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Abstract

Shipping of peaches to distant markets and storage require low temperature; however, cold storage affects fruit

quality causing physiological disorders collectively termed ‘chilling injury’ (CI). In order to ameliorate CI, different
strategies have been applied before cold storage; among them heat treatment (HT) has been widely used. In this

work, the effect of HT on peach fruit quality as well as on carbon metabolism was evaluated. When fruit were

exposed to 39 �C for 3 d, ripening was delayed, with softening inhibition and slowing down of ethylene production.

Several differences were observed between fruit ripening at ambient temperature versus fruit that had been heat

treated. However, the major effects of HT on carbon metabolism and organoleptic characteristics were reversible,

since normal fruit ripening was restored after transferring heated peaches to ambient temperature. Positive quality

features such as an increment in the fructose content, largely responsible for the sweetness, and reddish coloration

were observed. Nevertheless, high amounts of acetaldehyde and low organic acid content were also detected. The
differential proteome of heated fruit was characterized, revealing that heat-induced CI tolerance may be acquired by

the activation of different molecular mechanisms. Induction of related stress proteins in the heat-exposed fruits

such as heat shock proteins, cysteine proteases, and dehydrin, and repression of a polyphenol oxidase provide

molecular evidence of candidate proteins that may prevent some of the CI symptoms. This study contributes to

a deeper understanding of the cellular events in peach under HT in view of a possible technological use aimed to

improve organoleptic and shelf-life features.
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Introduction

Ripening of fleshy fruits is a dynamic transitional period

that encompasses a myriad of biochemical and physiologi-

cal changes that transform the mature fruit into a ready-to-

eat fruit. Significant progress has been made in characteriz-

ing the molecular components of the fruit ripening process,

including ethylene biosynthesis and perception, cell wall

depolymerization, signal transduction, and pigment accu-

mulation (Giovannoni, 2001, 2004). The peach (Prunus

persica L. Batsch; Rosaceae family) is a climacteric fruit

whose ripening process is controlled by the production of
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ethylene, although other hormones are also involved in this

process (Trainotti et al., 2007). Changes in the chemical

composition and the physical characteristics of the fruit

take place during ripening, which lead to easily perceivable

alterations in fruit texture, firmness, pigmentation, aroma,

and sweetness. Transcriptome analyses of the peach ripen-

ing process have contributed to understanding the role of

transcriptional gene regulation during the transition from
the pre-climacteric to the climacteric phase in this fruit

(Trainotti et al., 2006). Studies on changes in the sugar and

organic acid metabolism occurring during peach fruit

ripening after harvest contributed to the identification of

important components of the carbon metabolism operating

during this process (Borsani et al., 2009).

While ripening prepares fleshy fruit for human conump-

tion, marketing and shipping of fleshy fruits require
a lengthy storage period. Refrigeration is used to slow

ripening and to extend fruit market life; however, several

fruits can develop chilling injury (CI) during storage at low

temperature. In peach, CI includes internal and external

browning, flesh breakdown, woolliness, reddish discolor-

ation, loss of ability to ripen, and increased incidence of

decay when stored for >2–3 weeks at temperatures <8 �C
(Brummell et al., 2004; Lurie and Crisosto, 2005, and
references therein). In order to alleviate CI symptoms,

different pre-harvest and post-harvest treatments have been

applied to peach (Lurie and Crisosto, 2005, and references

therein; Wang et al., 2006). Among them, exposure to

subletal high temperature after harvest has been widely

used, as this treatment increases the tolerance to subsequent

chilling and also delays ripening. In addition, this treatment

also reduces pathogen levels and disease development in
several fruits (Saltveit, 1991; Lurie, 1998, 2006; Ferguson

et al., 2000; Paull and Chen, 2000; Budde et al., 2006; Wang

et al., 2006; Jin et al., 2009). The rationale for the use of

heat treatment (HT) is that exposure to a high temperature

triggers physiological responses that allow the tissue to cope

in a better way with subsequent stress conditions. However,

peach molecular responses to HT are not completely

understood and the effect of HT on carbon metabolism
during ripening has not yet been analysed. Some of the

beneficial effects of HT in reducing CI have been mainly

reported to be contingent on heat shock proteins (HSPs)

Sabehat et al., 1996, 1998; Rozenzvieg et al., 2004; Polenta

et al., 2007). Studies on citrus, grapefruit, pomegranate, and

banana suggested that compounds or enzymes that are

induced by HT may also be involved in protection from CI

(Porat et al., 2002a, b; Mirdehghan et al., 2007; Chen et al.,
2008). Moreover, several putative heat-induced chilling

tolerance genes have been isolated in grapefruit and citrus

fruit (Sanchez-Ballesta et al., 2003; Sapitnitskaya et al.,

2006).

The understanding of the biochemical and genetic basis

of CI is of great importance and so is the identification of

the factors that may prevent it in each type of fruit. In this

regard, a recent macroarray study identified woolliness
response genes in peach fruit after cold storage (González-

Agüero et al., 2008). Another approach to understand

better and prevent CI would be the study of the fruit

changes that take place after a successful treatment that

prevents some of the CI symptoms. This kind of study

would be very useful in order to identify possible candidates

involved in protection from or alleviation of CI. In the

present work, an integrated study of metabolic changes

induced by post-harvest HT in peach cv ‘Dixiland’ was

carried out. The impact of HT on peach was assessed
through the evaluation of organoleptic characteristics, level

of enzymes involved in central metabolic pathways, and the

contents of metabolites such as sugars, sorbitol, fermenta-

tion products, and organic acids. Moreover, in order to

identify candidate proteins that may prevent some of the CI

symptoms, a comparative analysis of the fruit mesocarp

proteome variations after HT was also evaluated using two-

dimensional differential gel electrophoresis (2D-DIGE). By
these approaches, several candidate proteins that may be

directly correlated with CI symptoms were identified, which

would be useful in future identification of varieties more

resistant to CI.

Materials and methods

Plant material and treatments

Assays were conducted with peach fruits [P. persica (L.)

Batsch] cv ‘Dixiland’ grown in the Estación Experimental
Agropecuaria INTA, San Pedro, Argentina (Budde et al.,

2006), during 2005 and harvested in 2006, and repeated with

fruits grown during 2006 and harvested in 2007. The flesh

firmness of the fruits at harvest was typically at 52.166.5 N

(Table 1), which corresponded to ;93 d after bloom.

Immediately after harvest, fruits were manually selected for

uniformity of colour, size, and firmness, and divided into

two groups: one was kept in a chamber at 20 �C and 90%
relative humidity for 7 d and the other was held in

a chamber at 3961 �C and 90% relative humidity for 3 d

followed by 3 d at 20 �C. Samples were taken immediately

after harvest (R0) and after 3 d and 7 d in the chamber at

20 �C (R3 and R7, respectively); and also after 3 days at

3961 �C (HT) and after 3 d at 20 �C (HT+3).

About 20–30 fruits from each group were used for colour,

firmness, solid soluble content (SSC), and acidity measure-
ments. Representative mesocarp tissue was also collected

Table 1. Quality attributes of ‘Dixiland’ peach after heat treatment

Different letters within each parameter indicate statistically significant
differences.

Parameter R0 HT HT+3

Firmness (N) 52.166.5 a 53.067.7 a 4.361.2 b

Ground colour

H value 103.162.3 a 92.461.9 b 73.666.0 c

Pulp colour

H value 97.062.0 a 93.3 61.9 b 85.26 2.5 c

Soluble solids (�Brix) 10.660.9 a 10.360.8 a 11.461.2 a

Acidity [H+] (M) 0.1460.01 a 0.0860.01 b 0.1060.01 c
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from the different sample fruits, immediately frozen in N2(l)

and stored at – 80 �C for further experiments.

Determination of fruit quality traits and metabolite
measurements

Flesh firmness, SSC, ground colour, and titratable acidity
(TA) were determined as previously described (Borsani

et al., 2009).

D-Glucose, D-fructose, sucrose, sorbitol, malic acid, citric

acid, ethanol, and acetaldehyde were determined as pre-

viously described (Borsani et al., 2009). The level of each

metabolite is expressed as g per 100 g of fresh peach

mesocarp.

CO2 respiration rate

CO2 production was measured in fruit enclosed in 1.5 l

sealed jars. Air samples of 3 ml were withdrawn from the

jars and injected through a sampling valve with a 1 ml loop

into a gas chromatograph (Hewlett Packard 5980 Series II),

equipped with a thermic conductivity detector and with

a 3.048 m Porapack Q column (80/100). The nitrogen
carrier gas flow rate was 30 ml min�1, the hydrogen carrier

flow was 30 ml min�1, and air flow was 400 ml s�1. Injector

and oven temperatures were 100 �C and 120 �C, respec-

tively. Calibration was carried out with a 1520 ppm CO2

standard (Alfa Gas, Argentina). The CO2 production rate

was expressed in lg per kg of fresh weight per second (lg
kg�1 s�1).

Protein extraction for enzyme assays

For enzyme activity measurements, total protein from

peach mesocarp tissue was extracted using a buffer contain-

ing 400 mM TRIS-HCl, pH 8.5, 5 mM EDTA, 10 mM

MgCl2, 10 mM b-mercaptoethanol, 20% (v/v) glycerol,

10 mM ascorbic acid, 1 mM phenylmethylsulphonyl fluo-
ride (PMSF), 1% (v/v) Triton X-100, 10 lg ml�1 leupeptin,

and 10 lg ml�1 chymostatin in a ratio of buffer:fresh tissue

of 0.3 ml:1 g. A 10 ll aliquot of protease inhibitor cocktail

(Sigma, St Louis, MO, USA) was used per g of fresh tissue.

In the case of the crude extract prepared for invertase

measurements, 400 mM HEPES-NaOH, pH 8.8, was used

instead of TRIS-HCl, pH 8.5. Samples were completely

ground in a cold mortar in the presence of insoluble
polyvinyl polypyrrolidone (PVPP, Sigma) and centrifuged

at 10 000 g for 15 min at 4 �C. The supernatant of crude

extracts was desalted, according to Penefsky (1977), in

a cold Sephadex G-25 column pre-equilibrated with a buffer

of the same composition as the extraction buffer but

containing 100 mM TRIS-HCl, pH 7.5 or 100 mM

HEPES-NaOH, pH 8.5.

Protein extraction under denaturing conditions

Approximately 2 g of mesocarp material was ground in

liquid nitrogen using a ceramic mortar and pestle, sand and

PVPP, transferred to a SS34 tube containing 10 ml of

extraction buffer (100 mM TRIS-HCl, pH 8.8, 2% (w/v)

SDS, 0.4% (v/v) 2-mercaptoethanol, 10 mM EDTA, 1 mM

PMSF, 0.9 M sucrose), and 10 ml of ice-cold TRIS-HCl,

pH 8.8-saturated phenol, and then agitated at 4 �C for

30 min. The aqueous phases were back-extracted with

extraction media and phenol by vortexing. Tubes were

centrifuged at 5000 g for 15 min at 4 �C and the phenolic

phases were transferred to a new tube leaving the interface
intact. Proteins were precipitated with 5 volumes of cold

0.1 M ammonium acetate in methanol at –20 �C overnight.

The samples were collected by centrifugation at 20 000 g at

4 �C for 20 min. Next, the pellet was washed with 1.5 ml of

cold ammonium acetate/methanol and twice with cold 80%

(v/v) acetone. A final wash used 1.5 ml of cold 70% (v/v)

ethanol. The pellet was resuspended in 2D-DIGE buffer

(30 mM TRIS-HCl, pH 8.5, 7 M urea, 2 M thiourea, 4%
CHAPS) for 2D-DIGE or diluted in 0.25 M TRIS-HCl,

pH 7.5, 2% (w/v) SDS, 0.5% (v/v) b-mercaptoethanol, and

0.1% (v/v) bromophenol blue, and boiled for 2 min for

SDS–PAGE.

Protein quantitation

Protein concentration was determined in crude extracts by

the method of Bradford (1976) using the Bio-Rad protein

assay reagent (Bio-Rad, Hercules, CA, USA) and bovine

serum albumin as standard.

Enzyme assay

The activity of enzymes was measured spectrophotometri-

cally in a final volume of 1 ml at 30 �C and 340 nm using

a UNICAM Helios b spectrophotometer (UNICAM Instru-

ments, Cambridge, UK). The reaction mixtures used for

each enzyme were as follows:

(i) Alcohol dehydrogenase (ADH): 85 mM MES, pH 6.5,

5 mM acetaldehyde, and 0.15 mM NADH (Kato-Noguchi,
2000).

(ii) ATP-dependent phosphofructokinase (PFK): 50 mM

TRIS-HCl, pH 7.5, with 5% (w/v) polyethylene glycol

(PEG), 5 mM MgCl2, 0.5 mM ADP, 1 mM dithiothreitol

(DTT), 4 mM fructose-6-phosphate, 0.15 mM NADH,

0.2 U of aldolase, 1 U of triose phosphate isomerase (TPI),

and 0.1 U of glycerol-3-phosphate dehydrogenase
(G3PDH), starting the reaction with ATP (Lara et al.,

2004).

(iii) Fructokinase (FK): 0.1 M TRIS-HCl, pH 8.5, 5 mM

MgCl2, 0,5 mM NAD, 1.5 U of phosphoglucose isomerase,

10 mM fructose, 2 mM ATP, and 2 U of glucose-6-

phosphate dehydrogenase (G6PDH). The reaction was

started with ATP (Mustroph and Albrecht, 2003).

(iv) Glucokinase (GK): 0.1 M TRIS-HCl, pH 8.5, 5 mM

MgCl2, 0.5 mM NAD, 10 mM glucose, 2 mM ATP, and

2 U of G6PDH. The reaction was started with ATP

(Mustroph and Albrecht, 2003).
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(v) Invertases: neutral invertase (NI) activity was assayed in

an incubation mixture containing 200 mM HEPES-NaOH,

pH 7.5, 200 mM sucrose, and an aliquot of the protein

extract to be tested. The mixture was incubated at 30 �C for

different times and the progress of the reaction was

followed detecting the amount of glucose produced by using

the glucose oxidase/horseradish peroxidase assay. Acid

invertase (AI) was assayed under the conditions described

above, although the reaction mixture contained 100 mM

acetic acid/sodium acetate buffer, pH 5.0. In the case of AI,

prior to glucose determination, the aliquot was neutralized

(Vargas et al., 2007).

(vi) Lactate dehydrogenase (LDH): 50 mM NaPi, pH 7.5,

10 mM pyruvate, 0.2 mM NADH, and 1 mM methylpyr-

azole, which inhibits pyruvate decarboxylase (PDC) activity

(Kato-Noguchi, 2000).

(vii) NAD-malate dehydrogenase (NAD-MDH) was

assayed in the oxaloacetate (OAA) reduction direction

using a 50 mM imidazole, pH 6.8, medium containing

1 mM OAA and 0.15 mM NADH (Lara et al., 2004).

(viii) NAD-malic enzyme (NAD-ME): 50 mM HEPES, pH

7.3, 2 mM NAD, 2 mM L-malate, 5 mM DTT, 75 mM

CoA, 5 mM MgCl2, 5 mM MnCl2, 10 U of malate de-

hydrogenase (MDH). After the rapid increase in the

absorbance at 340 nm, the subsequent steady increase is

attributable to the decarboxylation of L-malate by the

NAD-ME (Lara et al., 2004).

(ix) NADP-malic enzyme (NADP-ME): 50 mM TRIS-HCl,

pH 7.5, 0.5 mM NADP, 10 mM L-malate, and 10 mM

MgCl2. The reaction was started with malate (Detarsio

et al., 2003).

(x) Pyruvate decarboxylase (PDC): 85 mM MES, pH 6.5,

25 mM NaCl, 1 mM MgCl2, 2 mM DTT, 2 mM thiamine

pyrophosphate, 0.15 mM NADH, 50 mM oxamate, 3 U of

ADH, and 10 mM pyruvate, where oxamate acts as an

inhibitor of lactate dehydrogenase (LDH) activity. Crude

extracts were pre-incubated for 30 min in the reaction

medium in the absence of pyruvate, NADH, and ADH

(Rivoal et al., 1990).

(xi) Phosphoenolpyruvate carboxylase (PEPC): 100 mM

TRIS-HCl, pH 8.0, 20% (v/v) glycerol, 10 mM MgCl2,

10 mM NaHCO3, 4 mM phosphoenolpyruvate (PEP),

0.15 mM NADH, and 10 U of MDH (Lara et al., 2004).

(xii) Phosphoenolpyruvate carboxykinase (PCK): 50 mM

HEPES, pH 7.3, 4 mM PEP, 10 mM NaHCO3, 2.5 mM

MgCl2, 2.5 mM MnCl2, 0.15 mM NADH, 10 U of MDH,

and 3 mM ADP (Lara et al., 2003).

(xiii) Pyruvate kinase (PK): 25 mM HEPES, pH 7.2,

20 mM KCl, 10 mM MgCl2, 2 mM PEP, 0.15 mM NADH,

0.5% (w/v) PEG, 2 mM DTT, 1 mM ADP, and 0.4 U of

LDH. The reaction medium was previously bubbled with

helium in order to remove the bicarbonate and avoid

interference by endogenous PEPC and MDH. Enzymatic

activity was corrected for interference by PEP phosphatase

activity by omitting ADP from the reaction mixture

(Falcone et al., 2006).

(xiv) PPi-dependent phosphofructokinase (PFP): 50 mM

TRIS-HCl, pH 7.5, with 5% (w/v) PEG, 5 mM MgCl2,

0.5 mM NaPPi, 1 mM DTT, 4 mM fructose-6-phosphate,

2 mM fructose-2,6-bisphosphate, 0.15 mM NADH, 0.2 U
of aldolase, 1 U of TPI, and 0.1 U of G3PDH, starting the

reaction with NaPPi (Lara et al., 2004).

(xv) UDP-glucose pyrophosphorylase (UGPase): 80 mM

HEPES, pH 7.8, 5 mM MgCl2, 0.6 mM NAD, 1 mM

UDP-glucose, 0.5 mM PPi, 1 U of G6PDH, and 1 U of

phosphoglucomutase. The reaction was started by PPi

addition (Sowokinos et al., 1997).

Gel electrophoresis

SDS–PAGE was performed in 10% (w/v) polyacrylamide

gels according to Laemmli (1970). Proteins were visualized

with Coomassie blue or electroblotted onto a nitrocellulose

membrane for immunoblotting. Bound antibodies were

located by linking to alkaline phosphatase-conjugated goat
anti-rabbit IgG according to the manufacturer’s instruc-

tions (Bio-Rad, Hercules, CA, USA). The antibodies used

for detection were the following: 1:200 anti-Amaranthus

viridis PEPC (Colombo et al., 1998); serum against the

a-subunit of NAD-ME (diluted 1:1000) from A. hypochon-

driacus (Long et al., 1994); 1:1000 anti-Zea mays L.

pyruvate orthophosphate dikinase (PPDK; Chastain et al.,

2000); 1:200 anti-cucumber PCK (Walker et al., 1995); 1:10
anti-Z. mays recombinant NADP-ME (Saigo et al., 2004),

and 1:200 anti-Nicotiana tabacum HSP70 (Lara et al., 2005).

The molecular masses of the polypeptides were estimated

from a plot of the log of molecular mass of marker

standards versus the migration distance. Quantification of

the intensity of the bands was conducted by image analysis

software in at least three independent blots. The mean value

of the immunoreactive bands in recently harvested peaches
(R0) was arbitrarily set at 100%.

RNA isolation and RT-PCR

Total RNA from different samples of peaches was isolated

from 4 g of tissue using the method described by Meisel

et al. (2005). The integrity of the RNA was verified by

agarose gel electrophoresis. The quantity and purity of
RNA were determined spectrophotometrically according to

the method described by Sambrook et al. (1989). First-

strand cDNA was synthesized with MoMLV reverse

transcriptase following the manufacturer’s instructions

(Promega, Madison, WI, USA) and using 3 lg of RNA

and oligo(dT).

Quantitative real-time reverse transcription-PCR (QRT-
PCR)

Relative expression was determined by performing QRT-

PCR in an iCycler iQ detection system and the Optical

System Software version 3.0a (Bio-Rad, Hercules, CA,
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USA), using the intercalation dye SYBRGreen I (Invitro-

gen) as a fluorescent reporter, with 2.5 mM MgCl2, 0.5 lM
of each primer, and 0.04 U ll�1 of GoTaq Polymerase

(Promega). PCR primers were designed based on peach

fruit cDNA sequences published in GenBank and P. persica

expressed sequence tag (EST) databases (TIGR Plant

Transcript Assemblies; http://plantta.tigr.org, Childs et al.,

2007), with the aid of the web-based program ‘primer3’
(http://www.frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.

cgi) in such a way as to produce amplicons of 131–226 bp in

size (Supplementary Table S1 available at JXB online). The

primer and amplicon sequences were further analysed using

peach EST databases (ESTree Database, http://www.itb.cnr.

it/estree/, Lazzari et al., 2008; and GDR Genome Database

for Rosaceae, http://www.bioinfo.wsu.edu/gdr/, Jung et al.,

2008). A 10-fold dilution of cDNA obtained as described
above was used as template. PCR controls were performed in

the absence of added reverse transcriptase to ensure RNA

samples were free of DNA contamination. Cycling parame-

ters were as follows: initial denaturation at 94 �C for 2 min;

40 cycles of 96 �C for 10 s; and 58 �C for 15 s; 72 �C for

1 min, and 72 �C for 10 min. Melting curves for each PCR

were determined by measuring the decrease in fluorescence

with increasing temperature (from 65 �C to 98 �C). The
specificity of the PCRs was confirmed by melting curve

analysis using the software as well as by agarose gel

electrophoresis of the products. Each RNA sample was run

in triplicate and repeated in at least two independent sets of

treatments, generating a total of six replicates per gene per

sample. Relative gene expression was calculated using the

‘Comparative 2–DDCT’ method (Livak and Schmittgen, 2001)

and elongation factor 1 (ef1) as reference gene. Results were
expressed in relation to the values obtained for recently

harvested peaches (R0).

ef1 was chosen among different control genes widely used

following the indications of Brunner et al. (2004). To test

whether ef1 behaves as a housekeeping gene in the analysed

samples, the gene expression index was plotted against the

sample, and linearity and low slope were verified (Brunner

et al., 2004). Actin was also tested but its expression varied
upon HT (data not shown). In comparison, in potato

among seven common housekeeping genes tested during

biotic and abiotic stresses, ef1 was also detected as the most

stable gene (Nicot et al., 2005).

Statistical analysis

Data from the quantitative real-time experiments were

tested using one-way analysis of variance (ANOVA).

Minimum significant differences were calculated by the
Bonferroni, Holm–Sidak, Dunett, and Duncan tests

(a¼0.05) using the Sigma Stat Package.

2D-DIGE

The differential proteome of peach fruit under HT was

assessed by comparing heat-treated peaches with those

ripening at ambient temperature of the same age: R3 versus

HT and R7 versus HT+3. Additionally, the heat-treated

proteome was compared with that of samples transferred to

20 �C after HT (HT versus HT+3).

Protein labelling with dyes

In all experiments, proteins were labelled with Alexa 610

(excitation, 612 nm; emission peak, 628 nm) or Alexa 532

(excitation, 532 nm; emission peak, 554 nm) after adjusting

the pH to 8.5 using the supplier’s instructions (Molecular

Probes Inc. and Invitrogen Ltd). Proteins were labelled at

the ratio of 100 lg of protein:20 nmol of Alexa protein
minimal labelling dye in dimethylformamide. After vortex-

ing, samples were incubated for at least 2 h on ice. The

reaction was quenched by addition of 1 ll of 1 mM lysine

and 20 mM DTT, and 4% (v/v) of isoelectric focusing (IEF)

buffers pH 3–10 or 5–8 was added (Amersham Biosciences).

Two-dimensional gel electrophoresis

A 100 lg aliquot of Alexa 532-labelled sample was mixed

with 100 lg of Alexa 610-labelled protein prior to 2D gel

electrophoresis. A Protean IEF Cell instrument (Bio-Rad,

Hercules, CA, USA) was used for IEF with pre-cast

immobilized pH gradient (IPG) strips (pH 4–7, linear
gradient, 17 cm, Bio-Rad, Hercules, CA, USA). Samples of

300 ll containing the labelled proteins were loaded by in-gel

rehydration. The strips were subjected to IEF using the

following program: 12 h at 50 V; 1 h at 500 V; 1 h at

1000 V and 8000 V until a final voltage of 68 000 V was

reached. Focused gel strips were equilibrated in SDS

equilibration buffer (375 mM TRIS-HCl, pH 8.0, 20%

glycerol, 2% SDS, and 6 M urea), first with buffer contain-
ing 130 mM DTT for 15 min and afterwards with buffer

containing 135 mM iodoacetamide for 15 min. The strips

were washed briefly with running buffer, then loaded on top

of a prepared SDS–PAGE Laemmli gel cast with 15% (w/v)

acrylamide, and covered with 0.5% (w/v) agarose. Proteins

were separated at 15 mA per gel for 12–15 h at 15 �C using

a Hoefer TMSE 600, 18316 cm (Amershan, Uppsala,

Sweden), and the gels were scanned using a BioChemi
System UVP BioImaging System. Data were saved in tiff

format. In order to obtain biological replicates, each sample

comparison was run in at least three different gels using

different protein preparations from different fruit. To excise

samples for mass spectrometric analysis, a preparative gel

loaded with 1 mg of protein was run.

Gel image analysis

Images were analysed using Image Master 2D-Platinum

(GE Healthcare) using the protocol described in Casati

et al. (2006). When necessary, spots were manually edited.

A normalization procedure was used to allow for variation
in total protein loading onto the gel(s). Total spot volume

was calculated, and each spot was assigned a normalized

spot volume as a proportion of this total value. Normalized

spot volumes were compared between Alexa 532- and Alexa

610-labelled samples on each gel. Difference thresholds were
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then applied to identify the proteins with a statistically

significant 1.5-fold difference in normalized spot volume

(P <0.05) (Casati et al., 2006).

In-gel digestion, mass spectrometry, and database
searching

Before spot picking the gel was stained using Coomassie

Blue stain. Gel spots of interest were manually excised from

gels and sent to CEBIQUIEM facilities (Facultad de

Ciencias Exactas y Naturales, Universidad de Buenos Aires,

Argentina) for further analyses. Spots were subjected to in-

gel digestion (donatello.ucsf.edu/ingel.html) with trypsin
according to Casati et al. (2006). The mass spectrometric

data were obtained using a MALDI-TOF-TOF spectrome-

ter, Ultraflex II (Bruker).

The spectra obtained were submitted for National Center

for Biotechnology Information (NCBI) database searching

using MASCOT (www.matrixscience.com, Perkins et al.,

1999) and analysed as previously described (Casati et al.,

2006). Only candidates that appeared at the top of the list
were considered positive identifications. Peptides were

considered as matches either if they were classified as

‘significant’ (i.e. P < 0.05, which with our search parameters

equals a MOWSE score of >40) or if they showed

‘homology’ (a MOWSE score between 15 and 39, depend-

ing on the sequence of the peptide) and at the same time

represented a protein with a theoretical molecular weight

corresponding to the apparent molecular weight after SDS–
PAGE (Casati et al., 2006). Protein functional classification

was done according to literature data.

Results

In this study, peach fruit exposed immediately after harvest

(R0) to 39 �C for 3 d (HT) were analysed in comparison

with fruit allowed to ripen at 20 �C for 3 d (R3) or 7 d

(R7). In order to analyse if the HT affects subsequent

ripening at 20 �C, treated peaches (HT) were moved to
20 �C for 3 d, simulating shelf life (named HT+3). Quality

parameters, carbon metabolism, and the differential pro-

teome were analysed in all the samples to assess how HT

affects central metabolism and to identify candidate pro-

teins involved in heat-induced CI tolerance in peach.

Fruit quality traits determinations after HT and
subsequent ripening at 20 �C

‘Dixiland’ peaches were harvested at an average firmness of

52.166.5 N (Table 1, Fig. 1A). For the group of fruit kept

at ambient temperature, the ripening process took place

normally, which was evidenced by a decrease in the

firmness, reaching values <15 N at 7 d after harvest (Fig.
1A). In contrast, after 3 d of HT, fruit maintained their

firmness, which rapidly decreased after transfer to 20 �C,
reaching values even lower than those of fruit of practically

the same post-harvest age not exposed to high temperature

(HT+3 versus R7, Fig. 1A). In addition, the epidermis

colour was modified after high temperature exposure,

reaching an orange-reddish colour when transferred to

ambient temperature (Budde et al., 2006; Table 1). A
similar trend was observed in the pulp coloration upon

exposure to 39 �C (Budde et al., 2006; Table 1).

The level of the transcript encoding 1-aminocyclopropane-

1-carboxylic acid (ACC) oxidase 1, ACO1, involved in

ethylene synthesis, was also analysed by QRT-PCR. It was

previously shown that ACO1 levels are well correlated to

Fig. 1. (A) Relationship between fruit firmness and ACO1 level of

fruit kept at 20 �C or after HT. Fruit collected from the tree (R0)

were allowed to ripen at 20 �C during 3 d and 7 d (R3 and R7) or

maintained at 39 �C for 3 (HT) and then transferred to 20 �C for

another 3 d (HT+3). Fifteen fruit were used for firmness de-

termination (values represent the mean 6SD). Expression analysis

of ACO1 involved in ethylene biosynthesis in peach fruit was

carried out by QRT-PCR. The means of the results obtained, using

three independent mRNAs as template, are shown. Each reaction

was normalized using the Ct values corresponding to P. persica

elongation factor 1 mRNA. The y-axis shows the fold difference in

a particular transcript level relative to its amount found in peaches

after harvest (R0). Standard deviations are shown. (B) Western blot

of the different fruit samples using antibodies against maize

HSP70. A 25 lg aliquot of total peach soluble protein was added

per lane. As control (C), 25 lg of Zea mays crude extract was

loaded. The molecular mass of the immunoreactive bands is

shown on the right and expressed in kDa. The quantification of the

immunoreactive bands is expressed as a percentage of the

amount found after harvest (R0, n¼2). Standard deviations are

shown. Bars with the same letters are not significantly different

(P <0.05).
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ethylene production (Borsani et al., 2009). Figure 1A shows

that the higher the firmness of the fruit, the lower the level of

ACO1. HT for 3 d prevents the ACO1 increase that usually

occurs during fruit ripening at ambient temperature, as fruit

exposed to HT displayed a much lower level than fruit of the

same post-harvest age maintained at ambient temperature

(HT versus R3, Fig. 1A). However, once heat-treated fruits

are transferred to 20 �C a rapid increase in ACO1 level
occurs, reaching values even higher than those found in R7

(Fig. 1A). The levels of HSP70 estimated by western blot

were also analysed in the different fruit samples, detecting

higher levels of expression in HT and HT+3 samples with

respect to fruit of the same post-harvest age (R3 and R7,

respectively, Fig. 1B). The high level of this HSP in heat-

treated fruits is indicative that the HT applied was sensed by

the fruit, provoking induction of specific proteins (Fig. 1B).
As regards the total SSC, no prominent differences were

observed among the different samples (Table 1). Total

acidity levels decreased after heat exposure, although this

parameter was partially restored when fruit were removed

from high temperature and maintained at 20 �C for 3 d

(Table 1). Total acidity matched with the levels of malic

acid which were half in fruits exposed to HT with respect to

peaches of the same post-harvest age kept at ambient
temperature (Fig. 2). Citric acid content also correlated

with total amounts of acidity after HT, presenting 20%

lower values in fruit exposed to HT compared with peaches

of the same post-harvest age (Fig. 2).

Regarding the sugar content, sucrose and both hydrolytic

products, glucose and fructose, were quantified (Fig. 2). The

sucrose level was not affected by the HT and thus fruit

exposed to heat displayed the same sucrose level as fruit of
the same post-harvest age kept at room temperature (Fig. 2).

Interestingly, higher levels of both glucose and fructose

were observed in HT and HT+3 fruits in comparison with

peaches that ripen at ambient temperature (Fig. 2). After

HT, the sorbitol content did not change significantly and

practically the same level of this metabolite was found in

the HT+3 sample (Fig. 2). Thus, when compared with fruit

of the same post-harvest age not subjected to HT,
significantly higher levels of this metabolite were found,

reaching 10 times higher levels in the HT+3 sample (Fig. 2).

Finally, metabolites produced by alcoholic fermentation

were also quantified. The intermediate product, acetalde-

hyde, was affected by the heat exposure (Fig. 2), with HT+3

fruit having nearly twice the amount as fruit of practically

the same age and nearly five times the value of fruit recently

harvested (Fig. 2). In contrast, the quantity of the final
product ethanol remained undetectable in all samples

analysed (data not shown). On the other hand, an increase

in the fruit respiration rate after HT was observed. In this

way, HT fruit (24.860.9 lg CO2 kg�1 s�1) displayed

a nearly 40% higher respiration rate than that found at

harvest (R0; 16.960.4 lg CO2 kg�1 s�1) or after 3 d at

20 �C (R3; 13.060.3 lg CO2 kg�1 s�1). In addition, HT+3

fruit also displayed a higher respiration rate (21.760.4 lg
CO2 kg

�1 s�1) than peaches of almost the same post-harvest

age (R7; 18.060.4 lg CO2 kg
�1 s�1).

Fig. 2. Quantitation of sugars, organic acids, and fermentation

products in peach fruit exposed to HT. Amounts of metabolites are

expressed in g per 100 g of fruit fresh weight. Fruit were detached

from the plant and transferred to 39 �C for 3 d (HT) and then

transferred to 20 �C for 3 d (HT+3). Values represent the mean of

at least 14 independent determinations 6SD. For each metabolite,

bars with the same letters are not significantly different (P <0.05).

Below each bar, the ratio of the metabolite level relative to the

unheated sample of the same post-harvest age is indicated (HT

versus R3 and HT+3 versus R7; Borsani et al., 2009).
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Enzymes involved in sugar metabolism after HT and
subsequent ripening at 20 �C

In order to elucidate how sugar metabolism is affected by

high temperature exposure, several enzymatic activities were

studied after HT (Fig. 3). In addition, the levels of tran-

scripts encoding many of these proteins, when the sequences

were available, were also quantified by QRT-PCR (Fig. 4).

Transcript expression levels obtained by QRT-PCR were

normalized using ef1 as the reference gene, and results for

the different samples were expressed in relation to the

values obtained for recently harvested peaches (R0).

Sucrose may be catabolized through either invertase or

sucrose synthase (SS) pathways. Both NI and AI were

modified upon fruit exposure to high temperature. AI

activity could not be detected in peach fruit after HT or

after the heated fruits were transferred to 20 �C (Fig. 3). On

the other hand, NI activity was induced when peach fruit

under HT were transferred to 20 �C with respect to both

HT fruit and peaches of practically the same post-harvest

age (Fig. 3). Four different transcripts encoding NIs were

detected in peach EST databases and their expression levels

were evaluated by QRT-PCR (Fig. 4). The data obtained

show that the increase in NI activity observed in HT+3 is

preceded by a large increase in the levels of NI2, NI3 and

NI4, with a 12- and 17-fold rise occurring in NI3 and NI4,

respectively, in HT with respect to fruit of the same post-

harvest age (Fig. 4). In the case of NI3 and NI4, this

induction declined after transfer to ambient temperature.

Nevertheless, the amounts of NI2 and NI3 remained at

higher levels of expression in comparison with untreated

fruit (Fig. 4). The level of the transcript encoding SS was

also dramatically affected by the heat treatment. A 10-fold

decrease was measured for SS in HT with respect to fruit of

practically the same post-harvest age (Fig. 4). The amount

of SS was partially restored after transfer to 20 �C, with
values almost three times lower than in fruit of practically

the same post-harvest age (Fig. 4). A similar trend was

observed for the enzyme UGPase. The activity of UGPase

decreased nearly 4-fold in HT fruit with respect to fruit of

the same post-harvest age (Fig. 3) and remained low after

transfer to 20 �C (HT+3) (Fig. 3).

Regarding sorbitol metabolism, the transcript encoding

sorbitol dehydrogenase (SDH) was significantly decreased

in HT and HT+3 samples in relation to fruit of the same

post-harvest age (Fig. 4), in agreement with the high levels

of sorbitol in peaches exposed to HT with respect to

untreated fruit (Fig. 2).

In addition, the effect of HT on several enzymes

catalysing key steps of the glycolytic pathway was analysed.

The level of fructokinase transcript (FK) was significantly

reduced in HT+3 peaches (Fig. 4). On the other hand,

glucokinase (GK) and both PFP and PFK activities were

very similar to the activities measured in untreated fruit of

the same post-harvest age (Fig. 3). In contrast, PK activity

decreased in HT samples with respect to peaches of the

same post-harvest age, followed by a nearly 2-fold increase

after transfer to 20 �C (Fig. 3).

Finally, the activity of fermentative enzymes was practi-
cally not modified by HT in comparison with fruit of the

same post-harvest age (Fig. 3). In contrast, upon transfer of

Fig. 3. Sucrose degradation, and glycolytic- and fermentation-related enzymes activity after HT and subsequent ripening. The activity of

NI and AI UGPase and enzymes involved in key steps of glycolysis (GK, PFP, PFK and PK); and alcoholic (PDC and ADH) and lactic

(LDH) fermentation were analysed. Peach fruit were collected immediately after harvest (R0) and exposed to 39 �C for 3 d (HT) followed

by 3 d at 20 �C (HT+3). Activity is expressed in international units (U) per mg of total soluble protein in all cases except for invertases,

where activity is expressed in mU per mg of total protein. For each enzyme, bars with the same letters are not significantly different

(P <0.05). Values represent the mean of at least six independent determinations using different fruits collected at different times after

harvest 6SD. ND, activity not detected. Below each bar, the ratio of the activity of the sample relative to the activity in the untreated

sample of the same post-harvest age is indicated (HT versus R3 and HT+3 versus R7; Borsani et al., 2009).
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the heated peaches to 20 �C for 3 d (HT+3), a decrease in

ADH activity as well as an increase in PDC activity was

observed (Fig. 3).

Enzymes involved in organic acid metabolism after heat
treatment and subsequent ripening

The levels of a number of proteins associated with malate
metabolism were evaluated by activity measurement as well

as by semi-quantification by western blot analysis in

peaches subjected to HT (Fig. 5).

PEPC and PCK are involved in the OAA production

from PEP. OAA is later used for malate generation by

MDH. PEPC activity increased in HT samples with respect

to fruit of practically the same post-harvest age, a value that

was maintained in HT+3 samples (Fig. 5A). Levels of PEPC
immunoreactive protein correlated with changes in activity

(Fig. 5B). In the case of PCK, a decrease in activity was

observed in HT and HT+3 samples (Fig. 5A). However, the

modification in PCK immunoreactive protein during the

HT did not correlate with PCK activity (Fig. 5B). In this

case, two PCK immunoreactive bands were detected, and

the lower PCK band was particularly increased in HT+3

samples (Fig. 5B). NAD-ME was practically not affected by

the HT at both the protein and activity levels, while NADP-

ME activity in HT and HT+3 peaches was nearly half of

that in fruits of the same age (Fig. 5A), which correlated

with the levels of immunoreactive protein (Fig. 5B).

Finally, PPDK, an enzyme involved in PEP/pyruvate
interconvertion, was affected by the HT. Significant

increases in the levels of immunoreactive protein were

observed in fruit subjected to 39 �C (HT) and also after

transfer to 20 �C for 3 d (HT+3, Fig. 5B).

2D-DIGE analysis of proteins modified upon heat
treatment followed by MS/MS identification

To analyse the response of the peach proteome to the high

temperature treatment, 2D-DIGE analysis was conducted

using pH 4.0–7.0 strips and 15% SDS–PAGE. Preliminary

electrophoretic runs were conducted with pH 3.0–10.0

strips, which revealed that the major proportion of the
proteins displayed isoelectric points (pIs) between 4.0 and

7.0. About 600 spots were detected on the two-dimensional

electrophoresis map carried out with soluble protein

extracted from peach fruit after harvest, kept at either

20 �C or 39 �C during 3 d. The left panel of Fig. 6C shows

the typical protein pattern obtained for the peach fruit

proteome, corresponding to fruit exposed to 39 �C for 3 d

(HT).
From the 2D-DIGE analysis the following results could

be observed: 57 polypeptides were affected by temperature

by a factor of61.5 (t-test with significance P <0.05, Table 2)

of which 52 proteins were differentially expressed between

fruits exposed to HT or after transfer to 20 �C (HT+3),

versus fruits kept at 20 �C and taken at different time points

(R3 and R7, Fig. 6A). Five proteins were differentially

expressed when HT samples were compared against HT+3
(Fig. 6A). Forty-four differential proteins were identified by

fingerprinting mass analysis (Table 2). Missing identifica-

tions could be explained by the low abundance of the spots

or the fact that the protein was not present in the available

databases. From the analysed spots, 20 proteins had already

been described in the Prunus spp. genus, with half of the

proteins already identified in peach (P. persica). Among

identified spots, a large number (93%) have been proposed
to play a role in plant metabolism such as the defence and

stress response, cytoskeleton organization, primary metabo-

lism, transcription and translation regulation, and protein

storage and catabolism, and only 7% of the identified

proteins do not have a function assigned yet (Fig. 6B).

The category of proteins participating in biotic or abiotic

stress responses was the one with the most proteins

differentially expressed (Fig. 6B). Twenty-seven percent of
the identified proteins corresponded to the large family of

HSPs and exhibited molecular masses <20 kDa. Among the

HSPs detected, six different isoforms were recognized based

on MS-TOF-TOF spectra. With the exception of spot 85,

all of the HSPs identified increased in peaches subjected to

Fig. 4. Expression analysis, assessed by QRT-PCR, of transcripts

encoding enzymes involved in peach fruit carbon metabolism after

HT and subsequent ripening at ambient temperature. Peach fruits

were collected immediately after harvest (R0) and exposed to

39 �C for 3 d (HT) followed by 3 d at 20�C (HT+3). For each

sample, means of the results obtained, using three independent

RNAs as a template, are shown. Each reaction was normalized

using the Ct values corresponding to P. persica elongation factor 1

mRNA (Table 1). The y-axis shows the fold difference in a particular

transcript level relative to its amount found in peaches analysed

after harvest (R0). Standard deviations are shown. For each

transcript analysed, bars with the same letters are not significantly

different (P <0.05). Below each bar, the ratio of the level of the

particular transcript relative to the level in untreated peaches of the

same post-harvest age is indicated (HT versus R3 and HT+3

versus R7; Borsani et al., 2009).
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Fig. 5. Enzymes involved in organic acid metabolism in peach fruit exposed to HT. (A) Activity assays of enzymes involved in the

consumption of malate (NADP-ME and NAD-ME) and PEP metabolism (PCK and PEPC). Activity is expressed in international units (U)

per mg of total soluble protein. For each enzyme, bars with the same letters are not significantly different (P <0.05). Values represent the

mean of at least six independent determinations in different fruits 6SD. Fruit were collected (R0) and kept for 3 d at 39 �C (HT) and

followed by 3 days at 20 �C, simulating shelf life (HT+3). Below each bar, the ratio of the activity of the sample relative to the activity in

the untreated sample of the same post-harvest age is indicated (HT versus R3 and HT+3 versus R7; Borsani et al., 2009). (B) Western

blot analysis of proteins involved in malate metabolism, using antibodies against PEPC, PCK, NAD-ME, NADP-ME, or PPDK. A 25 lg

aliquot of total soluble protein was added per lane. As assay control (C), 25 lg of Zea mays (for PCK, NADP-ME, or PPDK western blots)

or Portulaca oleracea (for PEPC or NAD-ME western blots) crude extracts were loaded in the first lane. Molecular masses of the

immunoreactive bands are shown on the right (kDa). The quantification of the immunoreactive bands is expressed in relation to the

amount in fruits sampled after harvest (R0) and is shown below each western blot (n¼2 or 3). Standard deviations are shown. For each

enzyme, bars with the same letters are not significantly different (P <0.05).
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HT, being differentially expressed in HT fruits, HT+3

fruits, or both, with respect to peach fruit kept at 20 �C
(Fig. 6C, Table 2). Within the induced HSPs, half of the

proteins were up-regulated (with ratios of, for example, 87

in the case of spot 67), while the other half exclusively
appeared after the HT (Table 2). The relative abundance of

pathogen-related (PR) proteins is shown in Fig. 6C5. The

major cherry allergen, Pru av 1.0202 (spot 79), was induced

after the HT. The MS analysis from two different spots

matched the protein present in the Uni-prot database with

accession number Q6QHU3, suggesting that at least two

different isoforms of a protein identified as a major cherry

allergen are present in peach fruit after HT. Analysis of the
available ESTs reveals the existence of more than one

transcript encoding the major cherry allergen in peach.

Nevertheless, a post-translational modification of the same

protein producing changes in molecular mass and/or pI

cannot be ruled out. Another PR protein, identified as

major-allergen Pru p1 (spot 69), was also induced upon HT

(Table 2). Proteins induced by or related to abscisic acid

(ABA) were also increased in peaches subjected to temper-

ature stress treatment (spots 134 and 265, Fig. 6C3 and C4,

Table 2) while another one was repressed (spot 247, Table

2). Other proteins involved in the stress response such as

temperature-induced lipocalin (spot 95), isoflavone reduc-

tase (spots 15 and 16), and enzymes involved in antioxidant
metabolism (spots 291 and 88) were repressed in HT+3

samples in relation to samples of practically the same post-

harvest age (R7) (Fig. 6C1, Table 2).

The four polypeptides related to actin metabolism

identified in the present work were repressed in HT+3

samples in comparison with peaches kept for the same

period of time at 20 �C (R7) that were never exposed to

39 �C (spots 91, 96, 11, and 12, Table 2). On the other
hand, different proteins involved in several steps of protein

metabolism were also affected by the temperature treatment

applied, including a polypeptide involved in protein catab-

olism through the ubiquitin system, which was induced by

HT in HT samples as well as in HT+3 samples (spot 289,

Fig. 6C5, Table 2). In addition, a translation initiation

factor was also induced in HT samples (spot 266, Table 2).

On the other hand, putative glycine-rich RNA-binding

Fig. 6. Differential proteome of peach fruit ripening at 20 �C or subjected to heat treatment. 2D-DIGE was conducted using 75 lg of

proteins extracted with the phenol method from peach fruit. (A) Scheme of sample collection and treatment. Samples were collected

from peach at harvest (R0) and allowed to ripen at 20 �C for 3 d or 7 d (R3 and R7, respectively) and compared with peach subjected to

39 �C for 3 d (HT) and then transferred to 20 �C (HT+3). Arrows point towards the samples involved in each comparison and the

numbers nearby indicate the amount of spots differentially expressed between the samples. Comparisons indicated with discontinuous

arrows and numbers with an asterisk were analysed in Borsani et al. (2009). (B) Functional classification of differentially expressed

proteins in samples subjected to HT. (C) A representative 2D-DIGE gel showing the spot distribution of proteins from fruit exposed to

39 �C during 3 d (HT). As examples of proteins with differential expression, the relative abundances of some and not all spots annotated

by the number that appears in Table 2 are shown with magnification in squares C1–C5. The relative size of the different spots amplified is

conserved. The graph represents one example from at least three different gels used for the differential analysis. The first dimension was

carried out using 18 cm immobilized pH gradient strips (pH 4–7), acidic side to the left; and the second dimension was on 15% (w/v)

SDS–PAGE, low molecular mass at the bottom. The relative abundance of proteins was determined. The protein spots with significant

changes in intensities (P <0.05) were considered to be different (Table 2).
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Table 2. Identification of differentially expressed proteins from ‘Dixiland’ peach subjected to HT as well as the trend observed in the

protein abundances

Recently harvested fruits (R0) were divided into two groups, one was kept at 20 �C for 3 d (R3) or 7 d (R7) and the other was subjected to
a 3 d 39 �C treatment (HT) and then transferred for 3 days at 20 �C (HT+3, Fig. 6).

Spot no. Ratioa Accession no. Homologous protein assignment Scoreb SC (%) QMc Computed Observed

NCBI Uniprot pI MW pI MW

R3 versus HT

Decrease in HT

153 1.8 gi|37051117 Q76KV5 S-Adenosylmethionine synthetase-2 102 37% 10 6.3 37.8 6.0 40

Increase in HT

480 1.8 gi|2677828 O50002 Cysteine protease 88 14% 3 6.4 39.9 4.8 31

490 1.5 gi|2677828 O50002 Cysteine protease 22 12% 3 6.4 39.9 4.4 30

70 49.5 gi|6969974 Q9M6R2 LMW heat shock protein 41 5% 1 5.4 18.2 5.2 22

69 2 gi|82492265 Q2I6V8 Major allergen Pru p 1 74 54% 7 5.8 17.6 5.6 21.5

67 1.5 gi|1235898 Q39930 17.7 kDa heat shock protein 157 31% 6 6.2 17.7 6.0 22

82 10.2 gi|41059801 Q6RFM0 Small heat shock protein 102 29% 2 6.0 17.4 5.3 17

241 1.5 – – – – – – – – 4.6 30

79 HT gi|44409451 Q6QHU3 Major cherry allergen Pru av 1.0202 92 10% 1 5.0 17.4 4.9 21.5

83 HT gi|5257560 Q9XGS6 Cytosolic class II LMW heat shock protein 139 29% 4 5.6 17.6 5.1 21

289 HT gi|136640 P25866 Ubiquitin-conjugating enzyme E2 30 11% 1 5.7 17.4 5.0 17

34 HT AY500559.1 Small heat shock protein 56 54% 7 6.0 17.3 5.4 21.5

134 HT gi|73762178 Q30E95 Type II SK2 dehydrin 41 28% 6 5.4 28.5d 5.1 43

243 HT gi|84619272 Q2P9V0 Soluble inorganic pyrophosphatase 197 27% 6 5.8 26.7 4.8 29

266 HT gi|829282 P69039 Eukaryotic initiation factor 5A-1 69 44% 4 6.3 15.9 5.5 23

221 HT – – – – – – – – 5.4 32

263 HT – – – – – – – – 5.2 24

259 HT – – – – – – – – 5.0 25

63 HT – – – – – – – – 4.6 66

190 HT – – – – – – – – 5.6 40

R7 versus HT+3

Decrease in HT+3

247 1.5 gi|110288693 Q7XGB3 TB2/DP1, HVA22 family protein 67 30% 8 7.6 39.3 6.3 3

291 2.5 gi|1420938 Q41712 Cytosolic ascorbate peroxidase 109 11% 2 5.6 27.1 5.8 28

85 R7 gi|41059801 Q6RFM0 Small heat shock protein 126 42% 7 6.0 17.4 5.5 22

86 R7 gi|34851124 Q6YNS1 Putative glycine-rich RNA-binding protein 158 64% 9 7.8 17.4 5.6 20

90 R7 gi|145340839 A4RR80 Predicted protein 74 39% 7 5.1 22.6 5.9 22

95 R7 gi|77744891 Q38JC5 Temperature-induced lipocalin 204 41% 7 5.6 21.4 5.5 23

11 R7 gi|126215670 Q0DLA3 Actin-depolymerizing factor 7 116 25% 2 6.3 16.1 6.3 21

12 R7 gi|125550577 A2XZM6 Hypothetical protein 128 26% 2 6.3 15.5 6.4 21

13 R7 gi|147866185 A5C9Q0 Hypothetical protein 156 32% 5 6.8 18 6.6 21

87 R7 gi|170743 Q41553 HMW glutenin subunit Ax2 81 18% 8 6.2 88.6 6.1 27

15 R7 gi|3243234 O81355 Isoflavone reductase-related protein 152 25% 7 6.0 34 6.4 33

16 R7 gi|3243234 O81355 Isoflavone reductase-related protein 136 23% 6 6.0 34 6.4 35

88 R7 gi|3282505 O81103 Polyphenol oxidase precursor 250 15% 8 6.4 67.4 5.9 65

92 R7 gi|1708924 P51615 NADP-dependent malic enzyme 71 11% 7 6.1 65.6 5.6 65

91 R7 gi|56181504 Q5PU47 Putative actin 1 208 29% 10 5.6 40.3 5.3 43

96 R7 gi|23955912 Q8H6A3 Actin 344 45% 14 5.3 41.9 5.3 43

111 R7 gi|118482898 A9PAG0 Unknown 52 17% 4 5.5 25.6 5.6 28

112 R7 gi|2970051 O64438 ARG10 75 17% 3 5.6 25.8 5.6 27

89 R7 – – – – – – – – 5.7 22

98 R7 – – – – – – – – 5.5 30

Increase in HT+3

70 5.1 gi|6969974 Q9M6R2 LMW heat shock protein 65 26% 1 5.4 18.2 5.2 23

67 87 gi|1235898 Q39930 17.7 kDa heat shock protein 157 31% 6 6.2 17.7 6.0 22

34 5.1 AY500559.1 Small heat shock protein 191 54% 7 6.0 17.4 5.4 21.5

99 4.1 gi|44409451 Q6QHU3 Major cherry allergen 165 26% 3 5.0 17.4 4.8 17

265 2.1 gi|16588758 Q93WZ6 Abscisic stress ripening-like protein 55 49% 5 5.7 20.7 5.5 31

327 1.5 gi|2246378 Q7DLI5 Plastid protein 91 20% 4 7.6 22.8 5.5 21

82 HT+3 gi|41059801 Q6RFM0 Small heat shock protein 102 29% 2 6.0 17.4 5.3 17
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protein and a-type proteasome subunit were repressed upon

the treatment (spots 86 and 111, Table 2).
Regarding primary metabolism, decreases in NADP-ME

(spot 92, also detected by western blot analysis, Fig. 5B)

and S-adenosylmethionine synthetase (SAMS; spot 153) in

peaches exposed to HT with respect to fruits of the same

age were observed (Table 2 and Fig. 6C1, C2).

Discussion

Quality attributes of peach fruit exposed to HT:
reversible softening inhibition and changes in coloration

Some quality-determining factors were modified in peach

fruit exposed to HT in relation to fruits allowed to ripen at

20 �C (Figs 1, 2). Pulp and epidermis of peach exposed to

HT turned reddish (Table 1), as previously reported (Budde

et al., 2006). Similarly, colour changes due to carotenoid

accumulation were observed in heated tomato and in

transgenic tomato overexpressing a HSP (Neta Sharir et al.,

2005). On the other hand, as in tomato exposed to high
temperature (Lurie and Klein, 1991), HT fruit showed the

same firmness as fruit after harvest (R0) and in contrast to

peach of the same post-harvest age at 20 �C (R3), which

were less firm (Fig. 1). However, this softening inhibition by

HT is reversible since HT fruit transferred to ambient

temperature (HT+3) soften even more quickly than un-

heated fruit (Fig. 1A). This effect of HT on peach firmness

may be due to the inhibition of ethylene production, as
previously shown (Budde et al., 2006). This ethylene decline

may take place through the regulation of different steps of

the biosynthesis since a decrease in ACO1 (Fig. 1A) and

SAMS protein (Table 2) was observed in the HT sample

with respect to peaches kept at 20 �C. The decrease in

ethylene biosynthesis is reversible, which is in relation to the

restoration of both ACO1 and SAMS levels when the heat
stress is removed (Fig. 1A, Table 2). Moreover, the higher

level of ACO1 detected in HT+3 peaches versus untreated

peaches of the same post-harvest age may be directly

correlated to higher ethylene production (Budde et al.,

2006) and to the rapid softening once the heated peaches

are allowed to ripen at ambient temperature (Fig. 1A). The

reversible softening inhibition induced by HT indicates that

this treatment may be used for preserving peach quality
during post-harvest storage, probably before cold storage.

To evaluate this possibility, the metabolic changes induced

by HT in important carbon compounds that contribute to

the overall organoleptic quality of fresh peach were

evaluated.

Sugar and organic acid metabolism in peach fruit under
HT

When peach fruit are exposed to 39 �C, sucrose utilization

via SS or invertase is modified (Fig. 7), with SS transcripts

(Fig. 4) and UGPase activity (Fig. 3) drastically down-
regulated with respect to unheated fruits. While AI activity

is decreased upon HT to undetectable levels, NI activity is

not modified (Fig. 3). However, among the four NI genes

deduced from EST databases, three transcripts (NI2, NI3,

and NI4) are clearly induced (Fig. 4). Invertases are

classified according to their subcelullar distribution in

vacuolar, cell wall, cytosolic, and, recently, mitochondrial

and plastidic NI (Szarka et al., 2008; Vargas et al., 2008). In
grape berry, five NI genes (VvNI genes) are expressed in the

fruit mesocarp (Nonis et al., 2008). Motifs responsive to

heat stress (HSEs) have been found in the VvNI1 and

VvNI4 promoters, and motifs responsive to low temper-

atures (LTRs) in the VvNI3 promoter (Nonis et al., 2008).

Table 2. Continued

Spot no. Ratioa Accession no. Homologous protein assignment Scoreb SC (%) QMc Computed Observed

NCBI Uniprot pI MW pI MW

79 HT+3 gi|44409451 Q6QHU3 Major cherry allergen 81 10% 1 5.0 17.4 4.9 21.5

289 HT+3 gi|136640 P25866 Ubiquitin-conjugating enzyme E2 30 11% 1 5.7 17.4 5.0 17

330 1.9 – – – – – – – – 5.8 21.5

207 2.1 – – – – – – – – 5.3 42

208 HT+3 – – – – – – – – 5.3 41

HT versus HT+3

Increase in HT+3

82 1.5 gi|41059801 Q6RFM0 Small heat shock protein 102 29% 2 6.0 17.4 5.3 17

83 1.5 gi|5257560 Q9XGS6 Cytosolic class II LMW HSP 139 29% 4 5.6 17.6 5.1 21

99 1.5 gi|44409451 Q6QHU3 Major cherry allergen 165 26% 3 5.0 17.4 4.8 17

216 1.6 – – – – – – – – 6.1 33

243 1.5 – – – – – – – – 6.2 29

a Ratio of increase or decrease of target protein as indicated in the table. When the spot is found in only one condition of the comparison, the
name of the sample where it is present is shown instead of a number.

b Score: Mascot-MOWSE score. SC, sequence coverage; QM, queries matched
c Number of peptides matched in databases.
d Molecular weight deduced from a partial sequence.
– No sequences were found in the databases.
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In peaches under HT, the great increase in NI3 and NI4,

which are highly homologous to VvNI3 and VvNI1, re-

spectively (Fig. 4), suggests that HSEs may be conserved in

at least some NI peach promoters. Future studies regarding

the activity and localization of invertase isoforms may

elucidate not only the role of each isoform in sucrose

utilization but also its function under HT and/or CI

protection in peach fruit. In addition, future research in this
respect may help to understand their role in the network of

sugar accumulation, sensing, and signalling.

Besides changes in sucrose cleavage enzymes (Figs 3, 4),

sucrose levels are not significantly modified under HT with

respect to untreated peaches (Fig. 2). Conversely, the levels

of both fructose and glucose are higher in fruit exposed to

39 �C than in peaches kept at 20 �C (Fig. 2). If this increase

in hexoses is not explained by a decrease in the amount of
sucrose, one reasonable explanation is a decrease in the rate

of hexose consumption. In this regard, several enzymes

involved in the first part of the glycolytic pathway are not

modified upon HT in terms of activity level (GK, PFK, and

PFP; Fig. 3). However, in fruit kept at 39 �C (HT), the

activity of PK diminished (Fig. 3), which may limit the

glycolytic flux and, thus, may be responsible for the increase

in glucose and fructose levels (Fig. 7). On the other hand,

PPDK immunoreactive protein is increased after HT (Fig.

5). A partial substitution of PK activity by PPDK may

restore the glycolytic pathway under HT (Fig. 7), as in the

case of tissues under stress conditions such as phosphate

starvation (Theodorou and Plaxton, 1993) or hypoxia

(Huang et al., 2005). Further use of pyruvate for fermenta-
tion is not affected in HT peaches, as accounted for by

maintenance of the activity of the fermentative enzymes

(Fig. 3). In this respect, the decrease in acetaldehyde content

in HT with respect to R3 samples (Fig. 2) may be due

to a higher volatilization rate under high temperature

conditions.

Regarding organic acid contents in peach under HT,

malate and citrate levels were lower than in fruit allowed to
ripen at 20 �C (Fig. 2). While NAD-MDH (data not shown)

and NAD-ME (Fig. 5A) showed the same activity in HT

and in recently harvested fruit, NADP-ME decreased (Fig.

5A). In addition, PEPC, catalysing the synthesis of OAA,

was increased due to HT, at both the activity and protein

level (Fig. 5A, B). These observations, together with a nearly

Fig. 7. Simplified metabolic scheme and changes observed after HT in relation to typical peach metabolism during post-harvest

ripening. The scheme shows the reactions analysed in the present study involving the metabolism of sugars and major organic acid. Only

metabolites that are used as substrates for the next enzyme reaction are shown. The principal metabolites and enzymes that are

increased after HT are indicated in bold (metabolites are underlined and enzymes appear on a dark background), while the foremost

metabolites and enzymes that decrease due to this treatment are shown in grey (metabolites are in italics and enzymes on a white

background). Cases in which enzyme or metabolite levels affected by HT are restored in HT+3 samples to values found in untreated fruit

of the same post-harvest age are indicated with an asterisk. Acetaldehyde is marked with ** since its level in HT+3 fruit is much higher

than that in R7 fruit. The enzyme invertase is particularly distinguished since specific transcripts encoding this enzyme are induced and

others are repressed. The change in enzyme levels was measured by transcript, protein, or activity quantitation depending on the

enzyme. ALD, aldolase; CAC, citric acid cycle; TP, triose-phosphate; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; F1,6BP,

fructose-1,6-bisphosphate; OAA, oxaloacetate.
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40% increase in the respiration rate in heated with respect to

unheated peach, suggest that under HT organic acid

respiration is preferred over sugar metabolism. Thus, PEP

may be converted to either pyruvate through PPDK or to

OAA and malate via PEPC and MDH, which is later

respired, probably in the mitochondria (Fig. 7). It is worth

mentioning that, under HT, a higher sugar/acid ratio was

also observed in several fruits (Paull and Chen, 2000, and
references therein). Alternatively, utilization of intermedi-

ates of the citric acid cycle (CAC) in different biosynthetic

reactions, such as nitrogenous compounds, during the HT

supports the necessity for higher levels of PEPC (Fig. 5) and

also explains a putative drain of malate for the synthesis of

C4-carbon skeletons.

Finally, sorbitol levels found in peach after harvest are

maintained in heated samples, in contrast to the low levels
detected during ripening at 20 �C (Fig. 2). In peach trees,

sorbitol and sucrose are the major photosynthetic products

transported along the phloem pathway to various sink

tissues (Loescher et al., 1990); thus in peach fruit sorbitol is

imported and not synthesized. As the SDH transcript is

reduced in HT peach fruit (Fig. 4), the decrease in sorbitol

metabolization may conserve the levels of this metabolite

(Fig. 7) and may contribute to the protection against heat
damage. Although there are many studies showing increases

in sorbitol contents in response to low temperature

(Loescher, 1987; Deguchi et al., 2002), its increase after HT

has not been reported yet. However, in vitro studies have

shown the effect of this compound on increasing the heat

stability of particular enzymes (Smirnoff and Stewart,

1985).

Sugar and organic acid metabolism in heated peach
fruit transferred to ambient temperature: reversible or
irreversible metabolic changes?

An important desirable feature of the HT, as a technological
tool used to prevent CI and to delay fruit ripening, is that

changes in fruit metabolism induced by the treatment

should be reversed once the HT exposure is suppressed

and, more importantly, normal ripening should continue. In

this regard, heated peaches were also analysed after a period

of 3 d at ambient temperature. NI activity (Fig. 3) and SS

levels (Fig. 4) are increased after transferring heated peaches

to ambient temperature, in accordance with the decrease in
sucrose level in HT+3 with respect to HT fruit (Fig. 2).

When fruits are transferred to 20 �C after the HT, the

glycolytic flux is restored with an increase in PK activity

(Fig. 3), showing the capacity of the fruit to readapt to

variable environments (Fig. 7). PDC is also greatly induced

in HT+3 with respect to HT fruit, while ADH is decreased

(Fig. 3). This differential response of both enzymes involved

in alcoholic fermentation explains the high levels of
acetaldehyde in HT+3 peach fruit (Fig. 2). Regarding

organic acid metabolism, the content of malate and citrate

remains as low in HT+3 as in HT fruit (Fig. 2) and no

prominent changes in organic acid metabolism were found

comparing HT versus HT+3 samples (Fig. 5).

Overall, a 3 d treatment of 39 �C applied to peach is

effective in keeping the levels of fruit firmness found at

harvest. HT leads to changes in carbon metabolism (Fig. 7).

However, several of them are restored after transfer to

20 �C during 3 d, simulating shelf life, indicating that the

majority of the changes are reversible. Among the differ-

ences detected in HT+3 fruit, high levels of glucose and

fructose, and reddish coloration are positive modifications
contributing to fruit sweetness and attractiveness for the

consumers, with lower acidity affecting fruit taste. With

respect to acetaldehyde, higher levels of this metabolite do

not precisely constitute a detrimental attribute. Acetalde-

hyde has been associated with enhancement of aroma

volatile production and for many years it has been

exogenously applied to improve fruit aroma (Pesis, 2005).

Acetaldehyde has also been proposed to prevent CI
symptoms in various fruit through altering membrane

function and levels of free SH groups which inhibit the

browning process (Pesis, 2005).

Differential proteome of ‘Dixiland’ peach fruit subjected
to air HT

In the present work, 57 differentially expressed proteins

among the heated and unheated peach mesocarp proteome

samples were detected by 2D-DIGE analysis, whose molec-

ular masses were encompassed between 60 kDa and 15 kDa

(Fig. 6). Amongst them, 95% of the proteins exhibited

a molecular mass between 17 kDa and 43 kDa. As expected
from a HT, the functional category of defence and stress

response appears greatly represented in the present study

(64%, Fig. 6B).

In the present study, a polyphenol oxidase (PPO) precursor

(spot 88) and ascorbate peroxidase (APX, spot 291) were

repressed in HT+3 samples compared with unheated fruit of

the same post-harvest age (Table 2). PPO is involved in the

browning process, one of the symptoms of CI (Lurie and
Crisosto, 2005) affecting the appearance, the taste, and the

nutritional value (Valero et al., 2003). Therefore, the re-

pression of PPO due to HT observed in HT+3 fruits would

be an additional advantage of this treatment apart from

delaying fruit softening. Other treatments applied to peach

fruit, such as the use of salicylic acid and yeast, induced the

expression of PPO, superoxide dismutase (SOD), and

catalase (CAT) (Chan et al., 2007). As fruit ripening is an
oxidative process in which PPO, CAT, SOD, and APX are

systematically induced (Jimenez et al., 2002; Sarry et al.,

2004), it is not surprising that 2D-DIGE analysis did not

reveal the induction of the antioxidant machinery in fruit

exposed to HT since the levels of antioxidant enzymes may

already be high in fruit ripening at this stage.

In our study, two cysteine proteases (spots 480 and 490)

were increased in HT samples with respect to peaches kept
at 20 �C (R3). During citrus fruit ripening a cysteine

protease was induced (Alonso and Granell, 1995). Plant

cysteine proteases function in many aspects of cellular

regulation, including plant defence and response to different

stresses (Estelle, 2001; Harrak, 2001). Interestingly, in
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tomato a dual function for a cysteine protease was de-

scribed, as an enzyme in the cytosol and as a transcriptional

factor regulating ACC synthetase 2 (ACS2) gene expression

(Matarasso et al., 2005).

In heated peach, the induction of samll HSPs (smHSPs)

of 17–18 kDa (Fig. 6C5, Table 2) and HSP70 (Fig. 1B) may

participate in the acquisition of tolerance against some CI

symptoms. SmHSPs from tomato are involved in the
control of pectin depolymerization and juice viscosity

during fruit ripening (Ramakrishna et al., 2003). Heating

tomato prevented CI after prolonged cold storage, in part

due to induction of smHSP synthesis caused by the HT.

This effect was not induced by other stress conditions such

as drought and anaerobiosis (Sabehat et al., 1996, 1998).

Similarly, in grapefruit, a short HT, but not UV, wounding,

and anaerobiosis, improved chilling tolerance by increasing
the expression of various HSP cDNAs (Rozensvieg et al.,

2004). In addition, the effect of salicylic acid in alleviating

CI of peach has been attributed, at least in part, to

induction of HSPs (Wang et al., 2006). Moreover, decreased

levels of two HSP70s and one HSP100 were found in woolly

fruit kept at 4�C (González-Agüero et al., 2008).

Finally, other stress-related proteins have been induced in

response to HT, such as major allergen, major cherry allergens,
and a dehydrin protein (spots 69, 79, 99, and 134, respectively;

Table 2). Studies on peach and on several other woody plant

species identified these proteins as responsive to low tempera-

ture (Wisniewski et al., 1996; Renaut et al., 2008). Dehydrins

would participate in dehydration events occurring upon

freezing, drought, and salinity stress (Close, 1997).

Concluding remarks

The present work provides a great insight into acid and
sugar accumulation in ‘Dixiland’ peach subjected to HT,

showing the complexity of the mechanisms regulating sugar

metabolism, and constitutes the first proteomic analysis of

peach subjected to HT. In peach fruit kept at 39 �C,
ripening is impaired, with maintenance of fruit firmness

and a decrease in ethylene production. Upon return of heat-

stressed fruit to moderate temperature, ripening recovers.

Collectively, 2D-DIGE analysis reveals that the induction
of HSPs, allergen proteins, dehydrin, and other proteins

involved in the stress response and repression of PPO

caused by HT may constitute the molecular basis for the

protection against chilling stress in peach fruit. In order to

evaluate the final impact on peach quality and the effects of

HT in preventing CI, the relevance of the differential

proteins and metabolites identified must be analysed during

cold storage of peach fruit, as well as in different peach
varieties with differential sensitivity to CI.

Supplementary data

Table S1. Sequences of the oligonucleotide primers used for

real-time RT-PCR.
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