

Estación Experimental Agropecuaria Pergamino "Ing. Agr. Walter Kugler" AER 9 de Julio

Prueba de materiales de trigo con diferentes tecnologías de manejo en 9 de Julio, campaña 2020

*Ing. Agr. M.Sc. Luis Ventimiglia *Lic. Econ. Lisandro Torrens Baudrix Abril 2021

No todos los productores de trigo son iguales, no todos los campos donde se cultiva trigo son iguales, no todos los paquetes tecnológicos que se aplican son iguales, y así podríamos seguir enumerando cosas que no son iguales. En función de lo brevemente comentado es que se ha generado, en la campaña 2020, una experiencia en el cultivo de trigo, empleando diferentes variedades, de ciclo intermedio largo y de ciclo intermedio corto, cada una con 5 niveles tecnológicos diferentes. Esto permite ver el comportamiento de cada material, en cada circunstancia y de esta manera generar información para diferentes usuarios, los cuales podrían seleccionar la variedad que mejor comportamiento puede tener de acuerdo a la tecnología que empleará en su cultivo.

Desarrollo de la experiencia

El ensayo se llevó adelante en el establecimiento "El Arapey", de la familia Lugano, ubicado en el partido de 9 de Julio entre los pueblos de Mulcahy y Morea.

El antecesor fue soja de primera y la experiencia se condujo en siembra directa. Se realizaron dos fechas de siembra, la primera el 2 de junio, la cual albergó a los trigos de ciclo intermedio largo, los que emergieron el 15 de junio, en total 7 materiales. La segunda fecha de siembra fue el 8 de julio, emergiendo el 29 de julio, en la cual se sembraron 14 materiales de ciclo intermedio corto.

La densidad de siembra se ajustó a 200 granos/m² y 220 granos/m², para las variedades largas y cortas, respectivamente. Para la siembra se empleó una máquina de disco perforado Yomel-Hilcor HJ9.

Previo a la siembra se realizó un muestreo de suelo para efectuar una cuantificación nutricional del mismo. Tabla 1.

Tabla 1: Análisis de Suelo

Variables	Unidades	Profun 0 – 20	didad (cm) 20 – 40	40 - 60
рН		5,8	6,4	6,7
Carbono Orgánico	(%)	1,37		
Materia Orgánica	(%)	2,36		
Fósforo asimilable	(ppm)	14,5		
Calcio	(meq/100g)	6,52	8,63	6,62
Magnesio	(meq/100g)	1,09	1,56	1,61
Potasio	(meq/100g)	1,14	1,05	0,91
Sodio	(meq/100g)	0,06	0,07	0,07
Calcio	(%)	60,9	68	67,6
Magnesio	(%)	10,2	12,3	16,4
Intercambio catiónico	(meq/100g)	10,7	12,7	9,8
Sodio intercambiable	(%)	0,6	0,6	0,7
Nitratos	(ppm)	52	21	14
Nitrógeno de nitratos	(ppm)	11,4	4,6	3,1
Azufre de sulfatos	(ppm)	5		
Boro	(ppm)	0,5		
Zinc	(ppm)	0,7		

Cada parcela contó con 9 surcos a 0,233 m por 7 metros de largo. El ensayo dispuso de 5 bloques, cada uno de ellos tuvo diferentes tecnologías, con lo cual cada material sembrado dispuso de cinco alternativas distintas a saber.

Bloque I: 120 kg/ha de fosfato monoámonico en la línea de siembra + 158 kg/ha de urea al voleo, posterior a la siembra

Bloque II: 120 kg/ha de fosfato monoámonico en la línea de siembra + 158 kg/ha de urea al voleo, posterior a la siembra + 39 kg/ha de sulfato de calcio al voleo posterior a la siembra.

Bloque III: 120 kg/ha de fosfato monoámonico en la línea de siembra + 158 kg/ha de urea al voleo, posterior a la siembra + 39 kg/ha de sulfato de calcio al voleo posterior a la siembra + fungicida foliar.

Bloque IV: 120 kg/ha de fosfato monoámonico en la línea de siembra + 332 kg/ha de urea al voleo, posterior a la siembra + 111 kg/ha de sulfato de calcio al voleo posterior a la siembra + fungicida foliar.

Bloque V: 120 kg/ha de fosfato monoámonico en la línea de siembra + 332 kg/ha de urea al voleo, posterior a la siembra + 111 kg/ha de sulfato de calcio al voleo posterior a la siembra + zinc foliar + boro foliar + fungicida foliar.

La aplicación de zinc se realizó con el producto Nutra zinc a razón de 2 l/ha en estado de macollaje. El boro se aplicó en estado de hoja bandera desplegada, con el producto Nutra boro a razón de 2 l/ha. Como fungicida en los bloques que llevaron protección, se realizaron dos aplicaciones durante el ciclo del cultivo, con el producto Tazer Xpert 400 cc/ha (250 g de Azoxistrobina + 125 g de Epoxiconazole) + Aceite metilado al 0,2 % del caldo.

Los materiales participantes para cada ciclo se presentan en las tablas 2 y 3.

Tabla 2: Variedades de ciclo largo, orden de siembra, kg/ha sembrados y peso de 1000 granos

Orden	Variedad	Kg/ha	Empresa	PMG (g)
1	DM Algarrobo	71	Don Mario	35,4
2	MS INTA 119	83	Macroseed	41,6
3	Baguette 750	75	Nidera	37,6
4	Arlask	68	LG	34,0
5	DM Algarrobo	71	Don Mario	35,4
6	Buck Colihue	85	Buck	42,6
7	IS 1833	76	Illinois	38,1
8	Baguette 620	77	Nidera	38,7
9	DM Algarrobo	71	Don Mario	35,4

Tabla 2: Variedades de ciclo corto, orden de siembra, kg/ha sembrados y peso de 1000 granos

	y peso de 1000 granos								
	Variedad	Kg/ha	Empresa	PMG (g)					
1	DM Ceibo	68	Don Mario	33,9					
2	Ñandubay	63	Don Mario	31,6					
3	Pampero	68	Santa Rosa	34,0					
4	Bag 450	67	Nidera	33,4					
5	CSR6164	75	Santa Rosa	37,7					

6	MS INTA 817	78	Macroseed	39,0
7	CSR584	85	Santa Rosa	42,4
8	Bag 550	77	Nidera	38,6
9	IS Tordo	75	Illinois	37,6
10	LG Zaino	60	LG	29,8
11	IS Hornero	69	Illinois	34,5

Todos los materiales y en todos los bloques se cuidó que las malezas no proliferaran, a tal efecto se trabajó con un barbecho químico empleándose 2 l/ha de Paraquat + 0,8 l/ha 2-4 D + 200 cc/ha Brodal. Posteriormente, cuando los trigos se encontraban con 2 hojas, se aplicó 15 g/ha de Finesse.

No se presentaron durante todo el ciclo problemas insectiles.

Resultados de la experiencia

En las tablas 4 y 5 se presentan las fechas en las cuales las diferentes variedades alcanzaron algunos estados fenológicos críticos.

Tabla 4: Fecha en alcanzar diferentes estados fenológicos, altura de las plantas y porte para variedades de ciclo intermedio largo

Variedad	IM	1 N	НВ	Floración	Altura(cm)	Porte
DM Algarrobo	16/7	13/9	3/10	24/10	60	R
MS INTA 119	16/7	15/9	5/10	24/10	70	R
Baguette 750	16/7	13/9	5/10	24/10	90	SE
Arlask	16/7	15/9	5/10	28/10	70	E
DM Algarrobo	16/7	13/9	3/10	24/10	60	R
Buck Colihue	16/7	13/9	5/10	22/10	80	SE
IS 1833	16/7	14/9	5/10	26/10	50	SE
Baguette 620	16/7	13/9	5/10	25/10	65	E
DM Algarrobo	16/7	13/9	3/10	24/10	60	R

IM: Inicio de macollaje.; 1N: Primer nudo.; HB: Hoja bandera

Altura: Se midió desde el suelo a la base de la espiga

Porte: R: Rastrero; SE: Semierecto; E: Erecto

Tabla 5: Fecha en alcanzar diferentes estados fenológicos, altura y porte de las plantas para variedades de ciclo intermedio corto.

Variedad	IM	1N	НВ	Floración	Altura	Porte
DM Ceibo	22/8	28/9	16/10	30/10	75	Е
Ñandubay	22/8	30/9	22/10	05/11	70	SR
Pampero	22/8	28/9	22/10	05/11	85	Е
Bag 450	22/8	21/9	11/10	24/10	80	Е
CSR6164	22/8	05/10	26/10	10/11	70	Е
MS INTA 817	26/8	28/9	16/10	28/10	70	Е
CSR584	22/8	28/9	22/10	04/11	70	Е
Bag 550	22/8	28/9	16/10	28/10	85	Е
IS Tordo	26/8	05/10	26/10	06/11	75	Е
LG Zaino	22/8	26/9	22/10	30/10	80	Е
IS Hornero	22/8	28/9	11/10	26/10	75	Е

IM: Inicio de macollaje.; 1N: Primer nudo.; HB: Hoja bandera

Altura: Se midió desde el suelo a la base de la espiga

Porte: R: Rastrero; SE: Semierecto; E: Erecto

Durante el ciclo del cultivo se registraron varias heladas de considerable intensidad, quizás la zona donde se efectuó la experiencia presentó, por su topografía, intensidades menores. Las heladas más importantes fueron los días: 11 de agosto (helada negra, con mucho daño); 20 y 30 de agosto; 12 y 21 de setiembre y 30 de octubre. La última fue muy suave, encontrando a todas las variedades con los granos formados y no generando daño en el cultivo. Las heladas fueron seguidas, por lo general, de varios días con buena radiación, esto, sumado a la disponibilidad hídrica y la buena fertilidad que la mayoría de los lotes disponían, permitían un rápido y exuberante crecimiento del cultivo, el cual era luego dañado por la helada siguiente. Esta situación se visualizó en la zona, con las heladas de agosto y parte de setiembre. El trigo, pudo soportar esas contingencias y recuperarse muy bien, brindando un muy buen rendimiento en la zona.

En cuanto a enfermedades, mancha amarilla, roya de la hoja y roya estriada, fueron las predominantes. Las variedades de ciclo largo, en cuanto a roya fueron las que presentaron mayor incidencia. En las tablas 6 y 7 se muestran los datos de incidencia y severidad de las enfermedades.

Tabla 6: Fenología, incidencia y severidad para mancha amarilla y roya en variedades de ciclo intermedio largo

Orden	Variedad	Fenología	Mancha	Roya
1	DM Algarrobo	3.9	3/20	9/5
2	MS INTA 119	3.9	9/20	0/0
3	Baguette 750	3.9	2/10	0/0
4	Arlask	3.9	2/10	0/0
5	DM Algarrobo	3.9	3/20	9/5
6	Buck Colihue	3.9	5/10	0/0
7	IS 1833	3.9	5/10	0/0
8	Baguette 620	3.9	7/20	0/0
9	DM Algarrobo	3.9	3/20	9/5

Fenología: Escala de Zadoock. Enfermedad, primer dígito marca la incidencia, segundo dígito la severidad de la enfermedad

Tabla 7: Incidencia y severidad de mancha amarilla y efecto de heladas (escala de 0 a 5, siendo 0 sin helada y 5 totalmente helado).

	Variedad	Mancha	Roya	Helada
1	DM Ceibo	1/1		2
2	Ñandubay	1/1		2
3	Pampero	1/1		1
4	Bag 450	1/1		2
5	CSR6164	1/1		0
6	MS INTA 817	1/1		2
7	CSR584	1/1		2
8	Bag 550	1/1		1
9	IS Tordo			1
10	LG Zaino	1/1		1
11	IS Hornero			1

Los bloques que llevaron protección para controlar enfermedades (III; IV y V), fueron tratados en dos oportunidades (7 y 27 de setiembre en los ciclos largos y 30 de setiembre y 30 de octubre en los ciclos cortos). El producto utilizado en todos los casos fue Tazer Xpert a la dosis de 400 cc/ha (Azoxistrobin 250 g + Epoxiconazole 125 g) más aceite metilado al 0,2 % del caldo empleado (150 l/ha). El mismo presentó un buen control y residualidad en ambas aplicaciones. Se

aclara que posiblemente algunos variedades no hubiesen requerido otra aplicación de fungicida o también, se podría haber esperado un poco más para la aplicación. El ensayo pretendió en todo momento, mantener limpias de enfermedades a las variedades que integraron los bloques III, IV y V, a efectos de determinar concretamente el efecto que las mismas pueden tener sobre el rendimiento final de cada una de ellas.

La aplicación de los micronutrientes (zinc y boro) se realizó, en aquellos bloques que así lo requerían. El zinc se aplicó en setiembre y el boro en los estadios próximos a la espigazón.

La cosecha para todos los materiales se realizó 10-12-2020 en forma mecánica. Para cada parcela se cosechó 9,8 m². A cada muestra se le determinó la humedad y se calculó el rendimiento a humedad recibo. También se realizó la determinación de peso hectolítrico, peso de 1000 granos, proteína y gluten. Los datos de referencia para cada variedad, tratamiento y paquete tecnológico empleado se presentan en las siguientes tablas, mostrándose una tabla resumen de rendimiento para cada variedad, en las cual se puede visualizar en forma rápida el comportamiento de cada una de ellas a las distintas tecnologías aplicadas, como así también un rendimiento medio de todas las tecnologías usadas.

Se aclara que la humedad presentada es a la que se cosechó cada material, el rendimiento siempre esta corregido a humedad de recibo (14 %).

Ciclos Largos Bloque I:

Tecnología aplicada:20 kg/ha de P + 120 - x kg/ha de N

_ rechologie	Techologia aphicada:20 kg/na de 1 120 x kg/na de 1								
Variedad	Criadero	Humedad	P. Hecto	Proteína	Gluten	Rendim.			
v arredad		(%)	(hl/kg)	(%)	(%)	(kg/ha)			
Algarrobo	D. Mario	12,9	73,6	8,4	18,9	3.121			
MS 119	M.Seed	11,4	77,6	8,0	16,3	5.604			
Bag 750	Nidera	11,4	79,9	8,4	16,3	5.089			
Arslak	LG	12,0	83,2	9,1	21,4	4.428			
Algarrobo	D. Mario	12,2	76,4	8,5	19,4	2.563			
Colihue	Buck	11,5	78,9	9,1	18,6	4.952			
IS 1833	Illinois	11,9	79,2	8,7	20,5	4.861			
Bag 620	Nidera	10,8	74,7	7,9	17,4	5.128			
Algarrobo	D. Mario	11,0	73,8	8,8	22,1	3.364			

Ciclos Largos Bloque II:

Tecnología aplicada: 20 kg/ha de P + 120 - x kg/ha de N + 7 kg/ha de S

Variedad	Criadero	Humedad (%)	P. Hecto (hl/kg)	Proteína (%)	Gluten (%)	Rendim. (kg/ha)
Algarrobo	D. Mario	11,3	73,9	8,2	20,0	3.742
MS 119	M.Seed	11,3	76,8	7,9	15,0	5.589
Bag 750	Nidera	11,9	79,7	8,2	15,1	5.855
Arslak	LG	12,1	81,2	9,0	20,4	5.017
Algarrobo	D. Mario	12,3	76,0	8,8	20,4	3.746
Colihue	Buck	12,1	79,3	8,7	18,5	4.845
IS 1833	Illinois	11,7	78,9	8,5	19,9	4.506
Bag 620	Nidera	11,8	74,3	7,9	17,3	4.731
Algarrobo	D. Mario	10,4	76,8	8,1	19,9	2.898

Ciclos Largos Bloque III

 $Tecnología\ aplicada:\ 20\ kg/ha\ de\ P\ +\ 120\ -\ x\ kg/ha\ de\ N\ +\ 7\ kg/ha\ de\ S\ +\ Fungicida$

Variedad	Criadero	Humedad (%)	P. Hecto (hl/kg)	Proteína (%)	Gluten (%)	Rendim. (kg/ha)
Algarrobo	D. Mario	11,1	78,0	8,5	20,3	6.309
MS 119	M.Seed	12,0	77,2	8,9	18,0	7.101
Bag 750	Nidera	12,6	82,4	8,7	16,5	6.829
Arslak	LG	15,0	80,1	9,1	21,2	6.399
Algarrobo	D. Mario	12,5	76,4	8,8	19,6	6.474
Colihue	Buck	11,5	78,0	9,3	21,1	5.934
IS 1833	Illinois	13,4	78,4	8,9	20,4	6.217
Bag 620	Nidera	11,1	77,4	8,1	18,8	6.341
Algarrobo	D. Mario	11,7	78,7	8,7	20,2	6.182

Ciclos Largos. Bloque IV

 $Tecnología\ aplicada:\ 20\ kg/ha\ de\ P\ +\ 200\ -\ x\ kg/ha\ de\ N\ +\ 20\ kg/ha\ de\ S\ +\ Fungicida$

Variedad	Criadero	Humedad (%)	P. Hecto (hl/kg)	Proteína (%)	Gluten (%)	Rendim. (kg/ha)
Algarrobo	D. Mario	11,1	77,8	8,6	19,9	6.151
MS 119	M.Seed	11,0	76,8	8,3	16,7	6.411
Bag 750	Nidera	12,0	79,3	8,2	15,7	6.151
Arslak	LG	14,1	81,6	9,1	20,6	6.411
Algarrobo	D. Mario	13,9	75,9	8,5	20,6	6.306
Colihue	Buck	11,9	78,4	9,3	21,2	6.179
IS 1833	Illinois	12,7	75,9	8,9	20,9	6.298
Bag 620	Nidera	11,4	74,3	8,2	18,2	5.993
Algarrobo	D. Mario	10,6	77,6	8,9	22,0	7.289

$Ciclos\ Largos.\ Bloque\ V$

 $Tecnología\ Aplicada:\ 20\ kg/ha\ de\ P\ +\ 200\ -\ x\ kg/ha\ de\ N\ +\ 20\ kg/ha\ de\ S\ +\ Fungicida\ +\ Zinc\ +\ Boro$

Variedad	Criadero	Humedad (%)	P. Hecto (hl/kg)	Proteína (%)	Gluten (%)	Rendim. (kg/ha)
Algarrobo	D. Mario	11,4	76,6	8,5	19,2	6.014
MS 119	M.Seed	11,0	77,6	8,4	16,6	6.633
Bag 750	Nidera	12,2	79,7	8,3	15,8	6.158
Arslak	LG	13,0	83,2	9,4	21,1	5.915

Algarrobo	D. Mario	11,2	78,2	8,8	21,1	6.607
Colihue	Buck	11,6	82,2	9,5	21,6	5.995
IS 1833	Illinois	12,9	77,8	8,8	20,8	6.015
Bag 620	Nidera	11,7	77,0	8,3	17,6	6.706
Algarrobo	D. Mario	10,2	78,4	8,5	21,8	6.597

Tabla resumen de rendimiento (kg/ha) para variedades de ciclos largos

Variedad	Bloque	Bloque	Bloque	Bloque	Bloque	Rendimiento
	I	II	III	IV	V	(kg/ha)
Algarrobo	3.121	3.742	6.309	6.151	6.014	5.067
MS 119	5.604	5.589	7.101	6.411	6.633	6.268
Bag 750	5.089	5.855	6.829	6.151	6.158	6.016
Arslak	4.428	5.017	6.399	6.411	5.915	5.634
Algarrobo	2.563	3.746	6.474	6.303	6.607	5.139
Colihue	4.959	4.845	5.934	6.179	5.995	5.581
IS 1833	4.861	4.506	6.217	6.298	6.015	5.579
Bag 620	5.128	4.731	6.341	5.933	6.706	5.780
Algarrobo	3.364	2.898	6.182	7.289	6.597	5.266
Promedio	4.346	4.548	6.421	6.347	6.293	5.592

Ciclos Cortos Bloque I: Tecnología aplicada:20 kg/ha de P + 120 - x kg/ha de N

Variedad	Criadero	Humedad (%)	P. Hecto (hl/kg)	Proteína (%)	Gluten (%)	Rendim. (kg/ha)
Ceibo	D. Mario	14,4	73,9	9,2	23,3	4.380
Ñandubay	D. Mario	12,6	75,7	9,0	17,1	4.242
Pampero	S. Rosa	16,3	73,6	10,0	23,4	4.329
Bag 450	Nidera	13,4	79,5	10,3	24,9	5.102
CSR 6164	S. Rosa	14,0	76,2	8,9	18,1	3.867
MS 817	M. Seed	11,5	76,1	10,2	25,4	4.894
CSR 584	S. Rosa	11,3	78,2	9,4	22,4	4.916
Bag 550	Nidera	10,8	78,2	9,5	20,8	4.944
IS Tordo	Illinois	12,2	78,4	9,7	22,3	4.751
LG Zaino	LG	11,4	78,9	9,3	21,0	4.768
IS Hornero	Illinois	11,9	80,5	9,3	21,0	4.767

Ciclos Cortos Bloque II: Tecnología anlicada: 20 kg/ha de P + 120 - x kg/ha de N + 7 kg/ha de S

1 ecnologia	Techologia aplicada: 20 kg/na de P + 120 - x kg/na de N + 7 kg/na de S										
Variedad	Criadero	Humedad (%)	P. Hecto (hl/kg)	Proteína (%)	Gluten (%)	Rendim. (kg/ha)					
Ceibo	D. Mario	11,9	78,6	8,9	20,9	4.448					
Ñandubay	D. Mario	12,9	76,1	9,2	17,3	4.305					
Pampero	S. Rosa	14,1	77,8	9,9	24,2	4.556					
Bag 450	Nidera	12,8	78,9	10,4	25,7	4.775					
CSR 6164	S. Rosa	16,5	71,0	8,8	20,7	4.676					
MS 817	M. Seed	13,8	77,0	10,2	25,3	4.986					
CSR 584	S. Rosa	11,4	76,6	9,0	21,8	5.352					
Bag 550	Nidera	11,5	79,9	9,5	21,7	5.094					
IS Tordo	Illinois	12,8	77,4	9,1	19,4	4.811					
LG Zaino	LG	11,5	79,1	9,4	21,4	4.369					
IS Hornero	Illinois	11,9	79,3	10,0	21,8	4.412					

Ciclos Cortos Bloque III:

 $Tecnología\ aplicada{:}20\ kg/ha\ de\ P\ +\ 120\ -\ x\ kg/ha\ de\ N\ +\ 7\ kg/ha\ de\ S\ +$

Fungicida

Variedad	Criadero	Humedad (%)	P. Hecto (hl/kg)	Proteína (%)	Gluten (%)	Rendim. (kg/ha)
Ceibo	D. Mario	12,7	79,5	10,0	24,1	6.790
Ñandubay	D. Mario	14,0	77,0	9,8	19,6	5.847
Pampero	S. Rosa	17,8	73,2	10,3	26,3	6.084
Bag 450	Nidera	13,4	76,1	11,3	28,4	5.693
CSR 6164	S. Rosa	18,0	72,2	8,8	19,2	4.854
MS 817	M. Seed	11,4	78,7	11,1	28,4	5.441
CSR 584	S. Rosa	11,1	78,2	9,7	24,3	5.882
Bag 550	Nidera	12,9	79,1	10,1	24,4	6.170
IS Tordo	Illinois	14,8	77,8	9,8	24,6	5.974
LG Zaino	LG	12,4	80,3	9,6	21,6	5.120
IS Hornero	Illinois	12,0	80,7	10,2	22,6	4.710

Ciclos Cortos Bloque IV:

Tecnología aplicada: 20 kg/ha de P + 200 - x kg/ha de N + 20 kg/ha de S + Fungicida

Variedad	Criadero	Humedad (%)	P. Hecto (hl/kg)	Proteína (%)	Gluten (%)	Rendim. (kg/ha)
Ceibo	D. Mario	14,4	77,0	9,7	23,2	6.906
Ñandubay	D. Mario	12,4	77,2	9,5	18,6	5.572
Pampero	S. Rosa	14,9	75,5	10,5	25,5	6.018
Bag 450	Nidera	12,9	81,8	11,3	28,8	5.969
CSR 6164	S. Rosa	20,3	73,0	9,1	24,0	5.615
MS 817	M. Seed	13,4	77,6	10,7	26,4	5.826
CSR 584	S. Rosa	12,0	76,8	8,9	20,5	5.869
Bag 550	Nidera	11,7	80,1	10,3	24,0	6.811
IS Tordo	Illinois	16,9	74,9	9,3	20,6	6.073
LG Zaino	LG	12,2	81,2	9,9	22,9	5.480
IS Hornero	Illinois	11,4	79,3	9,5	19,0	4.831

Ciclos Cortos Bloque V:

Tecnología aplicada: 20 kg/ha de P + 200 - x kg/ha de N + 20 kg/ha de S + Fungicida + Zinc + Boro

Variedad	Criadero	Humedad (%)	P. Hecto (hl/kg)	Proteína (%)	Gluten (%)	Rendim. (kg/ha)
Ceibo	D. Mario	13,7	79,3	9,8	24,0	7.081
Ñandubay	D. Mario	12,3	77,2	9,5	18,8	5.557
Pampero	S. Rosa	15,0	74,1	10,0	24,7	6.152
Bag 450	Nidera	12,6	79,7	11,0	27,7	5.875
CSR 6164	S. Rosa	11,6	73,0	9,1	21,5	5.511
MS 817	M. Seed	13,6	76,1	10,1	25,0	5.721
CSR 584	S. Rosa	11,6	78,0	9,1	21,8	6.168
Bag 550	Nidera	11,1	79,5	9,7	22,3	6.077
IS Tordo	Illinois	16,1	74,9	10,0	24,7	6.828
LG Zaino	LG	11,8	80,1	9,6	22,6	5.610
IS Hornero	Illinois	12,8	79,5	9,4	19,3	5.339

Tabla resumen de rendimiento (kg/ha) para variedades de ciclos cortos

Variedad	Bloque	Bloque	Bloque	Bloque	Bloque	Rendimiento
	I	II	III	IV	V	(kg/ha)
Ceibo	4.380	4.448	6.790	6.906	7.081	5.915
Ñandubay	4.242	4.305	5.847	5.572	5.557	5.105
Pampero	4.329	4.556	6.084	6.018	6.152	5.428
Bag 450	5.102	4.775	5.693	5.969	5.875	5.483
CSR 6164	3.867	4.676	4.854	5.615	5.511	4.905
MS 817	4.894	4.986	5.441	5.826	5.721	5.374
CSR 584	4.916	5.352	5.882	5.869	6.168	5.637
Bag 550	4.944	5.094	6.170	6.811	6.077	5.819
IS Tordo	4.751	4.811	5.974	6.073	6.828	5.687
LG Zaino	4.768	4.369	5.120	5.480	5.610	5.069
IS Hornero	4.767	4.412	4.710	4.831	5.339	4.812
Promedio	4.633	4.707	5.688	5.906	5.993	5.385

Comentarios Generales

La campaña triguera 2020 fue una muy buena campaña. Las condiciones ambientales fueron muy adecuadas en la zona para el cultivo de trigo, situación que ya se preveía antes de comenzar la misma. Las lluvias del otoño, abundantes en marzo y abril, permitieron recargar el perfil hídrico del suelo. Posteriormente, los meses que siguieron fueron de escasas precipitaciones, pero esta es una época en la cual la demanda atmosférica es muy baja. Por otro lado, las condiciones ambientales permitieron lograr una correcta implantación del cultivo, con mucho tiempo para poder sembrar. Posteriormente, sobrevinieron días invernales muy fríos, con heladas secuenciadas cada 7 a 10 días, seguidos de días de buena radiación, humedad subsuperficial y buena fertilidad, algo a la cual apostaron la mayoría de los productores. Hubo muchas heladas de gran intensidad y duración (11, 20 y 30 de agosto, 12 de septiembre, etc), algunas de ellas hicieron peligrar la continuidad de algunos lotes, sobre todo aquellos con mayor cobertura de rastrojos. Sin embargo, el trigo se pudo sobreponer totalmente a tales acontecimientos y completar un ciclo exitoso.

Las lluvias oportunas que llegaron en septiembre y principalmente 3 eventos (ver cuadro de precipitaciones), que se dieron en octubre, aportando una adecuada humedad en el período crítico del trigo, posteriormente, el clima acompañó, permitiendo un buen llenado de grano, último componente que ayuda a definir el rendimiento.

Respecto a los resultados se aprecia, en el promedio de todas las tecnologías empleadas, que no existen grandes diferencias entre el promedio de los tratamientos que contempló a las variedades de ciclo largo y corto, respectivamente. Si bien el número de variedades que participó en un grupo y otro es distinto, el valor promedio total

difiere por solamente 207 kg/ha, en favor de las variedades de ciclo intermedio largo.

Mirando el cuadro resumen de rendimiento de cada grupo varietal, definitivamente la tecnología que más impacto tuvo fue la protección de las variedades con fungicida. El empleo de fungicida, dentro siempre de una misma tecnología, mejoró el rendimiento, en los ciclos largo en 47,7 % y en los ciclos cortos en 22,8 %.

El haber adicionado algo de azufre, solamente permitió mejorar el rendimiento en 4,6 % y 1,6 %, para las variedades de ciclo largo y corto, respectivamente.

El incremento de la fertilidad nitrogenada y azufrada, tuvo un bajo impacto, solamente 3,8 % en las variedades de ciclo corto y prácticamente nada en las de ciclo largo. En tanto que, el empleo de micronutrientes, para ambos grupos varietales no pudo tampoco mejorar el rendimiento.

Lo ante dicho podría basarse en varios aspectos. La sanidad, con una mayor respuesta en las variedades de ciclo largo, lo puede explicar la sensibilidad varietal y el mayor tiempo de permanencia de las variedades de ciclo largo que las cortas (mayor tiempo de exposición con el probable inóculo).

El no encontrar respuesta a un incremento en la dosis de nitrógeno y azufre, se podría explicar por las bondes del lote en donde se condujo el ensayo. Por otro lado, al ser un año relativamente seco y si bien se registraron varias heladas, las mismas fueron siempre seguidas de días brillantes de sol y de temperaturas mayores a las medias históricas, esto pudo haber provocado una mayor mineralización de determinados nutrientes, que se encuentran asociados a la materia orgánica. Esto queda reflejado por los valores iniciales reportados por el análisis de suelo de ciertos nutrientes, caso de azufre (5 ppm, muy bajo), cómo así también boro y zinc, los cuales se encontraban antes de sembrar por debajo del límite crítico que indica la bibliografía, sin embargo las respuestas no existieron. También es posible que el rendimiento se haya visto morigerado por el ambiente, principalmente hídrico y esto limitó de alguna manera la absorción de una mayor cantidad de nitrógeno, fósforo, azufre, zinc, boro, etc.

Realizando un análisis de cada paquete tecnológico se destacan algunas consideraciones en función del comportamiento de los materiales empleados, a saber:

Dentro de los materiales de ciclo largo con un paquete de baja fertilidad y sin el empleo de fungicida se destacaron MS INTA 119, Bag 620 y Bag 750, cuando a ese mismo paquete de baja fertilidad se le adicionó fungicida, se destacaron MS INTA 119, Bag 750, DM Algarrobo, IS 1833 y Bag 620.

DM Algarrobo es la variedad que mayor respuesta presentó a la aplicación de fungicida, lo que sigue demostrando un alto potencial de rendimiento, siempre y cuando el cultivo se encuentre protegido sanitariamente.

En el promedio de todos los paquetes tecnológicos se destacaron, con rendimientos superiores a los 6.000 kg/a, las variedades MS INTA 119 y Bag 750.

Dentro de los ciclos cortos se detectaron dos variedades con una muy alta respuesta a la protección sanitaria (DM Ceibo y Pampero).

Dentro de este grupo, se encontraron variedades, que si bien respondieron a la aplicación de fungicida, su respuesta fue menor, entre ellos podemos mencionar a: CSR 6164; MS INTA 817; CSR 584 y IS Hornero.

Las respuestas al aumento de la fertilidad fueron maximizadas por las variedades DM Ceibo y Bag 550.

En el promedio general de todos los paquetes tecnológicos, hay bastante paridad entre los materiales ensayados, pudiendo tener una cierta ventaja: DM Ceibo; Bag 550 e IS Tordo.

En cuanto a peso hectolitrito (datos no mostrados), los valores en todos los casos están por encima de la normativa de comercialización. Sí es preocupante el nivel de proteína, dado que pocos materiales, solamente con los niveles más altos de fertilidad, pudieron ubicarse por encima de 11 %, base de comercialización. El gluten, en menor medida sigue el comportamiento de la proteína.

La información aquí presentada permitió observar el comportamiento de algunas variedades de trigo ampliamente difundidas en nuestra zona y otras, que incluso se encuentran en carácter experimental y que posiblemente integren el nuevo plantel de simientes para las próximas campañas. El poder aplicar diferentes paquetes tecnológicos, permite a cada productor seleccionar, en base a sus posibilidades, cual podría ser el/los materiales más adecuados para su sistema de siembra.

Agradecimiento: Los autores agradecen profundamente a la Flia Lugano (Francisco y Andrés), titulares del establecimiento "El Arapey", lugar donde

se condujo la experiencia, al encargado Ing. Agr. Franco Marin y a las empresas que confiaron las pruebas de sus variedades al personal de la AER INTA 9 de Julio.

Lluvias en 9 de Julio durante el año 2020

Día	E	F	M	A	M	J	J	A	S	0	N	D
1				40								
2									20			
3					2							
4												
5		15								3		
6	55										3	
7		4										
8			5									
9									7			
10									7			13
11			102									
12												
13				14								7
14		6	55									
15											14	
16												
17		36	49			20						
18												12
19										50		
20												
21	15											
22										36		
23						2						
24			65	13							7	
25				24					65	46		
26								6				
27				12								
28				30						5	10	28
29								9				
30						24						5
31												

Total 70 63 276 133 2 46 0 15 99 140 34	65
---	----

Cosecha de variedades en 9 de Julio, campaña 2020