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Abstract

The aims of this work were to quantify (i) the effect of the source:sink ratio on stem water potential (SWP) and (ii) the

phenotypic plasticity of SWP and its relationship to oil yield components in olive. Trees with a 3-fold variation in the

source:sink ratio (crown volume/fruit number per tree) were monitored in 2007–2008 and 2008–2009 in a fully irrigated

orchard in Mendoza, Argentina. The combination of rainfall, irrigation, and evaporative demand led to a steady SWP

largely above –1.65 MPa in 2007–2008 and a marked seasonal decline from –1.13 MPa to –2.04 MPa in trees with

a medium and low source:sink ratio in 2008–2009. Plasticity was quantified as the slope of the norm of reaction for

each trait. Across seasons, trees with a high source:sink ratio had a higher SWP than their counterparts with
a medium and low source:sink ratio. Plasticity of SWP was highest in olives with a low source:sink ratio (slope¼1.28)

and lowest for trees with a high source:sink ratio (slope¼0.76). The average SWP for each source:sink ratio and

season was unrelated to both the source:sink ratio and yield components. On the other hand, the plasticity of SWP

was positively associated with fruit number and negatively associated with the source:sink ratio, fruit weight, and

fruit oil weight. The plasticity of the SWP was unrelated to SWP per se. It is concluded that understanding the effect

of the source:sink ratio on plant water relations would benefit from a dual perspective considering the trait per se

and its plasticity. A dual approach would also allow for more robust plant-based indicators for irrigation.
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Introduction

In Argentina, the olive industry has expanded greatly

during the past 15 years to reach >100 000 ha (SAGPyA,

2010). More than 95% of olive plantations are in arid and

semi-arid environments between 28�S and 40�S and a range

of annual rainfall from 100 mm to 400 mm. Irrigation

throughout the growing season is essential to profitable
yield and quality, but studies on olive irrigation capturing

the local soil and weather conditions are scarce (Rousseaux

et al., 2008; Puertas, 2009). In a broader context, water

availability for agricultural use is decreasing worldwide

(Connor, 2005; Fereres and Evans, 2006), including the arid

and semi-arid regions of Argentina.

Monitoring plant water status and understanding its

responses to water supply is essential for the scheduling
and design of irrigation strategies (Allen et al., 1998). Owing

to its sensitivity to water supply, midday stem water

potential (SWP) is a reliable indicator of plant water status

in both deciduous and olive trees (Goldhamer et al., 1999;

Moriana et al., 2003; Intrigliolo and Castel, 2004; Naor

et al., 2006). In deciduous trees, low source:sink ratios often

associated with high fruit load may enhance stomatal
conductance, the photosynthetic rate, and the transpiration

rate (Gucci et al., 1994; Berman and DeJong, 1996;

Wünsche et al., 2000; Mpelasoka et al., 2001; Sadras et al.,

2008). Nevertheless, reported effects of fruit load on SWP

are contradictory. For example, Bussakorn et al. (2001) in

apple, Marsal and Girona (1997) in peach, and Naor et al.

(2001) in nectarine found that high fruit load caused

a decline in SWP of both well-watered and water-stressed
trees. In other studies, the decline in SWP with increasing
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fruit load was found for trees grown under water deficit, but

not for their well-watered counterparts (Berman and

DeJong, 1996; Naor et al., 2008; Marsal et al., 2010). Other

authors found no relationships between fruit load and plant

water status irrespective of water supply (Mahhou et al.,

2005; Intrigliolo and Castel, 2007; Conejero et al., 2010).

The relationships between fruit load and SWP have rarely

been studied in olive (Gucci et al., 2007). Owing to the
alternate bearing typical of olive trees, where high and low

fruit loads alternate in successive seasons (Lavee, 2006), the

association between fruit load and SWP is physiologically

interesting and important for irrigation management. The

lack of consistent associations between SWP and fruit load

needs to be interpreted in terms of genotypic, environmen-

tal, and genotype3environment sources of variation.

Norms of reaction are functions that relate phenotype
and environment (Woltereck, 1909), and phenotypic plas-

ticity is the slope of these functions (DeWitt and Scheiner,

2004). Norms of reaction and plasticity are of interest to

breeders as they deal with genotype3environment interac-

tion and to physiologists, ecologists, and evolutionary

biologists interested in plant and crop adaptation to dy-

namic environments, particularly in the context of global

change (DeWitt and Scheiner, 2004; Pigliucci, 2005; Sadras
et al., 2009; Nicotra and Davidson, 2010). Here it is

proposed that the analysis of the effect of the source:sink

ratio on plant water status from the perspective of

phenotypic plasticity can partially remove environmental

influences and contribute to understanding the mechanisms

related to the adaptation of the olive tree to environmental

changes. This approach may also help to make a better use

of plant-based indicators for irrigation management, which
is fundamental for an efficient and sustainable use of water

(Ortuño et al., 2009; Conejero et al., 2010).

Bradshaw (1965) advanced the notion of a hierarchy of

plasticities, whereby high plasticity of a trait (e.g. seed

number) is associated with low plasticity of a related trait

(e.g. seed size). In contrast to these negative correlations,

recent studies have revealed positive associations between

plasticities of yield and phenological development (Sadras
et al., 2009). Bradshaw (1965) also proposed that plasticity is

a trait on its own, with its own genetic control independent

of the trait per se, and Reymond et al. (2003) conclusively

demonstrated that this is the case for leaf expansion.

Associations between plasticities of selected traits are there-

fore of biological interest.

The aims of this work were therefore to quantify (i) the

effect of the source:sink ratio on midday SWP of olive trees
and (ii) the phenotypic plasticity of SWP and its relation-

ship to oil yield components and their plasticities.

Materials and methods

Experimental conditions, plant material, and treatments

The experiment was carried out during the 2007–2008 and 2008–
2009 seasons in an intensive olive (cv. Arbequina) orchard in
Lavalle (32�43’ S, 68�36’ W, 920 m.a.s.l.), Mendoza, Argentina.

The region has an average annual temperature of 15.8 �C, a frost-
free period between October and March, and an average annual
rainfall of 165 mm, concentrated during summer. The orchard was
planted in 1997, with 436 m spacing (417 trees ha�1). The soil was
clay–loam Typic entisol torrifluvent (Abraham and Martı́nez,
1996) with a pH of 7.5. Irrigation was performed with one microjet
(37 l h�1) per plant to restore 100% of the estimated crop
evapotranspiration (ETc) during the whole season (Pizarro, 1996)
and crop coefficient Kc¼0.68 (Girona et al., 2002). Reference
evapotranspiration was estimated as the average from two
meteorological stations located between 10 km and 15 km from
the experimental site. Vapour pressure deficit (VPD) was measured
simultaneously with SWP in a meteorological micro-station placed
inside one tree.
Three treatments, namely low, medium, and high fruit load,

were established in a randomized complete block design, with
four replicates. During the 2007–2008 season the fruit load was
defined in two steps. First, 200 trees were inspected and classified
in the three nominal categories of fruit load during the flowering
stage in mid-November. From this set, four plants with similar
crown volume determined with a spherical cap equation (Del Rı́o
et al., 2005) were selected for each category. Secondly, the
assignment of plants to load levels was confirmed through direct
estimation of fruit number at harvest. The source:sink ratio was
calculated as the ratio between crown volume (m3) and actual fruit
number per tree. The same trees were evaluated in the second
growing season.

Measurements

Midday SWP was measured at 2 week intervals using a Scholander-
type pressure chamber (BioControl, Buenos Aires, Argentina) in
two replicates per tree following the procedure outlined by
McCutchan and Shackel (1992). Mature leaves near the trunk
were enclosed in a small plastic bag covered with aluminium foil at
least 2 h before measurements. The leaves were excised with
a sharp blade and immediately placed with the bag inside the
chamber. The measurements were carried out on clear days
between 11:30 h and 12:30 h solar time.
To complement the measurements of SWP, gas exchange was

measured in 2007–2008. Stomatal conductance (gs) and net photo-
synthetic rate (Pn) were measured during mid-morning (10:00–11:00
h) with a portable infrared gas analysis system (CIRAS 2, PP
Systems, Hitchin, UK). Measurements were taken in four mature,
sun-exposed leaves per tree at 42, 57, 77, 95, 118, 154, and 166 days
after full bloom (DAFB).
From early December, 25, 20, and 15 fruits were extracted

fortnightly from high, medium, and low fruit load trees, re-
spectively, to quantify the evolution in oil fruit weight, fruit fresh
weight, and fruit oil concentration; sampling and measurement
procedures are explained in Trentacoste et al. (2010). In both
seasons, trees were manually harvested on May 27 (191 DAFB) to
determine yield and yield components.

Phenotypic plasticity

A common method to quantify phenotypic plasticity involves
models of phenotype versus environment, where the parameters of
the functions are taken as a measure of plasticity. This approach
has been successfully applied to all sorts of organisms, traits, and
environments (DeWitt and Scheiner, 2004). Where the key
environmental drivers are known and can be measured, phenotype
versus environment models are robust (e.g. Reymond et al., 2003).
A shortcut when many environmental drivers interact in complex
ways is to use the average value of the trait across phenotypes
(Finlay and Wilkinson, 1963; Calò et al., 1975; Greenberg et al.,
1992; Lacaze et al., 2009; Sadras et al., 2009). This approach has
limitations derived from the partial lack of independence between
variables, and a series of methods have been developed to
overcome these limitations (Gauch, 1988; Bidinger et al., 1996;
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DeLacy et al., 1996). Owing to data availability and the aims of
this study, however, a simple phenotype versus environment model
was used which was originally developed for grain yield (Finlay
and Wilkinson, 1963), but with broader applications as shown in
studies of phenotypic plasticity of phenological development of
wheat, sunflower, and grapevine (Calò et al., 1975; Sadras et al.,
2009) and grain size and grain protein content in barley (Lacaze
et al., 2009). Briefly, linear regressions were fitted between the
particular trait for each source:sink ratio and the environmental
mean. For example, for each date of measurement, the trait (e.g.
SWP) averaged across the source:sink ratio was taken as the
‘environmental mean’ and regressions were performed for
the averaged value of this trait for each source:sink ratio and the
‘environmental mean’.
The slope (b), calculated with Model II (reduced major axis)

regression to account for error in both x and y (Niklas, 1994) was
taken as a measure of phenotypic plasticity. In the present case,
b¼1.0 indicates that the source:sink ratio does not have any
significant impact on the phenotypic plasticity of the considered
trait; b significantly greater than 1.0 indicates above average
phenotypic plasticity (i.e. the source:sink ratio increased the
phenotypic plasticity of the trait); and b significantly lower than
1.0 indicates below average phenotypic plasticity (i.e. the source:-
sink ratio decreased the phenotypic plasticity of the considered
trait). For all regressions, the null hypothesis, slope¼1, was tested
with IRENE software (Fila et al., 2003), and the effects of the
source:sink ratio on slopes was tested using dummy variables and
related t-test (Draper and Smith, 1998).

Results

Growing conditions

The average daily air temperature was similar in both

growing seasons (20.2 �C versus 20.4 �C). Total seasonal

rainfall was 112 mm in 2007–2008 compared with 44 mm in

2008–2009 (Fig. 1). VPD and incoming solar radiation were

lower in 2007–2008 than in 2008–2009 (Fig. 1). Across

source:sink ratios, SWP was higher in 2007–2008 than in

2008–2009 (Table 1). This seasonal difference was partially

associated with higher rainfall in 2007–2008 (Fig. 1) and

highlights the considerable water deficit developed in 2008–

2009 despite the irrigation target (100% ETc).

Fruit load, crown volume, and source:sink ratio

In both seasons, selection of trees with a similar crown

volume and achievement of target fruit loads led to a 3-fold

variation in source:sink ratio (Table 1). There was a strong,

negative correlation between fruit load in 2007–2008 and
fruit load in 2008–2009 (r¼ –0.78, P¼0.0025), reinforcing

the notion that variation in the source:sink ratio in this

study was primarily driven by the typical alternate bearing

pattern of olive trees rather than other sources of variation

such as soil heterogeneity. A summary of oil yield compo-

nents, previously reported by Trentacoste et al. (2010), is

presented in Table 1.

Effect of source:sink ratio on stem water potential

Averaged across two seasons, trees with a high source:sink

ratio had a significantly higher SWP than their counterparts

with a medium and a low source:sink ratio (Table 1).

In 2007–2008, seasonal dynamics revealed (i) a steady

SWP largely above the –1.65 MPa stress threshold de-

termined in olive by Moriana et al. (2002); and (ii) small

source:sink effects on SWP (Fig. 2A). In 2008–2009, the

SWP of trees with a medium and a low source:sink ratio
showed a marked seasonal decline from –1.13 MPa to –2.04

MPa (Fig. 2B). The seasonal trend was also evident, but the

rate of decline was much smaller in trees with a high

source:sink ratio (Fig. 2B). Moreover, in both seasons, the

significant differences between treatments appeared when the

environmental SWP was below –1.4 MPa (Fig. 2).

Consistent with the lack of effect of the source:sink ratio

on SWP in 2007–2008, the source:sink ratio did not affect
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Fig. 1. Rainfall (bars), vapour pressure deficit (VPD; circles), and cumulative incoming solar radiation (line) from flowering to harvest

during two growing seasons, 2007–2008 (filled symbols) and 2008–2009 (open symbols) in Lavalle, Mendoza. VPD was measured inside

the canopy on the same days as stem water potential measurements.
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stomatal conductance or net photosynthesis (Table 1,
Fig. 3A, B). For the pooled data, stomatal conductance

accounted for 85% of the variation in net photosynthesis

(P <0.001, Fig. 3C). Stomatal conductance was associated

with SWP for gs >200 mmol m�2 s�1 (P <0.001, Fig. 3D).

Below this value, leaf stomatal conductance and SWP were

not associated. Stomatal conductance <200 mmol m�2 s�1

was recorded on three dates, namely 42, 57, and 147 DAFB

(Fig. 3A), when the wind speed was >1.5 m s�1 (Fig. 3E).

Phenotypic plasticity of stem water potential

Figure 4A shows the reaction norms of SWP for the data

pooled across seasons. In more restrictive water environ-

ments, namely environmental stem water potential less than
–1.4 MPa, a low source:sink ratio corresponded to the

lowest SWP and a high source:sink ratio to the highest.

Convergence of reaction norms highlighted the lack of

effect of the source:sink ratio on SWP in more favourable

environments, namely environmental SWP more than –1.4

MPa.

This pattern is captured quantitatively in the coefficients

of plasticity: the slope¼1.2860.05 for the low source:sink
ratio was significantly greater than 1 (P <0.001), the

slope¼1.0260.04 for the intermediate source:sink ratio was

not different from 1 (P¼0.949), and the slope¼0.7660.04

for the high source:sink ratio was significantly lower than 1

(P <0.001). A similar ranking in the plasticity of midday

Table 1. Fruit number, crown volume, source:sink ratio (S:S), midday stem water potential (SWP), net photosynthesis (Pn), and stomatal

conductance (gs) during fruit growth of olive trees with three contrasting fruit loads, similar crown volume, and hence a contrasting

source:sink ratio

Season
and
treatments

Fruit number
(fruits/tree)

Crown
volume (m3)

S:S
(m3 1000 fruit�1)

SWP
(MPa)

Pn

(mmol m2 s�1)
gs

(mmol m2 s�1)
Fruit fresh
weight
(g per fruit)

Fruit oil
weight
(g per fruit)

OCDB (%)

2007–2008

Low 28 138 22.97 0.80 –1.32 12.8 224.9 1.7 0.21 47

Medium 16 606 19.33 1.15 –1.31 13.2 215.5 2.2 0.30 45

High 08 891 21.91 2.61 –1.24 13.6 216.8 2.5 0.37 48

2008–2009

Low 30 793 32.33 1.05 –1.64 1.7 0.25 52

Medium 25 381 32.58 1.33 –1.73 1.9 0.30 52

High 09 645 26.28 2.89 –1.40 2.5 0.43 51

LSD(0.05)

Source:sink 4974.4 NS 0.654 0.121 NS NS 0.119 0.004 NS

Season NS 3.95 NS 0.099 — — NS NS 3.21

Interaction NS NS NS NS — — NS NS NS

Additional oil yield components are also shown: fruit fresh weight, fruit oil weight, and oil concentration on a dry weight basis (OCDB). The least
significant difference (LSD) is shown when ANOVA indicated a significant effect (P <0.05).
NS, non-significant (P <0.05).
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Fig. 2. Seasonal patterns of midday stem water potential (SWP) in response to high, intermediate, and low source:sink ratios in 2007–

2008 (A) and 2008–2009 (B). The dashed line indicates the threshold of water stress (–1.65 MPa) determined by Moriana et al. (2002)

from relationships between midday leaf conductance and vapour pressure deficit. Asterisks indicate a significant difference between

source:sink ratio treatments (P <0.05).
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SWP was identified for individual seasons, with significant

variation in plasticity in response to the source:sink ratio in
2007–2008 (P¼0.003) and 2008–2009 (P <0.001).

Relationships between plasticities of different traits

Average midday SWP for each source:sink ratio and season

was unrelated to the source:sink ratio or oil yield compo-

nents (data not shown). The plasticity of the SWP was

unrelated to SWP per se, but was positively associated with
fruit number and negatively with the source:sink ratio, fruit

fresh weight, and fruit oil weight (Fig. 5). The plasticity of

the SWP was positively associated with the plasticity of fruit

oil concentration and negatively with both plasticity of fruit

fresh weight and plasticity of fruit oil weight (Fig. 6).
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Fig. 3. Seasonal patterns of (A) abaxial stomatal conductance (gs) and (B) net photosynthetic rate (Pn) in 2007–2008 for high,
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Discussion

Relationship between stem water potential and
source:sink ratio

Motivated by production and environmental drivers, sub-

stantial research effort has been invested in improving water

management in olive orchards worldwide (Fereres and

Castel, 1981; Villalobos et al., 2000; Palomo et al., 2002;

Orgaz et al., 2006; Allen and Pereira, 2009; Rousseaux

et al., 2009; Martı́nez-Cob and Faci, 2010). Many studies
focused on the advantages and drawbacks of plant-based

indicators for irrigation management (Moriana et al., 2003;

Moriana and Fereres, 2004).

However, relationships between plant water status and

fruit load have been hardly considered in olive (Fereres and

Soriano, 2007). Under the present experimental conditions,

an increase in SWP associated with a high source:sink ratio

was only evident when the environmental SWP declined
below –1.4 MPa. This approximate threshold compares

with the –1.65 MPa proposed by Moriana et al. (2002).

These authors focused on the effect of VPD on midday

SWP and stomatal conductance in olive, where maximum

stomatal conductance was recorded when the midday SWP

exceeded –1.65 MPa.

There are short- and longer-term mechanisms by which
a high source:sink ratio coupled with water limitations may

lead to an improvement in plant water status. In the short

term, feedback inhibition of photosynthesis and stomatal

closure may increase SWP, and in the longer term increased

allocation of plant resources to roots may also improve

plant water status (Gucci et al., 1991; Lopez et al., 2008;

Marsal et al., 2008).

Phenotypic plasticity of stem water potential

Midday SWP was highly responsive to the source:sink ratio,
with plasticity coefficients between 0.76 and 1.28. The effect

of the source:sink ratio on SWP was highly dependent to

soil water moisture and seasonal conditions. In contrast,

there was a robust relationship between plasticity of SWP

and the source:sink ratio. Analysis of the data of Marsal

et al. (2010) for pear trees growing with three source:sink

levels also revealed a similar pattern of plasticity in response

to source:sink ratios (inset Fig. 4). Furthermore, phenotypic
plasticity of SWP showed significant correlations with key

oil yield traits per se and their plasticity (Figs 5, 6).

SWP per se and plasticity of SWP were not associated,

suggesting some degree of independence in the genetic

control of both traits (Bradshaw, 1965; Sadras et al., 2009;
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Auld et al., 2010). From a breeding perspective, Nicotra

and Davidson (2010) suggested that selection criteria should

consider adaptive plasticity, particularly in relation to

adaptation to climate changes. The present study suggests

that this may also apply to olive, a species that has only
recently been submitted to formal plant breeding.

It is concluded that olive trees with a high source:sink

ratio had a significantly higher SWP than their counterparts

with a medium and a low source:sink ratio. However, this

effect was contingent on soil water availability and environ-

mental conditions between growing seasons. In contrast, the

plasticity of SWP had a more robust pattern of response to

the source:sink ratio across environmental conditions. Un-

derstanding the effect of the source:sink ratio on plant water

relations would benefit from a dual perspective considering
the trait per se, for example SWP, and its plasticity. This

dual approach would also allow for more robust plant-based

indicators for irrigation, particularly in species with alternate

bearing or where factors such as foliar pests or chemical

thinning alter the source:sink ratios.
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