick-borne pathogens and serve as their hosts.
Although there are no confirmed infections with Babe-
sia spp. in birds from Europe, B. microti, B. venatorum,
and B. divergens have been found in ticks infesting
birds [71, 74-76]. The occurrence of Babesia spp. in
ticks (especially in larvae) from birds suggested that
birds may be able to infect ticks, at least in the case of
B. microti, a species considered not to be transmitted
transovarially. We did not find any Babesia-positive
blood sample from birds and thus our results support
previous findings that Babesia spp. associated with
mammals do not infect birds [18]. Although studies on
this topic are lacking, birds may act as carriers for Ba-
besia-infected ticks contributing to the dispersal of the
parasites in Europe [75, 76].

Co-infections with other microorganisms were de-
tected in less than 0.1 % of the examined Babesia-in-
fected I ricinus ticks. This result agrees with findings
reported from other European countries on co-infection
rates depending on the habitat and varying from 0.0 to
1.8 % for Babesia spp. and A. phagocytophilum [17, 35,
68, 77] and from 0.02 to 1.8 % for Babesia spp. and
CNM [78, 79]. The low co-infection rate (0.05 %) for Ba-
besia spp. (with B. microti prevailing) and A. phagocyto-
philum in ticks reported in this study is not surprising
as the two microorganisms seem not to share the same
reservoir hosts in the investigated area [26]. In contrast,
B. microti and CNM have been found to be associated
with rodents [16, 32, 45, 46, 78, 80]. Accordingly, we
would have expected to observe higher co-infection
rates than determined in ticks (0.08 %) and rodents
(0.83 %) in the context of this study. Generally, the
microbiome of ticks was found to be very complex and
rodents can carry a wide variety of microorganisms
[81]. Information about the relationships (antagonism,
mutualism) between particular microorganisms within
the tick and the body of the vertebrate host as well as
between microorganisms, ticks and the immune system
of the reservoir host are scarce. We assume that the ob-
served co-infection rates are the result of the complex-
ity of the microorganisms — vector — host associations.

Conclusions

This study employed molecular tools to detect the pres-
ence of Babesia spp. in ticks, rodents, and birds from
two contrasting habitat types in the Small Carpathian
Mountains in south-western Slovakia. Different Babesia
spp. were found to be distributed in the tick populations
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of urban/suburban and natural habitats of Slovakia and
rodents were found to play an important role as reser-
voirs of B. microti. Babesia microti and B. venatorum ge-
notypes, identical with respective known zoonotic strains
from Europe, dominated in questing and rodent-attached 1
ricinus. In addition, B. capreoli/B. divergens and B. odocoilei
were detected in questing L ricinus. The occurrence of
these Babesia spp. suggests that ungulates present in the
study area may act as their reservoir hosts. Ixodes ricinus
may occasionally acquire infection with B. canis, probably
by feeding on infected dogs. Importantly, we corroborate
previous reports of the existence of two novel piroplasmid
species referred to as Babesia sp. 1 (Eurasia) and Babe-
sia sp. 2 (Eurasia) which were both identified in quest-
ing and rodent-attached H. concinna ticks. Our results
demonstrate a high diversity of Babesia spp. circulating
in L ricinus and H. concinna ticks. Important findings
of this study are (i) the first detection of B. canis and B.
odocoilei in questing L. ricinus, (ii) the detection of two
novel species of Babesia, and (iii) the detection of a
Theileria sp. in H. concinna in Slovakia. We demon-
strate that A. flavicollis and M. arvalis may play a crit-
ical role in B. microti transmission supporting the
hypothesis that the most competent reservoirs are voles
of the genus Microtus, particularly M. arvalis. In con-
trast, M. glareolus seems of secondary importance for
the circulation of B. microti. Although all studied birds
were found to be Babesia-negative, they may represent
potential hosts of infected I ricinus and H. concinna
ticks and thus contribute to the transmission and geo-
graphical spread of Babesia spp. Further research is
needed to explore the vertebrate hosts of the yet unde-
scribed novel species of Babesia and Theileria infecting
H. concinna, and to determine their pathogenic poten-
tial for humans and animals.

Appendix

Table 5 Bird species tested for Babesia spp.

Bird species Count
European green woodpecker (Picus viridlis) 2
Great spotted woodpecker (Dendrocopos major) 4
European robin (Erithacus rubecula) 2
Common blackbird (Turdus merula) 2
Eurasian blackcap (Sylvia atricapilla) 1
Spotted flycatcher (Muscicapa striata) 1
Great tit (Parus major) 25
Eurasian blue tit (Cyanistes caeruleus) 6
Willow tit (Parus montanus) 5
Eurasian nuthatch (Sitta europaea) 9
Common chaffinch (Fringilla coelebs) 1
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Additional file 1: Table S1. Prevalence of Babesia spp. in questing
Haemaphysalis concinna per site in 2011-2013. Table S2. Occurence of
Babesia spp. in questing Ixodes ricinus in Bratislava and Fugelka. Table S3.
Occurence of Babesia spp. in questing Ixodes ricinus in 2011-2013. Table S4.
Occurence of Babesia spp. in questing Ixodes ricinus males, females and
nymphs. Table S5. Variables remaining in the best selected model for
Babesia microti prevalence in rodents. Table $6. Occurence of Babesia,
Candidatus N. mikurensis and Anaplasma phagocytophilum in questing
Ixodes ricinus. Table S7. Accession numbers of Apicomplexa 185 rRNA
gene sequences (PDF 238 kb)
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