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ABSTRACT 

 

The use of small trees in orchard systems reduces manual labor (pruning, thinning 

and harvesting), and induces precocity, thus making high-density plantations 

economically advantageous, which has elic ited an interest in size-controlling rootstocks.  

However, the mechanisms involved in the reduction of scion growth by the rootstock are 

not well understood.  The main objective of this study was to gain a better understanding 

of the dwarfing mechanism ind uced by size-controlling peach rootstocks.  The 

relationship among different rootstocks (dwarfing to invigorating range) as to stored 

carbohydrates, tree water status, and interstem and grafting height was evaluated on 

young and mature ‘Redhaven’ and ‘Redtop’ peach trees in California, Georgia and South 

Carolina.  The main rootstocks involved in the study were Cadaman® (vigorous), Lovell 

(control), Pumiselect® (semivigorous), Controller® 5 (semivigorous), and Krymsk® 1 

(more size-controlling). 

Greater concentrations of TNC were found in ‘Redhaven’ and ‘Redtop’ roots in 

California compared to the other two sites; however, shoot TNC did not differ 

significantly among sites. Concentration of TNC in roots were at least two fold compared 

to shoot TNC concentration.  About 70% of total non-structural carbohydrates were 

accumulated in root tissues, where smaller roots accounted for most of the carbohydrates 

(>80%).  The more vigorous rootstocks not only had the higher accumulation of dormant 

carbohydrates but also the highest root and shoot dry weight per tree, suggesting that the 

initial difference in new spring growth could be the result of these growth components. 
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Rootstock genotypes used as interstems and not the grafting height affected the 

size of ‘Redhaven’ trees in the studied combinations.  Krymsk® 1 and Pumiselect® 

interstem trees were 81% and 88%, respectively, the size of Lovell trees at the end of the 

first year, while Krymsk® 1 interstem trees were almost 50% of the control at the end of 

second year.  Budding height did not affected significanltly scion growth, however a 

tendency was observed when trees on Krymsk® 1 had reduced growth when grafted at 

higher height.  These data suggest the dwarfing mechanism in some Prunus rootstocks 

involves other plant tissues rather than roots. 

There was a positive correlation between scion vegetative growth as affected by 

rootstock and tree water status.  In addition, the results suggested that the seasonal 

changes in dry matter production and partitioning found in two peach cultivars may be 

influenced, at least in part, by seasonal variations in stem water potential, stomatal 

conductance and transpiration rates.  Xylem vessel diameters of Lovell rootstocks were 

two fold greater than those of Krymsk® 1 rootstocks.  The results also suggested that in 

peach rootstocks the main hydraulic resistance might be located at the root such as the 

case of Krymsk® 1 or graft union interface as in Pumiselect®; so, depending on 

genotype combinations. 
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CHAPTER I 

 

INTRODUCTION 

 

The use of rootstocks for fruit trees has become widely expanded in the last 

several hundred years.  The characteristics needed in rootstocks have become more 

sophisticated over the years, where disease and pest resistance and adaptation to poorly 

drained or wet soils are very important factors in choosing rootstocks.  However, limiting 

tree vigor, enhancing crop efficiency and increasing fruiting precocity are primary 

objectives in newly established fruit orchards. 

More than two millinenia have passed since the practice of growing trees in pots 

or cutting the roots were used to control tree size.  In the past half-century, selective 

breeding programs have produced many dwarfing rootstocks especially for apples and 

more recently for cherries.  However, the use of dwarfing rootstocks has been extended to 

other tree fruit crops because of the economic advantages, which include reducing hand 

labor (pruning, thinning, harvest), pesticides, fertilizer, and enhancement of cropping 

efficiency and precocity. 

Despite efforts to understand the mechanisms involved in the reduction of the 

scion size due to rootstock, these mechanisms still remain unclear.  Different theories 

exist that try to explain this reduction in scion growth.  Plant hormones by direct or 

indirect effects are suggested to influence scion growth either via their synthesis, 

metabolism or transport from roots to shoots and from shoots to roots.  Measurement of 
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hormone concentration in sap flow of active transpiring trees is difficult because of the 

constant changes in the sap flow rate throughout the day.  In general, roots are the focus 

of most studies that try to understand how dwarfing rootstocks influence scio n growth.  

Root anatomy and physical size might limit water, nutrient and hormone transport to the 

shoot.  On the other hand, graft unions might present a physiological and physical barrier 

for compounds (minerals, hormones, etc) and water, respectively. 

Less attention has been directed to the effect of interstems and budding heights on 

scion growth, except in apples, where interstem studies have shown that interstocks 

reduce scion growth as much as a dwarfing rootstock.  This research would indicate that 

other factors besides a root effect is involved in the dwarfing mechanism of rootstocks.  

Higher accumulation of non-structural carbohydrates that are stored for winter and 

broken down in spring might induce more shoot growth in trees grafted on vigorous 

rootstocks.  However, the theory that supports the relevance of tree water status to tree 

dwarfing has attracted the attention of many researchers in the past decade.  This theory 

suggests that dwarfing rootstocks generate a water deficit in the scion, which reduces 

shoot and overall tree growth.  Dwarfing rootstocks have been reported to induce a higher 

resistance to water movement in roots (peaches) and the graft union (apples and cherries); 

however, graft unions of dwarfing rootstocks in apple and cherries often seem to have 

incompatibility issues. 

Our hypothesis supports the theory that water status of the scion is affected by the 

rootstock where dwarfing rootstocks reduce the water available to the scion. Roots and 

graft union could play an important role in the reduction of water transport to the scion. 
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In addition, we think that winter non-structural carbohydrate content of the tree would 

affect initial spring growth. If interstems and budding heights affect the vegetative 

growth of peach scions, then roots are not the only explanation for the dwarfing 

mechanism of peach rootstocks.  It is likely that the dwarfing mechanism can not be 

readily explained by individual tissues and organs, and possibly the scion growth could 

be regulated by more complex pathways. 

In order to better understand the dwarfing effect of rootstocks, our objectives 

were i- to determine the concentration of non-structural carbohydrates in different 

rootstocks, which could be tied to the new spring vegetative growth; ii- study the effect of 

the interstem and budding height on scion vegetative growth and water status; and iii- to 

establish relationships among tree water status, some physiological parameters (i.e., 

transpiration rate and stomata resistance), vegetative growth, root anatomy and 

rootstocks. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

Overview 

 

Rootstocks are used in fruit orchards to tolerate different soil conditions such as 

dry, saline, heavy, wet soils, presence of disease organisms and soil-borne insects.  But 

one of the most important uses of rootstocks is their capacity to reduce the size of the 

scion, and increase precocity and efficiency at the same time.  Even though this rootstock 

effect was suspected 2000 years ago, the mechanisms involved are hardly known 

(Crasweller and Schupp, 2006). 

Hand labor involves more than half of the annual cost of growing peaches in the 

United States due to the pruning, thinning and harvesting that is done, often with ladders 

because of the large size of trees (DeJong et al., 1999).  For that reason production costs 

could be substantially reduced and orchard operations made safer if the size of the trees 

could be reduced enough to eliminate the need for ladders (Hayden and Emerson, 1976; 

Green, 1991; Reed, 1975).  The benefit of dwarf and size-contro lling rootstocks has been 

clearly demonstrated in apples and revolutionized the apple industries in Europe and the 

U.S. (Rom and Carlson, 1987).  In the past few decades, apple researchers and farmers 

introduced spur varieties and dwarfing rootstocks to control tree size, reducing the hand 

labor costs and increasing tree precocity.  The tendency toward high-density apple 
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plantations has become more widespread in Europe, U.S. and other countries.  The 

increasing density of orchard plantings to obtain high yields and the accompanying high 

cost of hand-assisted operations emphasized the necessity of developing size-controlling 

rootstocks.  Unlike in apples, there are no widely acceptable size-controlling rootstocks 

for peaches and nectarines.  New rootstocks have become available mostly from Europe, 

but their use is still very limited mainly because of the restricted range of compatibility 

among cultivars (Felipe, 1989; Loreti, 1994; Atkinson and Else, 2001; Atkinson et al., 

2003 and Zarrouk et al., 2006).  

In spite of the potential importance of size-controlling rootstocks to production of 

peaches and nectarines as well as other tree crop species, the development of size-

controlling rootstocks in these crops has been very slow.  Most of the development 

research is strictly empirical since there is no specific analyzable genetic trait that has 

been identified with the size-controlling mechanism. The production research involving 

these rootstocks also tends to be strictly empirical since the actual physiology involved in 

the size-controlling behavior is poorly understood (Rom and Carlson, 1987; Webster and 

Wertheim, 2003; Costes and García-Villanueva, 2007). 

In grafted fruit trees, the scion and the rootstock develop in different 

environments, the air and the soil, respectively. Interaction between the two genotypes is 

very complex because the scion uses water, hormones and nutrients while the rootstock 

depends on carbohydrates, hormones and other compounds from the scion.  The 

transported nutrients and other compounds crossing the bud union influence the scion and 

rootstock and produce changes that affect tree size, fertility, longevity, pathogen 
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resistance, fruit quality, yield, etc.  In some cases, these influences are stronger than the 

effects produced by soil or climatic conditions (Rom and Carlson, 1987; Webster and 

Wertheim, 2003). 

It is known the effect that rootstocks have on the structure and physiology of fruit 

trees.  Rootstocks can affect Trunk Cross Sectional Area (TCSA) (Westwood and 

Roberts, 1970; Ferree, 1988; Loreti et al., 1993, Weibel et al., 2003; Santos et al., 2004; 

Reighard et al., 2006), tree height, shoot length, leaf size and weight (Ferree and Barden, 

1971; Westwood 1978; Weibel, 2003; Costes and García-Villanueva, 2007; Tworkoski 

and Miller, 2007), canopy diameter (Tubbs, 1980; Crabbé, 1984; Ferree, 1988; Loreti et 

al., 1993, Giorgi et al., 2005; Tworkoski and Miller, 2007), fruit yield (Bernhard 1985; 

Bussi et al,. 1995; Carusso et al., 1996, 1997; Weibel, 1999 and Reddy et al., 2003), fruit 

quality (Reddy et al., 2003, Gil-Izquierdo et al., 2004; Giorgi et al., 2005; Drogoudi and 

Tsipouridis, 2007), fruit soluble solids (Murase et al. 1990, Camara et al., 2003ab, 2004; 

Whiting and Lang, 2004), bloom date (Durner and Goffreda, 1992; Young and Houser, 

1980), tree nutrition (Brown and Cummins, 1989, Giorgi et al., 2005), foliar nutrient 

content (Knowles et al., 1984, Camara et al., 2004), leaf net photosynthesis (Ferree and 

Barden, 1971; Lichev and Berova, 2004; Koshita et al., 2006), branch crotch angle 

(Crabbé, 1984; Warner, 1991) and bark thickness (Yadava and Doud, 1978).  However, 

the mechanisms that induce these effects are unknown.  The complexity is clearly seen 

when reciprocal grafts are made between two varieties, showing a different behavior of 

the genotypes when they work as scion or as root (Swarbrick et al., 1946, Tubbs, 1977).  

There are several theories about the effects and the mechanisms involved in dwarfing 
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(Lockard and Schneider, 1981; Crabbé, 1984; Rom and Carlson, 1987; Atkinson et al., 

2001; Atkinson and Else, 2001; Webster and Wertheim, 2003; Costes and García-

Villanueva et al., 2007), but none of these theories has been definitively proved.  

 

Dwarf theories 

 

Different theories have been proposed to explain the mechanisms involved in the 

reduction of scion growth by the rootstocks.  The theories are related to the effects of 

hormones and other compounds, stored carbohydrates, hydraulic conductivity of roots, 

and the graft union. These theories are explained below. 

Hormone, bark tissue and other compounds  

Theories on the dwarfing effect come from different research approaches but 

hormones appear to be related to the dwarfing mechanism in some way.  One theory 

hypothesizes that the roots or graft union or both could alter homone  concentration or the 

ratio among hormones, where auxins, gibberellins, cytokinins and abscisic acid are 

involved (Webster and Wertheim, 2003). One of the main hormones involved in this 

mechanism might be indole acetic acid (IAA).  IAA may act on roots, increasing the 

growth of the root system in the vigorous rootstocks.  More recently, Chong and Andrew 

(2006) found in cherry that the more vigorous ‘Mazzard’ rootstock had a lower activity of 

the IAA oxidase than the more dwarfing rootstocks, ‘Gi 148/1’ and ‘Gi 148/8’.  Kamboj 

et al. (1997) reported greater auxin movement to roots in the apple cultivar ‘Fiesta’ when 

it was grafted on the invigorating M.114 and M.111 rootstocks compared to the dwarfing 
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M.9 and M.27 rootstocks, suggesting that auxin increases root size.  In the same work, it 

was found that the ratio of abscisic acid (ABA) to IAA present in the rootstock bark was 

inversely related to rootstock vigor.  In addition, Kamboj et al. (1997) found that 

cytokinin concentration in shoot sap of ‘Fiesta’ apple was found higher on the 

invigorating rootstocks than on the dwarf rootstocks.  It has also been suggested that 

endogenous gibberellins (GAs), may be associated with the dwarfing mechanism 

(Webster and Wertheim 2003). Richards et al. (1986) studied the gibberellin effect on 

apple tree cultivar ‘Northern Spy’.  These last authors found a small amount of 

radioactive [³H]GA4 was found in shoot and leaf tissues when M.9 (dwarfing) was used 

as an interstock; whereas, trees grafted on the invigorating MM.115 rootstock had high 

radioactive GA in their leaves.  This reduced uptake of [³H]GA4, which was applied to 

the rootstock xylem, appears to be related to reduced transport from root to scion. In 

another study, Soumelidou et al. (1994) assessed that the rate of polar auxin transport in 

shoot segments of apple rootstocks was reduced in the dwarfing rootstocks compared 

with the invigorating ones. Noda et al. (2000) also found a positive correlation between 

the shoot tip IAA content and the shoot growth of lemon scions grafted on rootstocks 

characterized by different invigorating properties. In a more recent study, Sorce et al. 

(2002), working on grafted and ungrafted Prunus rootstocks, found a correlation between 

the level of auxins and cytokinins and invigorating peach rootstocks, where high levels of 

IAA were found in exudates from roots of ungrafted vigorous rootstocks.  However, the 

results showed some contradictions, probably due to the fact the 2-year-old trees were 

confined to small 1.7 liter containers. The latter authors hypothesized about the existence 
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of a feedback loop between IAA and cytokinins. In this feedback loop, a decrease in the 

basipetal flow of IAA would stimulate the synthesis and the export (via xylem sap) of 

cytokinins from the roots. This rise of cytokinin concentration in the xylem sap would 

increase the synthesis and translocation of IAA out of the shoot apex, which would in 

turn reduce cytokinin levels in the xylem sap (Bangerth, 1994). 

The action of hormones could also be involved in changes in the tree frame by 

affecting branch crotch angles.  The apple rootstock M.9 induced dwarfing in an M.2 

scion.  Although the elongation of the leader shoot was not affected by the dwarf 

rootstock, the crotch angle of the lateral shoots dominated by the apex was wider (Crabbé 

1984).  These wide angles may be a consequence of hormonal effects.  Wider angles  

reduce apical dominance and consequently control of shoot size, especially in the upper 

part of the tree. 

Bark tissue has been used to explain the dwarfing mechanism in apples. When 

Lockard and Schneider (1981) grafted a single piece of bark tissue of M.26 onto 

‘Gravenstein/MM.111’ trees, the resulting trees were dwarfed.  Growth regulators (IAA) 

and phenol compounds in the bark tissue could interact, thus reducing the size of the 

scion.  The presence of thick bark in apples has been associated with the dwarfing 

response.  The reduction in growth has been related to an increased proportion of bark 

tissue in roots, smaller vessel size, and enlarged wood-ray tissue (McKenzie, 1961).  The 

growth inhibiting properties of the bark tissue may be caused by phenols (Lockard and 

Schneider, 1981). 



 

10 
 

Simons and Chu (1984) analyzed calcium concentrations in conductive and non-

conductive phloem of bark tissues in dwarf and vigorous apple rootstocks.  They found a 

higher accumulation of calcium in dwarf rootstocks.  The presence of calcium was 

associated with necrotic tissue. Dwarfing rootstocks also had more non-conducting 

phloem tissue compared to vigorous rootstocks. 

Graft unions alone may affect the scion by other mechanisms such as those 

suggested by xylem exudate studies in apples and cherries (Jones 1984). Xylem exudates 

from apple trees on dwarfing rootstocks had lower nutrient and hormone concentrations 

in the scion sap compared to the invigorating rootstocks. This indicated that the graft 

union, especially the region near to the scion, could reduce the amounts of growth 

regulators and nutrients to the scion, and may cause a reduction in size or vigor. In the 

same study, the dwarfing mechanism in cherry appeared to be associated with growth 

regulators produced in the scion that affects the rootstocks. The dwarfing mechanism 

appeared to differ between the two species. 

Atkinson and Else (2001) support the hormone theory, but they were concerned 

about the appropriate methodology necessary to measure the amount of a hormone in the 

sap flow. It is known that changes in transpiration rate lead to a variation of the xylem 

solutes (Atkinson and Else, 2001).  By increasing the transpiration rate the solute 

concentration is reduced but this change is not proportional, so in order to measure the 

hormone concentration in vigorous and dwarf rootstocks, it would be important to 

measure those trees under the same transpiration rate. On the other hand, measuring the 

hormone concentration in a tissue from excised braches or roots will not give a realistic 
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result compared to a transpiring tree. It is evident that the dwarfing effect is not a simple 

signaling hormone mechanism, so it likely is intertwined with a complex system of 

signaling pathways acting in tandem rather than in isolation. 

Stored carbohydrates 

In many higher plants the primary photosynthetic products are sugars and starch.  

These compounds may be stored in the leaf blade and other organs during photosynthesis.  

Excess carbohydrates are accumulated in shoot, branches and specially roots by the end 

of the summer.  Starch is the main storerage carbohydrate at the end of the growing 

season in perennial trees and is subsequently transformed to sugar during the winter, 

where the increase in soluble ‘free’ sugar accounts essentially for the decrease in starch 

(Winkler and Williams, 1945). 

Carbohydrate reserves in deciduous trees are very important for reproductive and 

vegetative development in the initial growth stages (Quinlan, 1969; Loescher et al., 1990; 

Gaudillère et al., 1992; Teng et al. 1999).  Furthermore, not only carbohydrate content 

but also the total amount of carbohydrates in each part is important for maintaining tree 

vigor (Yano et al., 2002).  The contribution of reserves to the annual tree carbon balance 

is one of the keys to understanding tree vegetative and reproductive growth.  The storage 

pool is used during periods of low photosynthesis to fuel maintenance of respiration 

(Ögren, 2000), to cope with water stress, and to build leaves in spring (especially broad-

leaved species) (Barbaroux and Dufrêne, 2003). 

Carbon allocation within a plant is very complex because of complex linking 

between carbon source organs (mainly leaves) and carbon sink organs (mainly sapwood 
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of stems, branches and roots, and fruits).  The complexity comes essentially from 

regulations due to feedback mechanisms, interactions between different functions, and 

the special distribution of the different plant compartments (Génard et al., 2008). Carbon 

reserves are poorly incorporated, if not neglected, in most carbon-based tree growth 

models, and the major reason why carbon reserves are often neglected is because the lack 

of knowledge about dynamics of carbon reserves (Le Roux et al., 2001). 

Roots are the main organ of carbohydrate storage.  Allocation of reserves to roots 

can be influenced by several factors: carbohydrate biochemistry, respiration, hormones, 

phloem loading and unloading, and genetic control (Friend et al., 1994).  Water 

availability, light, nutrition and temperature exert an influence over the allocation of 

carbohydrates and can modify the shoot/root ratio in woody species (Tromp, 1983; Keller 

and Loescher, 1989; Friend et al., 1994; Jordan and Habib, 1996; Tagliavini et al., 1999; 

Esparza et al., 2001; Allen et al. 2005, Cheng and Fuchigami, 2002; Eschenbach, 2005; 

Dichio et al., 2007 and Génard et al., 2008).  In addition, it is well known that cultural 

practices, such as fertilization, girdling, pruning and fruit thinning can modify the 

allocation of reserves (Priestly, 1976; Worley, 1979; Schnelle and Klett, 1992; Tagliavini 

et al., 1999).  Root reserves are mobilized during the winter and finally depleted as soon 

as new leaf and shoot growth start in the spring (Loescher et al., 1990).  Once sufficient 

leaf area is gained in spring, new photosynthates are synthesized again to support the rest 

of the season’s growth (Marchi and Sebastiani, 2005).   Numerous studies have covered 

the effect of carbohydrate accumulation in forest trees (Hansen et al., 1996; Kainulainen 

et al., 1998; Kosola et al. 2001, Piispanen and Saranpaa, 2001; Jaggi et al., 2002; Li et al., 
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2002; Newell et al. 2002).  It was mentioned that early spring growth is highly dependent 

on remobilization of stored carbohydrate reserves (Kozlowski 1992) in woody species, 

and the rate and amount of accumulation depend on species.  Barbaroux et al. (2003) 

found significant differences in the amount of reserves used by oaks and beeches.  Oaks 

doubled the reserves used from October to June, probably due to differential needs for 

spring growth and winter maintenance between these two genera. 

Fewer studies have been carried out in fruit trees as compared to forest trees. One 

of the big differences in these two kinds of trees is the influence exerted by fruits, the 

most powerful sink of carbohydrates.  The importance of TNC as reserves for woody 

species, and in particular for fruit trees, for initial growth in the spring has been reported 

by Crane and Al-Shalan, 1977; Gaudillére et al., 1992; Nzima et al., 1997 and Allen et 

al., 2005. Considering that about one-half to two-thirds of the carbohydrate reserves in 

fruit trees can be used for flowering, early fruit growth and early shoot growth 

(Kozlowski, 1992), it is important to understand the relationship of scion growth vigor 

associated with different rootstocks and the total non-structural carbohydrates present as 

reserves during the winter. 

Non-structural carbohydrates of heavy cropping ("on") trees compared to light 

cropping ("off") pistachio trees showed large differences in starch and soluble sugar 

degradation (Nzima et al., 1997).  Soluble sugars and starch in "on" trees declined in all 

organs (leaves, inflorescence buds, rachises, nuts, current 1-year-old wood, and primary 

and tertiary branches and roots) as nut growth occurred.  In contrast, all organs of "off" 
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trees accumulated greater concentrations of soluble sugars and starch indicating a strong 

effect of fruit in the allocation of reserves. 

Three-year-old walnut trees were lifted from the field, and starch and soluble 

sugars from different organs were analyzed (Lacointe et al., 1993).  The authors found 

that 90% of the reserves were located in roots, mainly in the taproots, in autumn.  In 

addition, they found a significant hydrolysis of starch to soluble sugars in winter. They 

also reported that autumn reserves were mobilized massively in spring; whereas, those 

accumulated in the summer were mobilized only slightly, suggesting that autumn starch 

is more readily available than summer starch. 

The effect of fruits has been studied on fruit trees and related to the partitioning of 

carbohydrates.  It is known that dry matter production above ground is directly related to 

the radiation intercepted by the crop (Hsiao, 1993).  However, fruit yield per ground unit 

area may increase not only with increases in canopy photosynthesis caused by increments 

in the light intercepted, but also because of changes in the dry matter partitioning.  This 

change in the distribution of dry mass in fruit trees may be attributed to rootstocks, which 

can send either more or less carbohydrates to fruits, shoots, branches, trunk or roots 

(Forshey and Elfving, 1989).  Fruits act as strong sinks for carbohydrates and the 

availability of carbohydrates for an individual fruit depends on the supply from source 

organs and the demand of the sink organs (Grossman and DeJong, 1995abc). In terms of 

assimilate partitioning; fruits are considered irreversible storage sinks that import 

carbohydrates without exporting assimilates (Ho, 1992). 
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It was found that allocation of assimilates to fruits in ‘Loring’ peach trees on 

‘Halford’ rootstock was lower in the fruit stages I and II than in stage III.  Less shoot and 

root growing points were active in stage III, leaving more available carbohydrates for 

fruits (Miller and Walsh, 1988). 

Above ground mass partitioning is affected by crop load, and although fewer 

works have involved root growth, it has been reported that carbohydrates partitioned to 

roots are strongly reduced with heavy crop loads (Maggs, 1963; Avery, 1969; Richard 

and Rowe, 1977; Forshey, 1982).  The number of new white roots is reduced when 

fruited peach trees are compared to non- fruited trees.  This effect was especially observed 

during the final stage of fruit growth and the last part of the vegetative season, implying 

that fruits are stronger sinks than roots (Williamson and Coston, 1986). 

Palmer (1992) found that increases in crop load of ‘Crispin’ apple on M.27 

rootstock slightly reduced leaf dry matter production but produced a large decrease of 

shoot and root dry weight.  In addition, he found that growth of roots appeared to be more 

reduced than shoots, and this effect was more marked in the dwarf rootstocks compared 

to the invigorating rootstocks. 

Rogers and Booth (1964), working with ‘Lane’s Prince Albert’ apple on five 

different rootstocks, showed that after a heavy crop load the vegetative growth of the 

following season was reduced by 53% when the more dwarfing M.IX rootstock was used 

compared to 9% when the trees were on the more vigorous M.VI rootstocks.  In peach, 

dwarf rootstocks had a higher accumulation of dry matter in fruits compared to more 

vigorous rootstocks (Weibel, 1999) 



 

16 
 

One of the proposed mechanisms that would cause the reduction of scion size is 

the capacity for storage carbohydrates.  Rootstocks influence carbohydrates and biomass 

partitioning, and some studies document this specific behavior.  The differences in root 

starch concentrations between the most vigorous and least vigorous rootstocks were 

uncovered in a preliminary study (DeJong 2006, personal communication). The 

differences observed in early spring shoot growth of trees on different rootstocks (Basile 

et al., 2003, Weibel et al., 2003; Balkhoven-Baart and Maas, 2004; Massai and Loretti, 

2004) and the knowledge that this spring growth is largely dependent on overwintering 

stored starch (Koslowski, 1992; Nzima et al., 1997) suggest that differences in scion 

growth could be attributed to the rootstock effect. 

Hydraulic conductivity 

The mechanism of dwarfing due to rootstocks in fruit trees seems to be related to 

the hydraulic status of the whole tree, where water uptake and transport play a central 

function.  Different studies have attempted to explain the dwarfing mechanisms using the 

water status theory as far back as 30 to 40 years ago (Avery 1969, 1970). 

Water relations were studied in apple rootstocks by Olien and Lakso (1984).  

They suggested that differences in mean midday stem water potential could be attributed 

to reduction of water flow due to graft union or root resistance. In another study, apple 

canopy conductance was lower in apple trees grafted on M.9, a more dwarfing rootstock, 

compared to trees grafted on the more vigorous MM.106 and Hashabi rootstocks. (Cohen 

and Naor, 2002) 
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In peaches and pears, Chalmers et al. (1984) found that when water stress was 

applied , shoot growth was markedly reduced but the number of fruits and fruit growth 

was not reduced as much as shoot growth. Similar results were found by Avery (1969, 

1970) where number and size of fruits were not affected as much as vegetative growth 

when apple trees grew on dwarfing rootstocks. These two papers in peach, pear and 

apple, suggested that dwarfing rootstocks may reduce the scion water potential in the 

same way the tree reduces shoot growth when it is affected by water stress conditions. 

The primary effect of water deficits is the reduction of expansive growth (Hsiao, 

1973, Hsiao and Xu, 2000).  Tissue growth involves some biochemical processes such as 

solute transport and wall loosening and formation, in addition to physical parameters 

(turgor pressure and water transport) (Hsiao and Jing, 1987, Hsiao and Xu, 2000).  

Seasonal growth is assumed to be the integrated result of diurnal growth over 

many days (Berman and DeJong, 1997b). Temperature, solar radiation and water status 

of the plant affect the diurnal growth (Hsiao and Bradford, 1983; Hsiao, 1993; Hsiao and 

Xu, 2000; McDonald et al., 1991; Tsuda and Tyree, 2000).  Diurnal changes in plant 

water status have been described for many species including perennial plants (Panterne et 

al., 1998) and peach trees (Chalmers and Wilson, 1977; Larson et al., 1988; Berman and 

DeJong, 1996, 1997ab; Basile et al., 2003; Weibel et al., 2003).  Simmoneau et al. 

(1993ab) found that the diurnal variations in peach tree stem diameter were correlated 

with water potential changes in the same tree and a lag of ten minutes was observed 

between changes in the plant water potential and in the stem diameter.  In another study, 

vegetative growth was clearly reduced when water stress was applied to peach trees 
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(Chalmers et al, 1984; Berman and DeJong, 1997a).  Berman and DeJong (1997b) 

modeled peach stem growth rate using temperature and stem water potential as the main 

variables to predict the daily stem growth.  These results showed that under constant stem 

water potential, temperature affected the growth rate, but changes in the stem water 

potential markedly influenced the extension growth of stems.  In the same work, it was 

demonstrated that the pattern of peach diurnal growth rate was similar for plum, apricot, 

almond, prune and cherry.  Water relations studies of ‘Empire’ apple on five different 

rootstocks (Olien and Lakso 1984) indicated that stem water potential of the most 

dwarfing rootstocks were lower than the more vigorous rootstocks, especially at midday 

and the first hours of the afternoon; however, no differences in stem water potential were 

recorded among rootstocks in the early morning and in the evening. 

It has been shown that under conditions of high air humidity and soil field 

capacity the water potential of peach trees growing under different rootstocks (dwarf to 

invigorating ones) tends to equilibrate (Basile et al., 2003a ; Weibel et al., 2003).  Under 

conditions of high air humidity, low temperatures (< 30°C), and soil field capacity the 

water potential of peach trees growing under different rootstocks (dwarfing to vigorous) 

tends to equilibrate (Basile et al., 2003; Weibel et al.; 2003).  Under this low transpiration 

condition, where the water status of the tree would be maximum, there would be a small 

effect of the hydraulic resistance in all the trees, so the vegetative growth would not be 

affected.  However, when the air humidity is reduced and temperature increased, the 

transpiration increases and concurrently the gradient of water potential between soil and 

leaves also increases (Tyrre and Ewers, 1991). Under this last condition, the hydraulic 
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resistance should be over expressed in the more size-controlling rootstocks causing a 

reduction of scion growth.  In many cases, the reduction in hydraulic conductivity will 

reduce the carbon uptake and growth potential (Clearwater et al., 2004; Hubbard et al., 

2001; Sperry 2000), suggesting this could be another effect produced by dwarfing 

rootstocks. 

The differences in water potential at midday, which were mentioned earlier, could 

be produced by high hydraulic resistances at the graft union or root level, and may 

partially explain the mechanism for the reduction in the diurnal extension shoot growth 

rate.  In general, most studies on the hydraulic architecture of trees have not taken into 

account the presence of two genetically different tissues. Most studies assume continuous 

vascular systems, where the estimation of conductance and resistance appear to follow 

some continuity (except at node levels) (Tyree and Ewers 1991). However, the graft 

union has a high degree of discontinuity, which could have strong effects on water flow, 

particularly when dwarfing rootstocks are involved.  Olien and Lakso (1984) suggested 

that differences in mean midday stem water potential were a result of reduced water flow 

due to the graft union or root hydraulic resistance.  Atkinson et al. (2003) found that root 

system and graft union were responsible for most of the resistance when a dwarf 

rootstock was used in apples.  In cherries, graft union conductivity was reduced in the 

graft union when the combinations involved dwarfing rootstocks (Olmstead et al., 2004, 

2006).  When vines of kiwifruit were grafted on four different rootstocks, they showed a 

positive correlation between growth and hydraulic conductivity (Clearwater et al., 2004).  

The graft union in this study did not represent a high resistance to water, indicating that 
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such a reduction in the water pathway could originate at the roots. However, peaches 

seem to have a different behavior, showing high resistance in the root system and low 

resistance in the graft union (Basile et al., 2003b, 2007; Solari et al., 2006ab).  Glenn and 

Scorza (1992) compared the root water resistance of reciprocal combinations of dwarf 

and vigorous peach cultivars and found that largest phenotypes presented the lowest root 

water resistance.  Basile et al. (2003b) showed that the reduced midday water potential of 

size-controlling rootstocks was most likely from reduced hydraulic conductance at the 

root level.  

Graft union anatomic structure  

The main tree structures involved in water transport from the rootstock to the 

scion are the roots and the graft union. Vessels are the most important elements involved 

in the transport of water in vascular plants (Comstock and Sperry, 2000).  By increasing 

the number and size of the vessels, the hydraulic conductivity is higher.  A similar result 

occurs if the conducting elements have a clear continuity along the different tissues 

(roots, graft union, trunk).  Zimmermann (1983) supported the theory that vessel size 

(cross-sectional area), vessel number and total vessel surface might well affect the 

efficiency of water conductance by roots, indicating that a larger total cross-sectional area 

of vessels should facilitate transport of greater volumes of water per unit time to the 

scion. 

Studies with apples and cherries suggest that dwarfing interstocks and rootstocks 

are associated with a marked depletion of the constituents of xylem sap compared to 

vigorous rootstocks, and the graft union with the scion appears to contribute to this effect 
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(Olmstead et al., 2004, 2006ab).  In cherries, rootstock vigor decreased as vessel surface 

decreased (Olmstead et al., 2004, 2006ab).  Childers (1983) found less cross-sectional 

area of the xylem root tissue and smaller and fewer xylem vessels in dwarfing rootstocks 

compared to the more vigorous one s.  Also in apple, graft union resistance was related to 

high hydraulic resistance and reduced active xylem when trees were grafted on dwarfing 

rootstocks (Atkinson et al. 2003).  In this work, the total area of stained stem xylem, 

calculated as a percentage, was significantly greater for the semi-vigorous rootstock 

(MM.106, 47%) compared to the dwarfing one (M.27, 24%).  The measured reduction in 

stained area of the scion stems grafted onto dwarfing rootstocks (M.27) relative to those 

on semi-vigorous rootstocks indicated a reduction in the functional area of xylem above 

the graft union. 

Tissues showing abnormal growth might indicate the effect of dwarf rootstocks 

on apple cultivar (Simons, 1986).  Simons (1986) working in one-year-old apple trees 

found that the outer bark of the graft union of dwarf rootstocks was thicker than the semi-

dwarf ones, and their phloem was hardly functional compare to the invigorating 

rootstocks.  In the same research it was found that the vascular tissues showed a swirling 

pattern and some senescent tissues became important at this level.  Differences in vessel 

frequency and lumen area in graft union tissues were smaller in ‘Rainer’/’Gi 5’ (dwarfing 

combination) cherry than in ‘Rainier’ grafted on the non-dwarfing rootstock, ‘Colt’ 

(Olmstead et al., 2006a).  Also, when ‘Lapins’ cultivar grew on ‘Gi 5’ rootstock 

(dwarfing) the vascular elements tended to grow obliquely to the longitudinal axis of the 

tree, and the xylem vessel elements had smaller diameters than those trees on ‘Colt’ 
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rootstock (vigorous).  These abnormal structures in the vascular system have been 

suggested to be involved in some kind of incompatibility present at the beginning of the 

formation of the graft union or during the subsequent growth as consequence of 

biochemical or physiological interaction between the two tissues (Simons and Chu, 

1984). 

A common feature of dwarfed apple trees is the swollen, distorted tissues 

composed mainly of xylem elements that are produced in the region of the graft interface 

between rootstock and scion (Jones 1986).  Soumelidout et al. (1994) studied the early 

development of graft unions in the apple cultivars ‘Gala’ and ‘Bramley’.  These cultivars 

exhibited pronounced differences in the pattern of xylem production during subsequent 

growth when they were grafted on different rootstocks.  In the case of M.9 (dwarf 

rootstock), the xylem linking the bud to the rootstock contained fewer vessels than in the 

semi-dwarfing MM.106.  In other work, where the apple cv ‘Golden Delicious’ was 

grafted on apple seedling, MM.106, M.26, M.7 and M.9 rootstocks, the more vigorous 

rootstocks had longitudinal orientation of vascular tissues with normal cambial 

development occurring between the stock and the scion while the more dwarfing 

rootstocks exhibited swirling phloem, abnormal orientation of the xylem rays and 

different degrees of necrosis within the graft union (Ussahatanonta and Simons, 1988).  

Beakbane and Thompson (1939) reported that xylem vessel size and number in the scion 

was not significantly different among rootstocks, but they showed a tendency of the 

biggest xylem elements to belong to the more vigorous apple rootstocks.  A later work of 

these authors probed the living tissue in the wood and bark of roots, which was found to 
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be related to the vigor and fruitfulness of the scion variety (Beakebane and Thompson, 

1947). 

In peaches, some works showed that most of the hydraulic resistance is found in 

the roots instead of the graft union.  Roots represented the major resistance to water flow 

whe n different peach rootstocks were compared by Basile et al. (2003).  In addition, the 

dwarf rootstock recorded a higher water resistance when it was compared with the 

vigorous one, but no anatomical studies were done.  Rieger and Litvin (1999) comparing 

plants from different genus found a negative correlation between root hydraulic 

conductance and root diameter.  More recently, Basile et al. (2007) and Solari et al. 

(2006ab) confirmed earlier studies on peaches where the highest hydraulic resistance was 

found in the root system.  

However, dwarfing mechanisms supporting the theory that roots are involved in 

reducing the size of the scion have been controversial when interstems are used.  

Different reports, in apple (Czynczyk, 1980; Seleznyova et al., 2003) and citrus (Camara 

et al., 2003ab) showed an effect of interstems.  Thus, the effect of interstems should be 

considered in future studies that investigate dwarfing theories. 

Radial and axial transport 

In most cases when considering a whole plant, the highest resistance to water 

transport occurs in the root system (Liu et al., 1978; Pasioura, 1988).  There are two main 

components in the movement of water: the axial and radial conductance.  The first 

component represents the movement of water through the vessel elements up to the stem 
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and the second one belongs to the conductance of water from the root surface to the 

xylem vessels. 

In general, the axial conductance in fruit trees is assumed to be large enough to 

not limit the water pathway due to secondary radial growth, which increases the number 

of xylem vessels (Vercambre et al. 2002).  These authors, working with a peach cultivar 

grafted onto ‘Damas GF 1869’ plum rootstock, found that the woody roots had higher 

conductance than the fine roots.  They concluded that fine roots had the highest resistance 

to the axial water movement.  However, they agreed that axial resistance does not limit 

the transport of water unless some limitations were present such as very deep soil 

(Jackson et al. 2000) or some kind of restriction of the root system that might reduce the 

water flow (Yamauchi et al., 1995).  In the same work, the authors found a positive 

correlation between root diameter and conductance; however, the slope was lower for the 

fine roots.  Fine roots had larger variability in conductance due mainly to the difference 

in the number of vessels as compared to woody roots. 

Green and Clothier (1999) developed an experiment where they examined the 

spatial and temporal pattern of water uptake in a mature apple orchard.  They found that 

when the soil was uniformly wet, 70% of the water uptake belonged to the roots localized 

in the first 0.40 m as well as 70% of the fine roots were also in this first soil layer.  They 

measured the water flow of roots and found significant variability among roots. 

Additionally, when they dried half of the soil (one side row of the tree) the uptake of the 

roots in the wet part increased almost two-fold.  In the same study when water was 

applied again, the roots that were inactive in the drier soil recovered to the original uptake 
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within hours.  This suggested there was a complex mechanism involving water uptake 

and conductivity in the root system. 

Frensch and Hsiao (1993) found that the highest resistance to water movement 

was in the radial flow unless the tracheid elements are cavitated during water stress or the 

roots were very long.  The water from the soil to the lumen of xylem vessels needs to 

travel through complex pathways that involve both apoplastic and symplastic 

mechanisms (Taiz and Zeiger, 2006).  Water flow variation should depend on the 

apoplastic or cell-to-cell pathways and this variation needs to be related to the different 

species (Barrowclough et al., 2000; Steudle and Peterson, 1998).  One likely candidate to 

modify the cell- to-cell path is the water channel, which modifies the membranes 

conductance.  These water channels are represented mainly by transmembrane proteins, 

which allow passive movement of single water molecules through plasmalemma and 

tonoplast membranes that are generally called aquaporins (Clarkson et al., 2000; 

Tyerman et al., 1999; Vandeuleur et al., 2005; Taiz and Zeiger, 2006; Kaldenhoff et al., 

2008). 

Aquaporins are proteins that belong to the major intrinsic proteins (MIP) family.  

In this family, two different protein groups have been identified in the plasma membrane 

and in the tonoplast: the plasma membrane intrinsic protein (PIPs) and the tonoplast 

intrinsic protein (TIPs), respectively.  Aquaporins form a large family with 35 members 

in higher plants. In Arabidopsis, 35 aquaporin genes have been identified; while in maize 

36 genes have been reported (Chaumont et al., 2005).  It is estimated that over 50% of the 

plant water needs travel through aquaporins in root membranes and in membranes 
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associated with sugar and water storage (Vandeleur et al., 2005).  Aquaporins have been 

shown to control the transport of water from roots to leaves, and also regulate other 

processes such as transport of assimilates into the sieve elements.  In addition, they are 

involved in the regulation of permeability to CO2 and hydrogen peroxide, boric acid 

uptake, transport of small alcohols, closure or aperture of stomata, movement of the 

leaves and control of cytoplasmic homeostasis (Tyerman et al., 2002). 

These water channels also have been shown to be interconnected with ABA signal 

transduction (Kaldenhoff et al., 2008).  HgCl2 was found to block most aquaporins by 

binding to the sulfhydryl group (SH) of Cys residues located in the proximity of the 

aquaporin pore.  Several experiments showed a decrease of 20 to 90% in the movement 

of water (Javot and Maurel, 2002). In corn, it was found that oxidation by hydrogen 

peroxide (H2O2) reduced dramatically the water flow in roots and cortical cells (Henzler 

et al., 2006).  Eight cDNA encoding putative aquaporins were studied in the stress 

tolerant Vitis hybrid rootstock ‘Richter-110’ by Baiges et al. (2001).  The authors found 

that most of the aquaporins had higher expression in roots rather than in stems and leaves.  

Aquaporins were associated with water transport between xylem parenchyma cells and 

embolized vessels in walnut (Sakr et al., 2003).  In addition, aquaporins seem to be 

related to differences in growth associated with dwarfing rootstocks in olives (Lovisolo et 

al., 2007).  These authors found a clear correlation between the dwarfing rootstock and 

low aquaporin expression; whereas, the expression of aquaporins was high when the 

vigorous rootstock was considered.  Importance of aquaporins is still probably 

underestimated due their relativity recent discovery. 
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Interstems  and budding height 

The effects produced by dwarf rootstocks on apples, pears, cherries, plums and 

peaches have been well documented; however, fewer studies have taken in account the 

effect of interstems (interstocks) since most of the focus has been on the roots and graft 

union.  In general, interstems have been used to overcome incompatibility between 

rootstocks and scions, such as for pear cultivars (‘Williams’ or ‘Bartlett’) on quince 

rootstocks.  In this case, when an interstem is used (‘Old Home’ or ‘Beurre Bosc’) the 

three-graft combination is completely compatible and tree growth is normal (Hartman et 

al., 1998). 

Clonal dwarfing rootstocks for pear and apple reduce scion growth when used as 

interstock (Olmstead et al., 2004, 2006ab) (or interstems) and the longer the interstock 

length, the greater is the effect (Webster, 1995).  Some studies have demonstrated that the 

length of the dwarfing interstem controlled the tree size (Parry and Rogers, 1972; Carlson 

and Oh, 1975).  Most interstem research has been done in apples (Czynczyk, 1980; 

Seleznyova et al., 2003, 2008; Tojnko et al., 2004) showing that interstems affect tree 

growth and fruit quality.  More recently, other fruit species have been tested by using 

interstems such as in cherries (Rozpara and Grzyb, 2004) and citrus (Cámara et al., 

2003ab, 2004; Gil-Izquierdo et al., 2004) and several in peaches (Yano et al., 2002; 

Rufato et al., 2006).  Interstems not only affect tree growth and fruit quality, they 

increase tolerance to salt in citrus (Cámara et al., 2003a, 2004) and cold resistance in 

apples (Webster and Wertheim, 2003).  In two sweet cherry cultivars, ‘Van’ and 

‘Buttner’s Red’, which were grafted on several interstems and two common rootstocks, 
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Prunus avium and P. mahaleb, leaf mineral content except for phosphorous was found to 

be different because of the interstem (Rozpara et al., 1990).  It is apparent that interstocks 

could produce similar results as rootstocks (Czynczyk, 1980), indicating that there is a 

common effect, which might not be related only to roots as most of the works suggest. 

A similar increase in scion dwarfing, at least with apple and pear, is associated 

with stem characteristics of the rootstock and is not entirely attributable to its root 

characteristics (Webster, 1995). Recent studies have reported the effect of the increase of 

budding height on the shank or stem of a dwarfing rootstock (Mielke and Smith, 2002; 

Hrotko and Maguar, 2004; Kviklys and Lanauskas, 2007; Kviklys et al., 2007). Hrotko 

and Magyar (2004) suggested that the budding height effect might be the result of the 

longer rootstock portion (shank) exposed to the sun. These authors planted at different 

depths ‘Idared’ apples trees grafted at 30 cm from the root system.   The authors 

suggested auxin transport loss and decomposition in the rootstock bark was believed to 

be higher due to sun exposure.  In another study, buried apple interstocks gave a 

reduction of 15% in tree growth compared to the exposed ones (Domoto, 2001).  Overall, 

the majority of grafting height studies have been done in apple trees where there is a 

reduction in growth as the budding height is increased (Parry, 1986; Kumar and Ananda, 

2004; Sosna, 2004; Kviklys et al., 2007). Budding height did not affect scion growth in 

the first growing season when Kviklys et al. (2007) studied young ‘Auksis’ apple trees 

grafted at 0, 10, 20 and 30 cm from the ground.  However, in the same study budding 

height reduced scion growth in the second and third season.  In another study, budding 

height did not follow a clear pattern when Grzyb et al. (2002) budded two plum cultivars 
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at 10, 20 and 30 cm from the ground.  This work showed that ‘Bluefre’ plum trees grew 

the least when they were budded at 30 cm; whereas, ‘Ammers’ plum trees had the most 

vegetative growth when they were budded at 10 cm. Besides other factors, budding 

height had significant effects on the growth and yield characteristics observed primarily 

in apple trees; however, peaches were not included in any of those studies. 
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CHAPTER III 

 

DORMANT CARBOHYDRATE RESERVES OF TWO PEACH CULTIVARS 

GRAFTED ON DIFFERENT ROOTSTOCKS 

 

Introduction 

 

The increasing density of the orchard plantings to obtain high yields and 

accompanying high cost of the manual operations emphasized the necessity of size-

controlling rootstocks. In past decades, apple researchers and farmers introduced spur 

cultivars and dwarfing rootstocks to control tree size. Small plants made high-density 

apple plantations widespread in Europe and America.  The use of small trees reduces cost 

of hand labor for pruning, thinning and harvest, while inducing precocity, making high-

density plantations economically advantageous (Reed, 1975; Hayden and Emerson, 1976; 

Green, 1991; and DeJong et al., 1999). Unlike apples, there are no widely acceptable 

size-controlling rootstocks for peaches. New peach rootstocks have become available 

from Europe since two decades but their use is still very limited because of the restricted 

range of compatibility among cultivars (Felipe, 1989; Loreti, 1994).  

There are different theories on rootstock dwarfing mechanisms (Lockard and 

Schneider, 1982; Crabbé, 1984; Rom and Carlson, 1987; Atkinson and Else, 2001; 

Atkinson et al., 2003; Webster and Wertheim, 2003).  One potential mechanism that 

could influence scion vigor when budded to different rootstocks is the capacity of the 
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rootstock to store carbohydrates.  Preliminary results from experiments investigating the 

physiological mechanisms involved in size-controlling rootstocks for peach trees 

indicated that there is a relationship between dormant season root carbohydrate storage 

and tree growth characteristics associated with different rootstocks (DeJong, 2006, 

personal communication).  The differences observed in early spring shoot growth of trees 

on different peach rootstocks (Weibel et al., 2003; Balkhoven-Baart and Maas, 2004; 

Massai and Loretti, 2004; Reighard et al. 2006) and the knowledge that this spring 

growth is largely dependent on overwintering stored starch indicate a rootstock TNC and 

scion vigor interaction. 

Carbon reserves are poorly incorporated, if not neglected, in most carbon-based 

tree growth models and the major reason why carbon reserves are often neglected is 

because the lack of knowledge about dynamics of carbon reserves (Le Roux et al., 2001).  

Carbohydrate reserves are very important for temperate perennial trees because new 

spring growth depends on the previous season’s reserves.  The carbohydrate storage pool 

is used during periods of low photosynthesis to fuel maintenance respiration, to cope with 

water stress and to build new leaves in spring (Kozlowski, 1992, 1996).  All perennial 

parts show alternate depletion and replenishment, but this behavior is most pronounced in 

roots.  Roots contain the highest concentration of nonstructural carbohydrates (TNC) and 

other reserves at the end of the growing season.  These reserves are mobilized during the 

winter and finally depleted as new leaf and shoot growth starts in the spring (Loescher et 

al., 1990).  Once sufficient leaf area is gained in spring, new photosynthates are 
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synthesized again to support the rest of the season’s growth (Marchi and Sebastiani, 

2005). 

Allocation of reserves to roots can be influenced by several factors: carbohydrate 

biochemistry, respiration, hormones, phloem loading and unloading, and genetic control 

(Friend et al., 1994).  Water availability, light, nutrition and temperature exert an 

influence over the allocation of carbohydrates and can modify the shoot/root ratio in 

woody species (Tromp, 1983 ; Keller and Loescher, 1989; Friend et al., 1994; Jordan and 

Habib, 1996; Tagliavini et al., 1999; Esparza et al., 2001; Allen et al. 2005, Cheng and 

Fuchigami, 2002; Eschenbach, 2005; Dichio et al., 2007 and Génard et al., 2007).  In 

addition, it is well known that cultural practices, such as fertilization, girdling, pruning 

and fruit thinning can modify the allocation of reserves (Priestly, 1976; Worley, 1979; 

Schnelle and Klett, 1992 and Tagliavini et al., 1999). 

Numerous studies have described carbohydrate accumulation in forest trees 

(Hansen et al., 1996; Kainulainen et al., 1998; Kosola et al., 2001; Piispanem and 

Saranpää, 2001; Li et al., 2002; Jäggi et al., 2002 and Newell et al., 2002) and showed 

that early spring growth is highly dependent on remobilization of stored carbohydrate 

reserves in woody species.  Barbaroux et al. (2003) found significant differences in the 

amount of reserves used by oaks and beeches.  Oaks used double the amount of reserves 

from October to June, probably due to differential needs for spring growth and winter 

maintenance between these two genera.  However, fewer studies related to nonstructural 

carbohydrates have been done on fruit trees where fruits can exert a fundamental effect 

because they are the most powerful sink for carbohydrates.  Lacointe et al., (1993) 
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studied three-year-old potted walnut trees and analyzed starch and soluble sugars from 

different organs.  In autumn, 90% of the reserves were located in roots, primarily in the 

taproots.  Significant hydrolysis of starch to soluble sugars occurred in winter, mainly at 

the end of the dormancy period to help support the new growth.  

Large differences in starch and soluble sugar degradation has been reported 

between pistachio trees with heavy crops (‘on’) and light crop loads (‘off’) (Nzima et al., 

1997).  Soluble sugars and starch in "on" trees declined in all organs (leaves, 

inflorescence buds, rachises, 1-year old wood, and primary and tertiary branches and 

roots) as nut growth occurred.  In contrast, all organs in "off" trees accumulated greater 

concentrations of soluble sugars and starch indicating a strong effect of the fruit on the 

allocation of reserves. 

Conditioning of the previous season´s growth altered the availability of 

carbohydrates for initial spur foliage development in spring of ‘Golden Delicious’ trees 

(Tustin et al., 1992).  When natural or artificial shade was applied around fruiting spurs, 

both in the previous season and in the current year, the foliar number of leaves produced 

on the spurs was reduced.  This reduction in number of leaves was attributed to an early 

termination of bourse shoot growth of the previous-season shaded spurs.  

Changes in the distribution of dry mass in fruit trees may be attributed to 

rootstocks, which can alter the relative proportion of carbohydrates allocated to fruits, 

shoots, branches, trunk or roots (Forshey and Elfving, 1989).  Palmer (1992) found that 

increases in crop load of “Crispin” apple on M.27 rootstock slightly reduced leaf dry 

matter production and had a large reduction in shoot and root dry weight. In addition, he 
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found that root growth appeared to be reduced more than shoots, and this effect was more 

pronounced in the dwarfing rootstocks compared to vigorous rootstocks. On the other 

hand, Barden and Ferree (1979) did not find differences in photosynthesis, dark 

respiration and transpiration of apple trees grafted onto several rootstocks, but they 

worked with trees confined to small containers, which might have altered the normal 

development of those trees, thereby reducing the chance to express normal tree growth. 

In peach trees, heavy crop loads increased the proportion of dry mass in fruits 

relative to shoots and roots more in size-controlling rootstocks compared to vigorous 

ones (Inglese et al., 2002 and Weibel, 1999).  In winter, root starch concentration of 

´Redhaven´ peach trees was significantly different among three different vigorous 

rootstocks (Ellis, 1993).  Total nonstructural carbohydrate concentration in roots did not 

show a relationship to rootstocks.  The observed changes in TNC depended on the sample 

date (Ellis, 1993).  In the same study, the concentration of starch and total nonstructural 

carbohydrates were higher in roots than shoots. 

Preliminary studies on size-controlling rootstocks of peach showed a high 

correlation between dormant season root carbohydrate storage and characteristics of tree 

growth associated with several rootstocks (DeJong, 2006, personal communication).  

Peach trees grafted on Prunus tomentosa (dwarfing rootstock) had lower root TNC 

compared to trees grafted on Prunus persica (vigorous rootstock) (Yano et al., 2002).  

They also found that roots smaller than 2-mm-diameter had high TNC concentration.  

However, Gaudillère et al. (1992), working on a range of size-controlling rootstocks for 
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prune trees, could not demonstrate any correlation between the rootstock vigor and level 

of carbohydrate reserves in the perennial parts before spring bud burst. 

Seasonal patterns of carbohydrate concentrations in perennial tissues have been 

reported to be quite similar for several fruit tree species such as pistachio (Nzima et al., 

1997), cherry (Roper et al., 1988 and Keller and Loescher, 1989), apple (Tromp, 1983 

and McQuen et al., 2004), pecan (Worley, 1979), walnut (Lacointe et al., 1993) and 

peach (Layne and Ward, 1978; Ellis, 1993; Jordan and Habib, 1996; Marquat et al., 1999 

and Yano et al., 2002).  Total non-structural carbohydrate accumulation, especially 

starch, peaks in the fall, and this is followed by a drastic reduction in concentration at the 

end of the winter in order to support new growth in spring.  

The objective of this study was to determine if there is a specific relationship 

between rootstock TNC and vigor of scion growth on a range of size-controlling peach 

rootstocks that were previously reported to induce different scion vigor when grown 

under orchard field conditions. It is hypothesized that dormant season rootstock total non-

structural carbohydrates storage capacity is functionally associated with scion vigor 

characteristics of a range of size controlling rootstocks, where dwarfing or size-

controlling rootstocks could store less carbohydrates than the more invigorating 

rootstocks. It is expected that more carbohydrates are stored in roots compared to the 

above ground tissue mass. 
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Materials and methods  

 

Experiment one: Shoot and root TNC of adult bearing peach trees 

Four-year-old peach trees [Prunus persica (L.) Batsch cv. Redhaven] and five-

year-old peach trees [Prunus persica (L.) Batsch cv. Redtop] grafted on different 

rootstocks were grown at three different locations: Kearney Agricultural Center, Parlier, 

CA; USDA Southern Fruit & Nut Tree Laboratory, Byron, GA and Musser Fruit 

Research Center, Seneca, SC.  Trees were part of two NC-140 rootstock trials, and they 

were planted at 5 m x 6 m. Lovell (Prunus persica), Pumiselect® (P. pumila), Krymsk® 

1 (formerly called VVA-1) (P. tomentosa x P. cerasifera), Cadaman®-Avimag (P. 

persica x P. davidiana), Controller® 5 (formerly called K-146-43) (P. salicina x P. 

persica) and Cornerstone (formally called SLAP) (P. persica x P. dulcis) were used as 

rootstocks.  Cadaman® and Cornerstone were vigorous rootstocks, Lovell had standard 

vigor, Pumiselect® and Controller® 5 had intermediate vigor, while Krymsk® 1 was the 

most size-controlling rootstock (least vigor). 

Stem and root samples were taken in January 2006 from trees at the three research 

sites (January 12, 20 and 24 for California, South Carolina and Georgia respectively).  

Each sample was a composite of 3 shoots or 3 roots per tree.  Depending on the site and 

combinations, 4 to 8 trees were used at each site as replicates.  Stem samples were taken 

from sun-exposed “hangers” (i.e. shoots) located at about 1.5 m from the ground.  Four - 

to 6-mm-diameter shoot sections of about 15 cm in length were taken from the middle 

part of one-year-old shoots.  Four- to 6-mm-diameter roots were collected at 40 to 60 cm 
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from the trunk and at a depth of 5 to 15 cm.  In addition, samples from ‘Redhaven’ trees 

at the Musser Fruit Research Center were collected for TNC analyses on 15 December 

2006 and 20 January 2007 to compare with those taken the prior winter. 

On ‘Redtop’ trees at Kearney Agricultural Center, Parlier, CA, a small cylinder of 

woody tissue (1-cm-diameter) was taken from the rootstock and scion at 7-10 cm below 

and above the graft union.  Trunk bark was sampled by removing the bark patch from the 

cylinder.  Trunk wood was sampled by removing a core of 10 mm depth.  Samples were 

taken from trees grafted on Lovell, Pumiselect®, Controller® 5 and Krymsk® 1 

rootstocks. 

Experiment two: Shoot and root TNC of young non-bearing trees’ shoot and 

root sampling  

One-year-old ‘Redhaven’ peach trees grafted on Lovell, Pumiselect®, Krymsk© 

1 and Cadaman® were planted in January 2006 and used for nonstructural carbohydrate 

studies in January 2007. Trees were planted in double rows at 1.5 m x 1.5 m in the row 

and 6 m between rows. Three shoots and three roots similar to adult trees were used to 

study the concentration of total nonstructural carbohydrates from the one-year-old trees 

on different dates (19 December, 2006, 20 January, 2 February and 14 March 2007) 

during the Winter of 2006-07. 

Experiment three: Young non-bearing trees’ analysis of total TNC 

In a third experiment, whole trees planted at the same time and distance as 

previously described were removed from the ground in January 2007 after a season of 

growth. The above ground material was separated into three different groups: 1) shoots 
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with diameter less than 7.5 mm; 2) shoots with diameter between 7.5 and 15 mm; and 3) 

shoots with diameter greater than 15 mm. Roots were divided into two groups: - Primary, 

which included the main root system originating from the graft union (including the 

rootstock trunk), and secondary roots, which represented all the roots coming from the 

main system. Fresh weight of all groups of material were determined and then the 

material was dried at 60°C for at least 2 weeks before grinding as previously described. 

Carbohydrate analyses were also done as described previously for adult trees.  Six trees 

per treatment were analyzed. 

Experiment design and data analysis 

Trees were planted in a completely randomized block design with 4-8 replications 

for the adult bearing trees and 6 replications for the young non-bearing trees. Data were 

analyzed by SAS (9.1 version) using the GLM procedure. 

All samples were frozen in liquid nitrogen, stored at -70°C and subsequently 

freeze-dried.  Dried samples were ground with a Wiley Mill (Thomas® Wiley® Mini-

Mill) through a 40-mesh screen.  Ground plant tissues were stored in a desiccator. 

Nonstructural carbohydrates were determined as described by Somogyi (1926, 

1936 and 1945) and Nelson (1944).  Two to three sub-samples of 50 mg each were used 

from each treatment for TNC analysis.  For each sample 5 ml ethanol 80% and 10 ml Na-

acetate buffer (pH 4.5) were added and boiled for 2 hours in a water bath.  After cooling, 

1 ml each of invertase (5 units ml-1) and amyloglucosidase (50 units ml-1) were added.  

The samples were incubated for 3 days at 45°C with periodic stirring to break down 

starch and complex sugars to glucose.  After a 3-day incubation period, 25 µl of 



 

57 
 

supernatant were placed into a test tube and 1 ml of Copper Reagent added and boiled for 

2 hours in order to reduce the copper by glucose.  After boiling, 1 ml of AMSO reagent 

was added to react with the reduced copper.  The solution was cooled and the absorbance 

was measured at 520 nm.  Glucose in samples was quantified against glucose standards 

of 0, 50, 100, 250, 500, 1000 and 2000 ppm.  

 

Results 

 

Shoot and root TNC of adult bearing peach trees  

Shoot total nonstructural carbohydrates (STNC) concentration of ‘Redhaven’ and 

‘Redtop’ trees did show interaction between rootstocks and the three places (CA, GA and 

SC). At Byron, GA, shoot TNC concentrations varied from 94 to 124 mg g-1 dry weight 

(DW) and was not different among rootstocks.  In California, ‘Redhaven’ trees grafted on 

Pumiselect® and Krymsk® 1 rootstocks had the highest significant accumulation of 

shoot TNC (134 and 135 mg g-1 DW respectively) while Cadaman® and Lovell had the 

lowest (114 and 116 mg g-1 DW respectively).  Shoots from ‘Redtop’ trees were not 

significantly different with regard to the accumulation of carbohydrates, and shoot TNC 

values ranged from 84 to 110 mg g-1 DW.  Shoot TNC of ‘Redhaven’ or ‘Redtop’ were 

not significantly different in trees grown at the Musser Fruit Research Center in South 

Carolina (data not shown).  Shoot TNC values ranged from 76 to 129 mg g-1 DW. 

Root TNC of ‘Redhaven’ trees had a significant interaction between locations and 

rootstocks (Table 3.1).  Higher root TNC concentration was found in trees grown at 
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California compared to those grown at GA or SC.  Root TNC concentrations were the 

highest in Lovell and Cadaman®, while Pumiselect® had the lowest TNC concentration 

and Krymsk® 1 intermediate TNC concentration (Table 3.1). 

Roots from ‘Redtop’ trees grafted on Cornerstone (SLAP) rootstock had the 

highest TNC concentration in GA and SC, while the lowest concentrations were found in 

Pumiselect® and Krymsk® 1 roots.  Lovell roots had intermediate concentrations at 

Georgia and SC (Table 3.2).  In California, ‘Redtop’ trees on Lovell rootstock had the 

highest concentrations of root TNC; while Pumiselect® roots had the lowest 

concentration.  In Redtop trees growing in South Carolina, significant differences were 

found in the different root genotypes (Table 3.2), with the more vigorous rootstocks 

having more TNC than less vigorous ones. 

Samples collected from ‘Redhaven’ trees at Musser Fruit Research Center on two 

different dates (15 December 2006 and 20 January 2007) indicated that shoot TNC was 

significantly greater in those grafted on Cadaman® than trees on Controller® 5 and 

Pumiselect® (Table 3.3).  On the same dates, Lovell roots had the highest concentration 

of total dormant nonstructural carbohydrates and Krymsk® 1 roots the lowest. 

When the concentrations of TNC were studied on bark and wood tissues of five-

year-old ‘Redtop’ trees grafted on Lovell, Pumiselect®, Controller® 5 and Krymsk® 1 

rootstocks at Kearney Agricultural Center, CA, differences were observed at the scion 

and rootstock tissue levels (Table 3.4).  When similar tissue was compared among the 

different rootstocks, Lovell generally had higher concentrations of total dormant 

nonstructural carbohydrates (Table 3.4).  Scion bark tissues from ‘Redtop’ trees grafted 
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on Lovell rootstock had the greater concentration of TNC, while than on Controller® 5, 

Pumiselect® or Krymsk® 1.  Scion wood tissue from trees grafted on Lovell and 

Pumiselect® rootstocks had significantly higher concentrations than Controller® 5.  In 

the roots, bark TNC values were highest in Lovell, while Krymsk® 1 and Controller® 5 

had the lowest concentrations.  TNC concentration in woody root tissue was greater in 

Lovell and Pumiselect® than in Krymsk® 1 and Controller® 5. 

The concentration differences of TNC in similar tissues above and below the graft 

union was analyzed in order to determine if there was an effect of the graft union on the 

accumulation of TNC above and below the graft union in the ‘Redtop’ trees grafted on 

four rootstocks (Table 3.4).  Bark tissues of Lovell and Pumiselect® had significantly 

larger differences between the TNC accumulated above and below the graft union 

compared to Krymsk® 1 and Controller® 5.  In general, bark tissues had larger 

differences in TNC concentrations compared to the wood (Table 3.4). Woody tissues 

from trees grafted on Pumiselect® and Lovell rootstocks had significantly larger 

differences in TNC than Krymsk® 1.  Moreover, Krymsk® 1 was the only rootstock 

which had an inverse concentration of TNC; that is, it was higher in the scion than the 

root (Table 3.4). 

Experiment two: Young non-bearing trees’ shoot and root sampling  

During Winter 2006-2007, one-year-old peach trees grafted on different 

rootstocks were analyzed for the content of TNC in different tissues.  Five-mm-diameter 

roots at all sample dates  had significantly higher concentrations of TNC in Lovell roots 

compared to the rest of the rootstocks (Fig. 3.1).  Lovell roots had the highest 
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concentrations while Krymsk® 1 the lowest. Root TNC concentrations increased until 20 

January 2006, and after that they declined (Fig. 3.1).  The TNC concentration in shoots 

tended to decrease after January in trees on all rootstocks, and the differences between 

trees on the various rootstocks were less than for the roots. 

Experiment three: Young non-bearing trees’ analysis of total TNC 

Concentrations of TNC in dormant shoots with <7.5-mm-diameter and those with 

>15-mm-diameter were not significantly different among the three studied rootstocks.  

Only shoots between 7.5- and 15-mm-diameter on Krymsk® 1 had significantly lower 

TNC concentrations than Lovell and Pumiselect® (Table 3.5).  The main root system (tap 

root) and the rest of the roots (smaller roots) on Krymsk® 1 had significantly lower TNC 

concentrations than the other two rootstocks (Table 3.5). 

‘Redhaven’ trees grafted on Lovell had the greatest total dry weights (Table 3. 6), 

while those on Krymsk® 1 and Pumiselect® had the least. However, trees on Krymsk® 1 

tended to produce the smallest dry weights.  When the TNC of all tissues were analyzed, 

trees grafted on Lovell rootstocks had the highest TNC values (Table 3.7).  Trees on 

Pumiselect® tended to have higher amounts of TNC in all tissues than Krymsk® 1, 

although the differences in the first year in the field for these trees were not statistically 

significant.  

Figure 3.2 shows the distribution by percentage of TNC in the different dormant 

tissues of one-year-old ‘Redhaven’ trees on Lovell rootstock.  Trees grown on 

Pumiselect® and Krymsk® 1 rootstocks did not differ in the percentage of TNC 

distribution related to those grown on Lovell (data not shown).  Roots contained about 
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70% of the TNC.  The distribution of TNC in the trees was similar when the shoot/root 

TNC ratio was analyzed.  Shoot: root ratios were 0.47, 0.48 and 0.49 for trees on Lovell, 

Pumiselect® and Krymsk® 1 respectively.  The main root had about 20% of the dormant 

TNC of the root system, while near 80% of the root TNC was concentrated in roots that 

originated from the main axis (Fig. 3.2). 

 

Discussion 

 

The importance of TNC as reserves for woody tree species, and in particular for 

fruit trees, is to support initial growth in the spring (Crane and Al-Shalan, 1977; 

Gaudillére et al., 1992; Nzima et al., 1997 and Allen et al., 2005).  Considering that about 

one-half to two-thirds of the carbohydrate reserves in fruit trees can be used for 

flowering, early fruit growth and early shoot growth (Kozlowski, 1992), it is important to 

understand the relationship between scion growth vigor associated with different 

rootstocks and the total nonstructural carbohydrates present as reserves during the winter. 

Presence of large amount of TNC in trees grown on vigorous rootstocks could support the 

theory where these rootstocks generate a larger vegetative growth early in the spring, 

leading to larger trees at the end of the season.  

Bearing peach trees 

The concentration of TNC found in shoots and roots were similar to those 

reported in peach by Dichio et al. (2007), Dowler and King (1966), Ellis (1993) and 

Stassen et al. (1981a,b), in almond by Esparza et al. (2001), in cherry by Keller and  
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Loescher (1989) and in pecan by Worley (1979).  In general, the concentration of TNC in 

the 5-mm-diameter ‘Redhaven’ and ‘Redtop’ shoots from mature bearing trees at the 

three sites (CA, GA and SC) were not significantly different in January 2006.  For the 

roots, the higher TNC concentrations of the more vigorous rootstocks (Lovell, 

Cadaman® and Cornerstone) suggest that the vigorous rootstocks have a higher capacity 

to store carbohydrates per unit of root tissue or a greater availability of carbohydrates for 

storage at the whole tree level (Tables 3.1-3.3).  The greater partitioning of carbohydrates 

to fruits reported for the more size-controlling rootstocks (Caruso et al., 1995, 1997; 

Weibel, 1999) suggests less availability of carbohydrates for root storage in these trees 

due to the strong sink strength of the fruits. 

Even though the tissue samples from mature bearing trees represented a very 

small fraction of the total mass volume (5-mm-diameter shoots and roots), the results 

from bark and wood tissues followed a similar pattern for both shoots and roots.  

Generally, TNC concentrations reported in the literature are higher in bark than wood; 

such as was found in peach and pistachio wood (Dowler and King, 1966; Crane et al., 

1976, 1977).  The higher content of TNC in bark compared to wood is reported to be a 

consequence of its proximity to sieve tubes (Jordan and Habib, 1996), but the high TNC 

accumulation in root bark compared to scion bark suggests a higher specialization of root 

tissue to act as a reserve or sink organ (Tromp, 1983; Loescher et al., 1990; Kozlowski, 

1992, 1996).  All trees had the same general pattern of TNC distribution with a higher 

concentration in bark tissues. At the same time, root bark TNC content was higher than 

the shoot bark. 
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The pattern of TNC concentrations found in our study in the bark and wood 

tissues of the scion trunk was similar to those reported for peach by Dowler and King 

(1966) and Jordan and Habib (1996).  Similar patterns also were observed by Keller and 

Loescher (1989) in cherry trees although the values of TNC were lower than the results 

obtained in peaches.  The more vigorous rootstocks exhibited a clear tendency to have 

higher concentrations of TNC in bark and wood tissues (Table 3.4).  Tabuenca (1973) 

found that the accumulation of TNC were higher in the scion than in the roots in the cases 

of graft incompatibility between peach and plums.  In our study, the higher concentration 

of TNC in the root bark and wood tissues compared to those in the scion, suggested that 

the present combinations were compatible, and the differences in growth were caused by 

other factors.  The larger differences between scion (lower) and rootstock (higher) 

observed in the bark TNC concentrations for the more vigorous rootstocks indicate either 

more selective pathways of TNC transport or a higher capacity for carbohydrate storage 

of root tissues in the vigorous rootstocks due to differences in anatomy. 

Young non-bearing trees  

In young non-bearing trees, shoot TNC concentrations among trees on the 

different rootstocks decreased during the winter (Fig. 3.1).  At the end of dormancy, scion 

TNC concentrations were less in the shoots of trees on Lovell rootstock compared to the 

more size-controlling rootstock, Krymsk® 1, suggesting an earlier mobilization of TNC 

in this vigorous rootstock, which could allow it to grow earlier in the spring.  

Lovell roots always had higher TNC concentrations than the rest of the 

rootstocks, consistent with the observed values in the 5-mm roots of mature trees.  After 



 

64 
 

reaching maximum values in January, root TNC concentrations began decreasing in all 

rootstocks, presumably due to remobilization of carbohydrates to support spring growth 

(Fig. 3.1).  The change in the pattern of TNC concentration through the winter was 

consistent with other studies in peach (Dowler and King, 1966; Stassen et al., 1981ab; 

Ellis, 1993; Jordan and Habib, 1996; Singh and Kanwar, 2004), where the concentration 

declined toward the end of winter due to remobilization of carbohydrates from the roots 

to the growing points (Génard et al. 2007).  Root TNC was higher in the young non-

bearing trees than bearing trees, possibly due to a greater availability of TNC in non-

bearing trees.  Moreover, it has been demonstrated that fruiting in general decreases 

carbohydrate reserves, although there is little evidence of the reduction of carbohydrates 

in the roots (Goldschmidt and Golomb, 1982; Loescher et al.,1990; Nzima, 1997). 

When whole one-year-old ‘Redhaven’ trees were removed from the soil, the TNC 

concentration of above-ground tissues (shoots, branches and trunk) did not differ very 

much; however, the more size-controlling rootstocks tended to have lower values (Table 

3.5).  In the roots the differences were more marked.  The main root and the rest of the 

roots in the more size-controlling rootstocks had lower concentrations of carbohydrates.  

The differences in TNC content of the whole tree (but mainly in the roots) might account 

for some quantitative differences in the spring flush of growth.  TNC concentrations of 

smaller roots were considerably higher that the main roots on a dry weight basis.  In 

Quercus, the carbohydrate reserves varied considerably with the root size, while the 

starch content of oak roots was inversely related to root diameter (Wargo 1976). Wargo 

found that as root diameter decreased, the rays were closer together and the proportion of 
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ray tissue (high starch storage capacity) to woody tissues (low starch storage capacity) 

was higher.  Our data confirmed that shank or main roots had lower concentrations of 

TNC than the smaller diameter roots.  Yano et al. (2002) reported rootstock trunks had 

lower TNC concentrations than roots that were smaller than 10-mm-diameter.  This was 

the apparent reason for the relatively high amount of carbohydrates found in young trees 

on Pumiselect® (Table 3.5), which had (at this age) most of its root system dominated by 

small roots (data not shown), compared to Lovell roots, which were larger in diameter.  

The distribution of TNC between the root and shoot and the shoot/root TNC ratio in trees 

grafted on the three different rootstocks was similar (Fig. 3.2) indicating that differences 

in growth were not due to TNC distribution in the trees. 

As mentioned previously, differences in TNC concentration were correlated with 

the vigor of the rootstocks, where the more vigorous ones had higher TNC 

concentrations; however, larger differences were found for total TNC per tree (Table 

3.7).  The high TNC content in the vigorous rootstock was a consequence of the large dry 

weight per tree.  It appeared that the differences observed in growth, especially the initial 

growth in spring, might be due to a larger amount of TNC in the trees grafted on the more 

vigorous rootstocks rather than the concentration of TNC by itself.  A comparison of 

Krymsk® 1 and Lovell data exemplify this concept.  Krymsk® 1 had an average root 

TNC concentration that was 20 % (tap root) to 30% (small roots) less than Lovell, but at 

the same time, Krymsk® 1 had 70% (main root) and 74% (small roots) less total TNC (g 

DW tree-1) than Lovell.  A similar picture develops from an analysis of concentration of 

carbohydrates and the total TNC per tree in the above ground parts. Krymsk® 1 had 23% 



 

66 
 

less TNC concentration than Lovell in above ground tissues, but when the analysis 

considered the total TNC in the above-ground bio mass, Krymsk® 1 had 73% less total 

TNC than Lovell in those tissues. 

These differences between concentration and total TNC per tree indicate that the 

vigorous rootstocks have higher initia l growth potential due to larger total reserves, 

especially in their root tissues.  The size of the root system, and to a lesser extent the 

concentration of TNC, could be the reason for the observed differences in the early flush 

of growth.  However, how much of this reserve-dependent initial growth may be 

responsible for the season´s growth differences observed between dwarfing and vigorous 

rootstocks is still unclear. 
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Table 3.1. Dormant total nonstructural carbohydrates (mg g-1 DW) in 5-mm-diameter 

roots of bearing Redhaven trees grafted on different rootstocks at Kearney, California 

(CA); Byron, Georgia (GA) and Musser Fruit Research Center, South Carolina (SC), in 

January 2006.  

Root TNC concentration (mg g-1 DW)z  

Location Means  

CA 265   a 

GA 237   b 

SC 233   b 

Rootstocks   

Lovell 321   a 

Cadaman 279   a 

Pumiselect 207   c 

Krymsk 1 232   b 

Analysis of variance Probability 

Places 0.0037 

Rootstocks   0.00001 

Places x rootstocks 0.0206 
zDifferent letters within a column indicate significant differences at P <0.05. 
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Table 3.2. Dormant total nonstructural carbohydrate (TNC) concentration (mg g-1 DW) in 

5-mm-diameter roots of adult bearing Redtop trees grafted on different rootstocks at 

Kearney, California (CA); Byron, Georgia (GA) and Musser Fruit Research Center, 

South Carolina (SC), in January 2006.  

 Root TNC concentration (mg g-1 DW) 

 Redtop 

Rootstocks CA GA SC 

Lovell 313  a 209   b 226   b 

Pumiselect 164  d 175   c - 

Krymsk 1 271  b 146   c 188   c 

Cadaman - - - 

Controller 5 197  cd - 201   bc 

Cornerstone  230  c 249   a 306   a 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test).  
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Table 3.3. Total dormant nonstructural carbohydrate (TNC) concentration (mg g-1 DW) 

in one-year-old shoots and roots of Redhaven peach trees grafted on different rootstocks 

at the Musser Fruit Research Center, South Carolina on two different dates (December 

15, 2006 and January 20, 2007). 

 TNC concentration (mg g-1 DW) 

Rootstocks Rootsz Shoots 

Lovell 246   a   118   ab 

Pumiselect 191   b 104   b 

Krymsk 1 142   c   114   ab 

Cadaman 201   b 121   a 

Controller 5 184   b 106   b 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
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Table 3.4. Concentration of dormant total nonstructural carbohydrates (TNC) in bark and 

wood tissues (mg g-1 DW) and differences in bark and wood TNC concentration between 

scion and rootstock tissues from sampled patches located at 7 to 10 cm above and below 

the graft union of five-year-old Redtop trees grafted on four different rootstocks. The 

same tissues were compared among the different rootstocks.  

TNC concentration (mg g-1 DW) in bark and wood tissues among different 
rootstocks . 

 Scion Root Differences between 
rootstock and scion 

 Barkz Wood Bark Wood Bark Wood 

Lovell 296  a 173   a 413   a 214   a 117   a   41   ab 

Pumiselect 238   b 154   a 357   b 220   a 119   a  65   a 

Krymsk 1 234   b 171   ab 256   c 139   b   22   b -32   c 

Controller 5 236   b 141   b 262   c 166   b   26   b  25   b 

zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
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Table 3.5. Concentration of total dormant nonstructural carbohydrates (TNC) (mg g-1 

DW) in different tissues of one-year-old Redhaven peach trees grafted on three different 

rootstocks. 

TNC concentration (mg g-1 DW) 

 Shootsz  Roots  

Rootstocks <7.5 mm 7.5-15.0 
mm 

>15.0 mm Tap Small 

Lovell 73   a 68   a 72   a 83   a 219   a 

Pumiselect 73   a 66   a 66   a 88   a 251   a 

Krymsk 1 60   a 51   b 57  a 59   b 176   b 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
 
 
 
 
Table 3.6. Dry weight (g DW) from different tissues of one-year-old Redhaven peach 

trees grafted on different rootstocks. 

Dry weight in tissues of one -year-old Redhaven trees 

 Shootsz  Roots  

Rootstocks <7.5 mm 7.5-15.0 
mm 

>15.0 mm Large Small 

Lovell 604.4  a 458.8  a 1020.6  a 680.4  a 1122.0  a 

Pumiselect 352.8  b 263.2  b    488.3  b 249.2  b   457.5  b 

Krymsk 1 185.8  b 141.2  c    243.3  b 201.8  b   402.8  b 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
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Table 3.7. Weight (g DW/tree) of dormant total nonstructural carbohydrates per tree in 

different tissues of one-year-old Redhaven peach trees grafted on three different 

rootstocks. 

TNC dry weight (g DW/tree) in tissues of one -year-old Redhaven trees 

 Shootsz  Roots  

Rootstocks <7.5 mm 7.5-15.0 
mm 

>15.0 mm Tap Small 

Lovell 43.4   a 31.1   a 68.3   a 56.2   a 242.0   a 

Pumiselect 20.9   b 12.7   b 27.5  b 21.6   b 118.2   b 

Krymsk 1 12.9   b   9.4   b 16.5   b 11.4   b   69.1   b 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
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Fig. 3.1. Concentration of nonstructural carbohydrates (TNC) in root and shoot tissues of 

one-year-old Redhaven trees grafted on different rootstocks in Winter 2006-2007. 

Standard errors are given for each point. Asterisks represent significant rootstock 

treatment differences at each point at P <0.05 (Duncan´s multiple range test). 
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Fig. 3.2. Percentage distribution of total dormant nonstructural carbohydrates in different 

tissues of one-year-old Redhaven peach trees grafted on Lovell rootstock. Above ground 

mass: shoots less than 7.5-mm-diameter, shoots between 7.5 and 15-mm-diameter and 

shoots bigger than 15-mm-diameter. Below ground mass: tap root represents the main 

root (shank) and small roots were the rest of the roots coming from the main one. One 

hundred represents total weight of nonstructural carbohydrates per tree. 
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CHAPTER IV 

 

EFFECT OF INTERSTEM AND GRAFTING HEIGHT ON VEGETATIVE GROWTH 

OF YOUNG PEACH TREES 

 

Introduction 

 

Dwarfing mechanism studies have focused mainly on the root and graft unions 

where hormones, nutrients and water status are correlated with the functionality of these 

tissues (Soumelidou et al., 1994; Hartmann, 1998; Atkinson and Else, 2001, 2003; Basile 

et al., 2003; Olmstead et al., 2006ab; Solari et al., 2006ab).  The effects of dwarfing or 

semi-dwarfing rootstocks on apple, pear, cherriy, plum and peach scion growth has been 

fairly well studied but little research has done the effects of interstems (interstocks) and 

grafting height is not well understood.  In addition, most of this type of work has been 

done on apples, but the literature is sparse on interstem or grafting height effects on peach 

trees. 

In general, interstems have been used to circumvent incompatibility between 

rootstocks and scions.  An example is found in pear trees where some cultivars are not 

compatible with quince (rootstock), such as the case of ‘Bartlett’ (‘Williams’) when it is 

grafted on quince for dwarfing induction.  In this case, when an interstem is used (e.g., 

‘Old Home’ or ‘Beurre Bosc’) the twice-grafted combination is completely compatible, 

and trees are healthy (Hartman et al., 1998; Wertheim and Vercammen, 2000).  
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In the 1980s in Washington state, several ‘Granny Smith’ and ‘Delicious’ apple  

orchards were top-worked with new and more commercially valuable apple cultivars.  

Therefore, ‘Granny Smith’ and ‘Delicious’ became interstocks in these orchards.  Drake 

et al., (1997), demonstrated that ‘Fuji’ fruits growing on Granny Smith interstock had 

higher soluble solids concentration, more red skin color and calcium, and less scald, bitter 

pit and internal breakdown than fruits grown on ‘Delicious’ interstems.  Taylor (2001) 

working on several apple interstem and rootstock combinations showed how the 

interstock affected tree size as much as when the same genotype was used as a rootstock.  

At the same time, vigorous rootstocks did not vary the scion size when they were used as 

an interstock, indicating a similarity between the rootstock and interstem effect.  

In two sweet cherry cultivars, ‘Van’ and ‘Buttner’s Red’, which were grafted on 

several interstems and two common rootstocks, Prunus avium and P. mahaleb, leaf 

mineral content was analyzed (Rozpara et al., 1990).  Rozpara et al. (1990) found that 

interstems affected the concentration of all the nutrients in leaves except for phosphorous.  

Ebel et al. (2000) found apple foliar nutrient differences on trees grafted on different 

interstocks and rootstocks but only when the nutritio nal levels were close to toxicity or 

deficiency.  In comparision, ‘Verna’ lemon trees grafted on seven interstocks experienced 

only small changes in flavonoid content of lemon juice among the interstem treatments 

(Gil-Izquierdo et al., 2004). 

Interstems reduced final size of ‘Valencia Late’ orange trees when the cultivar 

grew on the interstock ‘Salustiano’ orange (Camara et al., 2003).  Also in citrus, other 

work has showed that the length of the dwarfing interstem controlled tree size (Parry and 
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Rogers 1972).  Most interstem studies have been done in apples (Carlson and Oh, 1975; 

Czynczyk, 1980; Samad et al., 1999; De Rossi et al. 2003; Seleznyova et al., 2003; 

Tojnko et al. 2004) and the effects of the interstem were on tree growth and fruit quality.  

More recently, other fruit species have been tested with interstems including cherries 

(Rozpara and Grzyb, 2004), persimmon (Koshiva et al. 2006), citrus (Cámara et al. 

2003ab, 2004; Gil-Izquierdo et al., 2004), and peaches (Yano et al. 2002, Rufato et al., 

2006).  Interstems not only affect tree growth and fruit quality; they also increase salt 

tolerance in citrus due to chloride exclusion (Cámara et al. 2003b, 2004) and improved 

cold resistance in apples (Webster and Wertheim 2003). 

In mango, no differences in growth were observed with interstems (Perez et al., 

1988; Sampaio and Simao, 1996; Veloso et al., 2004). Jones and Quinlan (1981), 

working on cherries, did not find differences in scion growth when trees were grafted 

with the interstock ‘Clone 15’.  In the same work, the authors found a 20-30% reduction 

in scion growth when the interstock was allowed to develop some small lateral shoots.  

The authors suggested the possible production of some scion growth inhibitors in 

interstem leaves. 

Scion growth reduction were found when height of budding on the shank or stem 

of a dwarfing rootstock was increased (Mielke and Smith, 2002; Hrotko and Maguar, 

2004; Kviklys and Lanauskas, 2007; Kviklys et al., 2007).  However, budding height is 

rarely considered in most fruit studies.  Although, a few studies refer to the use of 

differences in graft height as a methodology to reduce scion size (Kumar and Ananda, 

2004).  Santos et al. (2004) working on sweet cherry trees grafted on different rootstocks 
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and at different graft heights, found an inverse correlation between budding height and 

trunk cross-sectional area both in the nursery and in the orchard.  However, they also 

found that sweet cherry was more affected by interstock than by the budding height.  In 

another work, ‘Beurré D´Anjou’ pear trees budded on ‘Old Home’ at different heights 

had a growth reduction of 60% when the scion bud was located at 38 cm above ground 

compared to the control at 7 cm (Mielke and Smith 2002).  Similar results were reported 

with ‘Amers’ and ‘Bluefre’ plum trees grown on ‘Wangenheim’ prune seedlings when 

those trees were budded at different heights (Grzyb et al. 2002).   Although some reports 

showed a reduction in scion size with each increment of budding height, others did not or 

on the contrary, they suggested an inverse relationship between vigor and budding height, 

such as the report on ‘Auksis’ apple trees on different rootstocks and budding heights by 

Kviklys and Lanauskas (2007).  In their research, trees budded at 30 cm were taller than 

those budded at 10 or 20 cm from the ground. 

Budding height effect might be the result of the longer rootstock portion (shank) 

exposed to the sun (Hrotko and Magyar, 2004).  They suggested that auxins might be 

involved in the scion growth reduction as the budding height increases.  They suggested 

that auxin transport may be reduced and decomposition is greater  in the rootstock bark 

that was exposed to sun.  Tree dwarfing effects were correlated with planting depth, the 

deeper the planting the higher the dwarfing effect.  In the same study, apples trees grafted 

on an interstem showed similar results as planting depth when the interstems were 

planted below ground.  In another study, buried apple interstocks gave a reduction of 

15% in tree growth compared to the exposed ones (Domoto, 2001). 
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Interstocks and grafting height may produce similar results as rootstocks, 

indicating that the there is a common effect, which might not be related only to roots as 

most of the previous work attempted to demonstrate.  Reduc tion in growth may involve 

changes in xylem or phloem anatomy.  Moreover, these tissues may inhibit or reduce the 

action of some growth promoters in the scion. 

The objective of this experiment was to determine the dwarfing effect of interstem 

budding height on pech scion growth.  

 

Materials and methods  

 

Interstems 

In June 2005, Lovell [Prunus persica (L.) Batsch], Pumiselect® (P. pumila) and 

Krymsk® 1 (formerly called VVA-1) (P. tomentosa x P. cerasifera) rootstocks grown in 

the nursery at the Musser Fruit Research Center, near Clemson, South Carolina, were 

budded with ‘Redhaven’ [Prunus persica (L.) Batsch], Pumiselect® (P. pumila ) and 

Krymsk® 1 (formerly called VVA-1) (P. tomentosa x P. cerasifera).  At the end of the 

growing season in October 2005, all trees were chip budded with `Redhaven’ at 10 cm 

above the initial graft union.  This 10 cm portion of ‘Redhaven’, Pumiselect® and 

Krymsk® 1 trees represented the interstem portion.  In winter, all interstem trees were cut 

back just above the Redhaven buds (i.e., chip buds).  Also in winter, trees were 

transplanted to the field in double rows at 1.5 m x 1.5 m, 1.5 m x 2.5 m and 1.5 m x 3.0 m 

spacing within the row and 6 m between rows.  Trees were planted in a completely 
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randomized block design with nine replications per combination.  In the following spring 

(March 2006), only one bud was allowed to grow from each tree.  During the 2006 

growing season all trees developed a main shoot, which was allowed to grow without 

interference.  At the end of the season, all trees had one main shoot, which had come 

from the initial bud.  Trees were not pruned during the studied period to avoid interaction 

between tree growth and reactions to pruning, but all fruits were taken off 3 weeks after 

blooming in Spring 2007 to direct all carbohydrates to the vegetative growth.  The plots 

were managed according to standard commercial practices with an herbicide strip in the 

row and a mowed grass strip between rows.  Trees were micro-sprinkler irrigated to 

replace 100% estimated evapotranspiration.  

Vegetative growth was recorded by measuring trunk cross-sectional area (TCSA), 

tree height (main terminal) and number of growing shoot apices. TCSA was calculated 

from diameter measurements.  Trunk diameter was measured 1) at 5 cm above the  

‘Redhaven’ bud union for the scion TCSA; 2) in the middle of the interstem portion; and 

3) at 5 cm below the rootstock-interstem graft union on the rootstock (shank) portion.  

Number of growing shoot apices were represented by all apices that were growing at the 

time of the measurements, including apices coming from main, secondary, tertiary and 

sylleptic shoots. 

Midday stem water potential was measured on mature leaves, close to the main 

shoot at about 1.5 m from the ground.  Leaves were covered with aluminum bags at least 

one hour before measurements (McCutchan and Shackel, 1992).  After this period, it was 

assumed the leaf water potential was equilibrated with that of the xylem sap to which the 
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leaf was attached.  Then, leaves were cut at the petiole base and put in the pressure 

chamber.  Two leaves per tree were used to measure stem water potential. 

At the end of the first growing season, the whole tree was removed from the 

ground and then fresh and dry weighed.  The above ground material was separated in 

three different groups: shoots with diameters less than 7.5 mm; shoots and branches with 

diameters between 7.5 and 15 mm; and branches with diameters larger than 15 mm.  

Roots were divided in two groups: primary or shank roots, which included the primary 

root and including the rootstock trunk, and secondary roots (secondary, tertiary and 

smaller roots).  Whole trees, previously divided in the above mentioned groups, were 

dried at 60°C for at least 2 weeks before taking dry weights. 

Grafting heights 

In order to determine the effect of height of grafting on the vegetative growth of 

‘Redhaven’ peach trees, Lovell, Pumiselect® and Krymsk® 1 rootstocks were grafted at 

different heights above the ground.  In October 2005, rootstocks were propagated by 

semi-hardwood cuttings in greenhouses and then transplanted to the field in April 2006.  

Trees were planted in a single, double row at 0.75 m x 1.5 m, in a 3 x 3 completely 

randomized factorial design. 

In June 2006 all trees were chip budded with ‘Redhaven’ at 3 different heights 

above the ground: 5, 25 and 45 cm, respectively.  Trees were cut back above the 

‘Redhaven’ buds three weeks later.  Only one bud from the scion (‘Redhaven’) was 

allowed to grow above the interstem union.  
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Vegetative growth, as measured in TCSA, was recorded in 2006 and 2007.  At the 

end of the second year of growth during Winter 2007, trees on Lovell and Krymsk® 1 

were cut just above (1 cm) the graft union, and then fresh and dry weighed following the 

same procedure described for interstem trees.  At three different dates, midday stem 

water potential was measured to establish any relationship between plant water status and 

vegetative growth on June 20, July 17 and August 14, 2007.  Data were analyzed by SAS 

(9.1 version) using the GLM procedure. 

 

Results 

 

Interstems  

Interstems and rootstocks significantly affected TCSA of ‘Redhaven’ peach trees 

in both the first and second years of growth (Table 4.1; Fig. 4.1).  Krymsk® 1 rootstock 

produced the smallest trees; whereas trees on Lovell rootstock were the largest at the end 

of both periods.  Krymsk® 1 rootstock and Pumiselect® rootstock and interstem 

produced TCSA values intermediate of those of the Lovell and Krymsk ® 1 rootstocks at 

the end of the first year of growth.  Unfortunately, there was no chance to compare trees 

on Pumiselect® in the second year since those trees had to be removed.  ‘Redhaven’ 

TCSA on Krymsk® 1 interstem was significantly different from Lovell and Krymsk® 1 

rootstocks in the second year, where Lovell rootstocks produced the largest trees and  

Krymsk® 1 the smallest ones.  
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At the same time, the annual increment of scion TCSA in the first and second year 

of growth followed the same pattern; where Lovell was the more vigorous and Krymsk® 

1 rootstock the smallest.  Differences in TCSA growth were observed in the first month 

after bud break (Fig. 4.1) and differences increased with time.  At the end of the second 

year of growth, trees on Lovell rootstock had almost double the TCSA as on the 

Krymsk® 1 interstem and more than three times the TCSA of trees on Krymsk® 1 

rootstock.  This is in comparison to the first year, when TCSA of trees on Lovell were 

only 20% and 100% larger than Krymsk® 1 interstem and Krymsk® 1 rootstocks, 

respectively (Fig. 4.2).  These differences are shown in Fig. 3.2, where Lovell rootstock 

is the reference treatment (100%).  Here, scion TCSA of ‘Redhaven’ trees grafted on 

Krymsk® 1 rootstock were 46 % and 30 % on November 2006 and 2007, respectively.  

In the case of Krymsk® 1 interstem, scion TCSA was 78 % and 56 % of Lovell in the 

first and second year, respectively.  Pumiselect® interstem TCSA had mean values 

between Lovell and Pumiselect® rootstocks for the first year of growth. In general, 

differences in trunk growth enlargement at the rootstock and scion level were not very 

visible in the field.  Small TCSA differences were found suggesting no incompatibility 

symptoms in the studied combinations (Table 4.1). 

The seasonal height growth pattern of the main shoot was similar to the TCSA 

growth during the first year (Fig. 4.3).  Since the beginning (first month), trees budded on 

Lovell rootstocks were bigger than trees on Krymsk® 1 rootstocks, and these differences 

were larger at the end of the first year, while both interstems, Krymsk® 1 and 

Pumiselect®, had intermediate values (Table 4.1). 
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Generally, during the season, the total number of active growing apices for each 

‘Redhaven’ tree grafted on Lovell rootstock was the greatest, while Krymsk® 1 had the 

least number (Fig. 4.4).  Shoots of ‘Redhaven’ on Lovell rootstock grew longer into the 

season, while shoots from ‘Redhaven’ on Krymsk® 1 rootstock ceased growing earlier.  

Shoots from ‘Redhaven’ trees on Pumiselect® rootstocks and the two interstems, 

Krymsk® 1 and Pumiselect®, stopped growing later than for Krymsk® 1 rootstock but 

ceased earlier than on Lovell rootstock (data not shown). At the end of the first year of 

growth, two groups were significantly different: the Lovell rootstock group, which 

included the two interstems and the second group with Pumiselect® and Krymsk® 1 

rootstocks, which had the fewest number of grown apices per tree (Table 4.1).  At the end 

of the season, ‘Redhaven’ trees grafted on Lovell rootstock and Krymsk® 1 and 

Pumiselect® interstems had the highest number of shoots or growing points.  There was a 

high correlation (r2= 0.908) between trunk cross-sectional area and the number of 

growing points (terminal buds) at the end of the first season (Fig. 4.5). 

At the end of the first season, trees on Lovell rootstock had the greater  total shoot 

length; while those on Pumiselect® and Krymsk® 1 rootstocks the least total shoot 

length (Table 4.2).  Trees with Krymsk® 1 and Pumiselect® interstems had total shoot 

lengths significantly larger than trees on Krymsk® 1 rootstocks.  Trees on Lovell had the 

greatest length of shoots less than 7.5-mm-diameter. Shoots between 7.5 and 15.0-mm-

diameter were also affected by rootstock and interstem.  Trees on Lovell and both 

interstems had the largest total length of these intermediate shoot diameters.  The largest 

branches and trunks (greater than 15.0-mm-diameter) also had significant differences 
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where trees on Lovell rootstocks had larger length than on Pumiselect® and Krymsk® 1 

rootstocks.  Total length of the largest branches of trees grafted on Pumiselect® and 

Krymsk® 1 interstems were significantly larger than those trees on Krymsk® 1 

rootstock. 

Rootstock and interstem genotypes significantly affected the fresh (data not 

shown) and dry weights of the different types of shoots (Table 4.3).  The results followed 

a similar pattern for shoot length.  Trees on Lovell roots, including those with 

Pumiselect® and Krymsk® 1 interstems, had larger total shoot fresh and dry weights 

than trees on Pumiselect® and Krymsk® 1 rootstocks.  The lowest mean values for 

shoots smaller than 7.5-mm-diameter were found in trees on Krymsk® 1 rootstocks.  

These thin shoots had the highest mean dry weights on ‘Redhaven’ trees on Lovell 

rootstock, which was significantly higher than trees on Pumiselect® and Krymsk® 1 

rootstocks.  A similar trend was observed in shoots and branches between 7.5 and 15.0-

mm-diameter.  Trees on Lovell roots had the largest dry weights for those shoots larger 

than 15-mm-diameter. 

Rootstocks and interstems affected fresh (data not shown) and dry weight of roots 

(Table 4.4).  Total root dry weight was highest in Lovell rootstocks; whereas 

Pumiselect® and Krymsk® 1 rootstocks had the lowest weights.  Total root dry weight 

means from ‘Redhaven’ trees grafted on the two interstems had intermediate values. Both 

interstems and rootstocks significantly influenced the shoot and root dry weight ratio. 

Krymsk® 1 and Lovell rootstock had a shoot:root ratio close to one (0.92 and 1.13, 

respectively); whereas Pumiselect® and both interstems had a significantly higher 
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accumulation of dry weight in the above ground tissues compared to the whole root 

system, with a shoot:root ratio between 1.4 and 1.6.  At the end of the first season of 

growth, total tree dry weight was significantly higher when trees were grafted on Lovell 

rootstocks compared to Pumiselect® and Krymsk® 1 rootstocks (Fig. 4.6).  Trees with 

Pumiselect® and Krymsk® 1 interstems had significantly more dry weight than on 

Krymsk® 1 rootstock.  ‘Redhaven’ on Krymsk® 1 and Pumiselect® rootstocks had the 

smaller percentage of total dry weight when Lovell rootstock was considered as the 

control (100%) (Fig. 4.6).  Percentage of total dry weight per tree relative to Lovell was 

intermediate for ‘Redhaven’ with Pumiselect® and Krymsk® 1 interstems. 

In order to correlate the differences in vegetative growth observed in the first year 

and the water status of the plant, on three different dates, stem water potential was taken 

in all the combinations (Table 4.5).  For these three measurements, trees with Krymsk® 1 

and Pumiselect® interstems were not different from trees grafted on Lovell rootstocks, 

but they had a significantly higher stem water potential compared to trees on Krymsk® 1 

and Pumiselect® rootstocks, especially when the data were pooled.  

Grafting heights 

First- and second-year growth of ‘Redhaven’ in trunk cross sectional area (TCSA) 

did not show a significant interaction (data not shown) between rootstocks and grafting 

height.  Trees had a short period of growth from July to November 2006, because they 

were budded in June 2006.  Budding height had no effect on scion diameter (Table 4.6).  

Trees on Krymsk® 1 rootstock were significantly smaller than those trees on 

Pumiselect® and Lovell rootstocks at the end of the first year of growth (Table 4.6).  In 
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the second year of growth, ‘Redhaven’ trees grafted on Krymsk® 1 rootstock were 

smaller than those trees grafted on Lovell rootstock, independent of the grafting height 

(Fig. 4.6).  Grafting height did not affect above ground dry weight, but differences 

occurred among rootstocks, where scions on Lovell rootstock had significantly larger dry 

weights than those on Krymsk® 1 (Table 4.7). 

In Summer 2007, which was the second year of growth, midday stem water 

potential averaged over three different measurement dates (June 20, July 17 and August 

14) were significantly different among rootstocks.  Trees grafted on Krymsk® 1 had 

lower stem water potential than trees on Lovell rootstocks (Table 4.7).  On the other 

hand, grafting height did not significantly affect midday day stem water potential. 

 

Discussion 

 

The objective of the study was to determine the effect of interstocks and budding 

height on scion vegetative growth in order to understand the dwarfing mechanism in 

peach rootstocks.  In the interstem study, TCSA results agreed with two earlier peach 

experiments (Hossain et al. 2005; Rufato et al. 2006).  In our study, interstems 

significantly affected the size of the trees (Tables 4.1-4.3; Figs. 4.1-4.3).  Krymsk® 1, the 

more dwarfing rootstock, reduced the size of the tree at the end of the first year to almost 

50% of the control (Lovell), but by the end of the second year, Krymsk® 1 controlled the 

vigor to 35% of Lovell.  Trees with a Krymsk® 1 interstem reduced TCSA up to 19% 

compared to trees on Lovell rootstocks in the first season, while the reduction was close 
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to 50% at the end of the second season.  Moreover, annual TCSA increments for trees on 

Krymsk® 1 rootstocks compared to trees on Lovell were 47.9 % for the first season and 

26.8 % for the second year (Table 4.1).  In the case of trees with a Krymsk® 1 interstem, 

trees were 80.9% of the control TCSA for the first season, and the percentage was 

reduced to 43.3% after the second growing season.  ‘Redhaven’ trees grafted on 

Krymsk® 1 rootstock and interstem had a two- fold reduction in the annual TCSA 

increment in the second year compared to the first season and to Lovell (control).  These 

results confirmed what was reported by Samad et al. (1999), who when working on apple 

interstems found the greatest effect of scion control was in the second season.  According 

to Costes and García-Villanueva (2007) and Seleznyova et al. (2003, 2008) dwarfing 

effects are cumulative and superimposed year-to-year.  Moreover, differences in TCSA 

growth were observed very early from the first month after initial bud break (Fig. 4.1), so 

the cumulative effect started to show very early due to a reduction of leaf area (data not 

shown) and stem growth.  

During the first season, the number of active growing apices of ‘Redhaven’ trees 

grown on Krymsk® 1 and Pumiselect® rootstocks was significantly lower than that on 

Lovell rootstock (Fig. 4.4 and Table 4.1).  Differences in number of active growing 

points between trees on Lovell rootstock and trees on Krymsk® 1 and Pumiselect® 

interstems were significantly lower only at the latter part of the season, indicating an 

earlier set of the terminal bud in trees on Krymsk® 1 and Pumiselect® interstems.  This 

effect was even more noticeable in those trees grown on Krymsk® 1 rootstock.  In their 

study of branch pattern of ‘Royal Gala’ apple trees, where MM.106 and MM.9 were used 
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as both rootstock and interstems, Seleznyova et al. (2003) found that dwarfing rootstocks 

produced shorter shoots, which had fewer internodes.  This reduction in the number of 

internodes generated fewer buds in the following year, which reduced whole tree growth.  

With this mechanism repeated every year, annual growth of trees on a dwarfing rootstock 

would be exponentially smaller every year, giving a higher reduction in growth as the 

plant ages.  Costes and García-Villanueva (2007) and Seleznyova et al. (2008) agreed 

that dwarfing rootstocks and interstems tend to produce more flower buds than 

invigorating rootstocks.  These authors reported that there was a reduction in the 

proportion of vegetative buds related to flower buds which lead to less growth in the trees 

grafted on dwarfing rootstocks and interstocks. 

Although at the end of the first season there were no significant differences in 

total above ground dry weight among trees on Lovell rootstock and those on both 

interstems, significant differences were found in root dry weight.  ‘Redhaven’ with 

Krymsk® 1 interstems had lower root dry weights.  Similarly, trees grown on 

Pumiselect® interstems, although not significantly different, tended to have lower root 

dry weight than trees on Lovell. 

In summary, ‘Redhaven’ trees with Pumiselect® and Krymsk® 1 interstems had 

76% and 66 % dry weight of above ground biomass, respectively relative to trees on 

Lovell rootstocks, but this percentage changed when the root dry weight was included.  

Trees grafted with Pumiselect® and Krymsk® 1 interstems had 89% and 78% dry weight 

of roots, respectively of that of Lovell roots.  This would suggest that trees grown on both 

interstems, although having the same root genotype (Lovell), need a proportionally larger 
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root system to get similar above ground growth as suggested by the differences in the 

shoot:root ratio. 

Trunk cross-sectional area of the interstem trunk portion was smaller than TCSA 

on both the rootstock and scion.  This reduction of interstem trunk diameter might 

suggest a reduction in xylem and phloem pathways (Webster, 1995). 

No differences were observed when midday stem water potential was measured 

on Lovell and both interstems (Table 4.5).  Trees on Krymsk® 1 and Pumiselect® 

rootstocks had the lowest midday stem water potential, which correlated with a higher 

reduction in their vegetative growth.  Our results did not agree with Camara et al. (2003) 

who worked on orange interstocks where they found a significant reduction in leaf water 

potential due to interstock. 

Rufato et al. (2006) found a negative linear correlation between interstock length 

and scion vegetative growth when ‘Jubileu’ peach was intergrafted with 5, 10, 15 and 20 

cm of the peach cultivar ‘Granada’.  De Rossi et al. (2003) found a similar effect of 

interstem length on ‘Imperial Gala’ apple trees when these trees were grafted with EM.9 

interstems of different lengths.  Therefore, it might be possible to make a parallel 

between the effect of interstock length and budding height relative to the effect of 

controlling scion growth. 

In our budding height experiment, no differences were found in TCSA due to 

grafting height.  Only a tendency toward a decrease in TCSA when the budding height 

was increased, which was observed in the second year of growth in trees budded on 

Krymsk® 1 rootstocks (Fig. 4.7).  Midday stem water potential was consistent with 
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TCSA growth because differences were found only among rootstocks and no grafting 

height effect was observed.  

Our results of budding height effect on scion growth agreed with other researchers 

who did not find differences in sweet cherry (Sadowski et al., 1996, Webster, 1998).  

Rozpara and Zygmunt (2006) compared the growth, yield, and fruit quality of five sweet 

cherry cultivars with ‘Northstar’ interstem grafts of two different lengths (50 and 70 cm) 

and with trees of the same cultivars grafted on Mazzard seedlings and the ‘P-HL A’ 

rootstocks.  Only one of the five cultivars had significant differences in growth due to 

interstem length after 8 years of growth.  

Some contradictory reports related to the effect of budding height were found in 

the literature.  For example, when a local peach rootstock was grafted at four different 

heights (10, 15, 20 and 25 cm) with ‘Fazali Manani’ plum cultivar, scion size was 

affected by grafting height and the 25 cm height produced the largest trees (Ullah et al. 

1997). However, the peach rootstock did not control scion growth.  Similar results were 

found by Kviklys and Lanauskas (2007) in apples, where trees grafted at 30 cm were 

taller and larger than those grafted at 10 cm.  

A significant but opposite effect of budding height was found in pear by Mielke 

and Smith (2002) where the highest budding height resulted in the smallest trees. 

Moreover, results presented by Grzyb et al. (2002), where two plum cultivars were 

budded at 10, 20 and 30 cm showed that ‘Bluefre’ plum trees grew the least when they 

were budded at 30 cm; whereas ‘Ammers’ plum trees had the highest vegetative growth 

when they were budded at 10 cm.  
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Overall, the majority of grafting height studies have been done in apple trees 

where there was a reduction in growth as the budding height was increased (Parry, 1986; 

Kumar and Ananda, 2004; Sosna, 2004; Kviklys et al., 2007). Budding height did not 

affect scion growth in the first growing season when Kviklys et al. (2007) studied young 

‘Auksis’ apple trees grafted at 0, 10, 20 and 30 cm from the ground.  However, in the 

same study budding height reduced scion growth in the second and third season. 

In our study, the trends in the reduction of scion growth due to budding height 

observed on trees budded on Krymsk® 1 at the end of the second year suggested that 

budding height could affect tree growth in future years due to annual reductions in TCSA 

from the dwarfing effect (Seleznyova et al. 2003, 2004, 2008). 

The results from our work indicated that interstems, and probably budding height, 

affected peach scion growth.  So, different processes, other than root and graft union 

effects, are involved in dwarfing peach rootstocks, making the understanding of these 

mechanisms more complex. 
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Table 4.1. Tree height, number of growing apices (NPG) per tree, scion, interstem and 

rootstock TCSA (2006), and scion annual TCSA increment (2006-2007) of non-bearing 

Redhaven trees growing on different rootstocks and interstems. 

zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
yTrees on Pumiselect were removed prior to the second year. 

 Height 
(cm) 

NGP Trunk Cross-Sectional Area (cm2) 

Rootstocks 
Tree 

heightz 
(2006) 

NGP/tree 
(2006) 

Scion  
(2006) 

Interstem 
(2006) 

Rootstock 
(2006) 

Annual 
increm. 

(2006-07) 
Lovell 
 

245.2  a 233.7  a 20.5  a - 20.5  a 35.1  a 

Lovell/ 
Krymsk 1 221.2  ab 182.0  a 16.0  b 12.5  a 16.7  b 15.3  b 

Lovell/ 
Pumiselect y 200.0  bc 202.0  a 17.8  b 13.1  a 17.1  b - 

Pumiselect y 

 207.3  b 114.2  b 15.6  b - 17.4  b - 

Krymsk 1 
 

176.5  c   63.8  b  9.5  c - 10.5  c  9.4  c 
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Table 4.2. Influence of rootstock and interstem on the above ground tissue length (shoots, 

branches and trunk) of one-year-old Redhaven trees. 

 Redhaven shoot length (cm)  z 

 Shoot diameter y 

Rootstocks < 7.5 mm 7.5-15.0 mm > 15.0 mm Total 

Lovell 7493.0   a 921.2   a 364.5   a 8778.7   a 

Lovell/Krymsk 1   6076.0   ab 785.7   a   312.2   ab   7174.0   ab 

Lovell/Pumiselect   6745.0   ab 761.8   a 351.5   a   7858.3   ab 

Pumiselect   4487.0   bc 496.0   b   184.0   ab   5167.0   bc 

Krymsk 1 2047.0   c 284.3   b  90.0   c 2421.3   c 
z Different letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
y Material was classified as three different kinds of shoots and trunks: shoots smaller than 
7.5-mm-diameter, shoots and branches between 7.5 and 15.0-mm-diameter, and branches 
and trunks larger than 15.0-mm-diameter. 
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Table 4.3. Influence of rootstock and interstem on the above ground tissue dry weight 
(shoots, branches and trunk) of one-year-old Redhaven trees.  

 Redhaven shoot dry we ight  (g) 

 Shoot diameter z  y 

Rootstocks < 7.5 mm 7.5-15.0 mm > 15.0 mm Total 

Lovell 598.8   a 449.3   a 1014.5   a 2062.7   a 

Lovell/Krymsk 1   492.2   ab 395.3   a   922.0   a 1809.5   a 

Lovell/Pumiselect   510.0   ab   371.0   ab   956.0   a 1837.0   a 

Pumiselect   352.8   bc 263.2   b   488.3   b 1104.3   b 

Krymsk 1 185.8   c 141.2   c   234.2   b   561.2   b 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
yMaterial was classified on three different kinds of shoots and trunks: shoots smaller than 
7.5-mm-diameter, shoots and branches between 7.5 and 15.0-mm-diameter, and branches 
and trunks larger than 15.0-mm-diameter. 
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Table 4.4. Influence of rootstock and interstems on the root dry weight of one-year-old 

Redhaven trees.  

 Redhaven root dry weight (g) z  

Rootstocks Tap root Small roots Total 

Lovell 679.0   a 1116.8   a 1795.8   a 

Lovell/Krymsk 1 472.3   a    719.0   bc 1191.3   b 

Lovell/Pumiselect 509.5   a    862.2   ab   1371.7   ab 

Pumiselect 249.2   b  457.5   c  706.7   c 

Krymsk 1 224.0   b  443.3   c  667.3   c 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
yMaterial was classified on two different kinds of roots: rootstock portion below the graft 
union plus tap root (tap root), and the remainder of the root system (small roots). 
 
 
 
 
Table 4.5. Effect of rootstocks and interstem on midday stem water potential (Mpa) of 

Redhaven trees at different dates during the first year of growth.   

 Stem water potential (Mpa) z 

Rootstocks 05/12 07/07 09/06 Season 
average 

Lovell   -0.51   ab   -0.83   ab -0.74   a -0.69   a 

Lovell/Krymsk 1 -0.44   a -0.76   a -0.72   a -0.63   a 

Lovell/Pumiselect   -0.48   ab   -0.81   ab -0.67   a -0.62   a 

Pumiselect -0.59   b   -0.95   bc -0.91   b -0.79   b 

Krymsk 1 -0.58   b -1.02   c -0.94   b -0.85   b 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
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Table 4.6. Effect of grafting height and rootstock on trunk cross-sectional area of one- 

and two-year-old Redhaven trees grafted on Lovell, Pumiselect® and Krymsk® 1 

rootstocks at the Musser Fruit Research Center in December 2006 and 2007.  

Redhaven trunk cross-sectional are a (cm2) z 

 Budding heights Rootstocks  y 

Season 5 cm 25 cm 45 cm Lovell Pumiselect Krymsk 1 

First year  2.8   a  2.5   a  2.5   a   3.2   a 3.1   a 1.5   b 

Second year z  13.7   a 15.0   a 12.7   a 21.9   a - 5.6   b 
zDifferent letters within a row for budding heights and rootstocks indicate significant 
differences at P <0.05 (Duncan´s multiple range test). 
yTrees on Pumiselect were removed prior to the second year.  
 
 
 
 
Table 4.7. Effect of grafting height on above ground biomass and midday stem water 

potential of Redhaven trees grafted to two rootstocks. 

 Dry weight per plant (kg) zy Stem water potential (Mpa) x 

Grafting height Lovell Krymsk 1 Lovell Krymsk 1 

5 cm 1.54   a 0.41   b -0.87   a -1.04   b 

25 cm 1.81   a 0.43   b -0.85   a -1.01   b 

45 cm 1.56   a 0.24   b -0.85   a -1.00   b 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
yDry weight at the end of the second year (November 2007). 
xMidday stem water potential was represented by the average of three measurements in 
Summer 2007 (June 20, July 17 and August 14, 2007). 
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Fig. 4.1. The seasonal pattern of trunk cross-sectional area (TCSA) growth of Redhaven 

trees growing on different rootstocks and interstems in 2006. Standard errors are given 

for each point. Asterisks represent significant rootstock treatment differences at each 

point at P <0.05 (Duncan´s multiple range test). 
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Fig. 4.2. The size (TCSA) of Redhaven trees grown on different rootstocks and 

interstems relative to trees on Lovell (e.g., 100). First year growth (A) and second year 

growth(B). 
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Fig. 4.3. Seasonal pattern of height growth of Redhaven trees grown on different 

rootstocks and interstems in 2006, representing the first year of growth. Standard errors 

are given for each point. 
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Fig. 4.4. Seasonal pattern of number of growing points for Redhaven trees grown on 

different rootstocks and interstems in 2006, representing the first year of growth. 

Standard errors are given for each point. 
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Fig. 4.5. Relationship between total number of growing points during the season and 

trunk cross-sectional area of one-year-old Redhaven trees grafted on different rootstocks 

and interstems. 
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Fig. 4.6. Distribution of total dry mass from roots (tap root and small roots) and shoots 

(shoots < 7.5-mm-diameter, shoots and branches between 7.5 and 15-mm-diameter, and 

branches and trunk > 15-mm-diameter) of one-year-old Redhaven trees grafted on 

different rootstocks and interstems. Dry matter harvested per tree (A) and total dry mass 

(roots and shoots) relative to trees on Lovell rootstock (control) (B). Different letters 

indicate significant differences for total dry weight from whole trees (shoots + roots) at P 

<0.05 (Duncan´s multiple range test). 
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Fig. 4.7. Effect of rootstock and budding height on TCSA after the first (A) and second 

(B) year of growth of Redhaven trees at the Musser Fruit Research Center, Seneca, South 

Carolina. Error bars represent ± 1 standard error of the mean.  



 

113 
 

References 

 

Atkinson A. and M. Else. 2001. Understanding how rootstocks dwarf fruit trees. The 
Compact Fruit Tree 34 (2): 46-49.  

 

Atkinson C., M. Else, L. Taylor and C. Dover. 2003. Root and stem hydraulic 
conductivity as determinants of growth potential in grafted trees of apple (Malus 
pumila  Mill.). J. Exp. Bot. 54(385): 1221-1229. 

 

Basile. B., J. Marsal, L. I. Solari, M.T. Tyree, D.R. Bryla and T.M. DeJong. 2003. 
Hydraulic conductance of peach trees grafted on rootstocks with differing size-
controlling potentials. J. Hort. Sci. Biotech. 78:768-774. 

 

Cámara, J., F. Garcia-sanchez, M. Nieves and A. Cerda. 2003a. Effect of interstock 
(Salustiano orange) on growth, leaf mineral composition and water relations of 
one year old citrus under saline conditions. J. Hort. Sci. Biotech. 78 (2): 161-167. 

 

Cámara J., M. Nieves and A. Cerda. 2003b. Improvement in growth and salt resistance of 
lemon (Citrus limon) trees by and interstock- induced mechanism. Tree Physiol. 
23: 879-888. 

 

Cámara J., A. Cerda and M. Nieves. 2004. Interstock-induced mechanism of increased 
growth and salt resistance. Tree Physiol. 24: 119-1117.  

 

Carlson, R. and S. Oh. 1975. Influence of interstem lengths of M.8 clone Malus sylvestris 
Mill. On growth, precocity, yield and spacing of two apple cultivars. J. Hort. Sci. 
100: 450-452.  

 

Costes, E. and E. García-Villanueva. 2007. Clarifying the effects of dwarfing rootstock 
on vegetative and reproductive growth during tree development: A study on apple 
trees. Ann. Bot. London 100: 347-357.  

 

Czynczyk, A. 1980. The effect of interstocks of M.9 and B.9 on the field performance of 
three apple cultivars. Acta Hort. 114: 192-197.  



 

114 
 

De Rossi, A., L. Rufato, E. Kersten and C. Zancan. 2003. Comportamiento vegetativo del 
manzano ‘Imperial Gala’ con diferentes longitudes de intermediario de EM9. 
ITEA 99 (1): 27-33.  

 

Drake, S. R., M. W. Williams and J. T. Raese. 1997. Interstem and its relationship to 
‘Fuji’ apple quality. J. Tree Fruit Prod. 2 (1): 99-105.  

 

Domoto, P. 2001. Progress report on the ISU 1991 apple cultivar x interstem x rootstock 
trial for 2000. Ann. Fruit Veg. Prog. Rep. 60: 33-35.  

 

Ebel, R. C. A. W. Caylor, J. A. Pitts and B. S. Wilkins. 2000. Mineral nutrition of Golden 
Delicious ‘Smoothee’ apples on dwarfing rootstocks and interstem. J. Plant Nutr. 
23 (8): 1179-1192.  

 

Gil-Izquierdo, A., M. Riquelme, I. Porras and F. Ferreres. 2004. Effect of rootstocks and 
interstock grafted in lemon tree (Citrus limon (L.) Burm) on the flavonoid content 
of lemon juice. J. Agric. Food. Chem. 52: 324-331.  

 

Grzyb, Z. S., M. Sitarek and B. Kozinski. 2002. The effect of budding height in 
Wangenheim prune seedlings used as rootstock on field performance of two plum 
cultivars. Acta Hort. 577: 103-104.  

 

Hartmann, H. T., D. E. Kester, F. T. Davies Jr, and R. L. Geneve. 1998. Plant 
Propagation: Principles and Practices. Prentice Hall. Upper Saddle River. New 
Jersey.  Pp. 880.  

 

Hossain, B.M., F. Mizutani and J. M. Onguso. 2005. Effect of interstock and spiral bark 
ringing on the growth and yield of peach. Bulg. J. Agr. Sci. 11: 309-316.  

 

Hrotko, K. and L. Magyar. 2004. Effect of depth of planting/budding height and solar 
radiation exposure of M.26, MM.106 rootstocks and B.9/MM interstems on the 
growth and yield of ‘Idared’ apple trees. Acta Hort. 658: 69-73.  

 

Jones, O. P. and J. D. Quinlan. 1981. Effect of interstock of cherry rootstock clones 15 
(FB2/58, Prunus avium x P. pseudocerasus). J. Hort. Sci. 56(3): 237-238. 



 

115 
 

Koshita, Y. K. Morinaga and Y. Tsuchida. 2006. The early growth and photosynthesis 
rate of Japanese persimmons (Diospyros kaki L.) grafted onto different 
interstocks. Sci. Hort. 109: 138-141.  

 

Kumar, R. and S. A. Ananda. 2004. Effect of methods and heights of grafting on the 
growth and proportion of saleable plants in spur type apples. Progr. Hortic. 36(1): 
12-15. 

 

Kviklys, D. and J. Lanauskas. 2007. Effect of bud ding height and rootstocks on the 
quality of apple planting material. Acta Hort. 732: 141-144.  

 

Kviklys, D., N. Uselis and N. Kvikliene. 2007. Rootstock and budding height effect on 
apple tree performance in the young orchard. Acta Hort. 732: 145-149.  

 

McCutchan, H. and K. Shackel. 1992. Stem-water potential as a sensitive indicator of 
water stress in prune trees (Prunus domestica L. cv French). J. Amer. Soc. Hort. 
Sci. 117 (4): 607-611.  

 

Mielke, E. A. and L. Smith. 2002. Effect of budding height on tree size and precocity. 
Acta Hort. 596: 397-399.  

 

Olmstead, M. A., N. S. Lang, F. W. Ewers and S. A. Owens. 2006a. Xylem vessel 
anatomy of sweet cherry grafted onto dwarfing and non-dwarfing rootstocks. J. 
Amer. Soc. Hort. Sci. 131 (5): 577-585. 

 

Olmstead, M., N. Lang, G. A. Lang, F. Ewers and S. Owens. 2006b. Examining the 
vascular pathway of cherry grafted onto dwarfing rootstocks. HortScience 41 (3): 
674-679.  

 

Parry, M. S. 1986. The effects of budding height on the field performance of two apple 
cultivars on three rootstocks. J. Hort. Sci. 61 (1): 1-7.  

 

Parry, M. S. and W. Rogers. 1972. Effects of interstock length and vigor on the field 
performance of Cox’s Orange Pippin apples. J. Hort. Sci. 47: 97-105.  

 



 

116 
 

Perez, A., A. Cedeno-Maldonado, I. Reyes-Soto, J. López. 1988. Dwarfing effect of 
interstems on growth and yield components of mango. J. Agri. Univ. Puerto Rico 
72: 501-508.  

 

Rozpara, E., Z. Grzyb and T. Olszewski. 1990. The mineral nutrient content in the leaves 
of two sweet cherry cultivars with interstem. Acta Hort. 274: 405-411.  

 

Rozpara, E. and Z. Grzyb. 2004. Frutana (R) a new interstock for sweet cherry. Acta 
Hort. 658(1): 247-250.  

 

Rufato, L., A. De Rossi, C. L. Giacobbo and J. C. Fachinello. 2006. Intergrafting to 
control vigor of ‘Jubileu’ peach. Acta Hort. 713: 231-236.  

 

Sadowski, A., Jadczuk, E. and Stepniewska, M. 1996. Effect of height of budding on F 
12/1 rootstock and the depth of planting upon growth and yield of 
‘Schattenmorelle’ sour cherry trees. Acta Hort. 410: 295-300.  

 

Samad, A., D. L. McNeil and Z. U. Khan. 1999. Effect of interstock bridge grafting (M9 
dwarfing rootstock and same cultivar cutting) on vegetative growth, reproductive 
growth and carbohydrate composition of mature apple trees. Sci. Hortic. 79: 23-
38.  

 

Sampaio, V. R., and S. Simao. 1996. Efeitos de filtros e Alturas de enxertia no 
desenvolvimento e procuao da mangueira, var. Tommy Atkins. Sci. Agr. 53: 190-
193.  

 

Santos, A., R. Ribeiro and A.L. Crespi. 2004. Sweet cherry (Prunus avium) growth is 
mostly affected by rootstock and much less by budding height. New Zeal. J. Crop 
Hort. Sci. 32: 309-318.  

 

Seleznyova, A. N., T. G. Thorp, M. White, S. Tustin and E. Costes. 2003. Application of 
architectural analysis and AMAPmod methodology to study dwarfing 
phenomenon: the branch structure of ‘Royal Gala’ apple graft on dwarfing and 
non-dwarfing rootstock/interstock combinations. Ann. Bot. London 91: 665-672.  

 



 

117 
 

Seleznyova, A., G. Thorp, M. White, S. Tustin and E. Costes. 2004. Structural 
development of branches of 'Royal Gala' apple grafted on different 
rootstocks/interstock combinations. Acta Hort. 636: 173-180.  

 

Seleznyova, A. N., D. S. Tustin and G. Thorp. 2008. Apple dwarfing rootstocks and 
interstock affect the type of growth units produced during the annual growth 
cycle: Precocious transition to flowering affects the composition and vigor of 
annual shoots. Ann. Bot. London 101: 679-687. 

 

Solari, L. I., F. Pernice and T. M. DeJong. 2006a. The relationship of hydraulic 
conductance to root system characteristics of peach (Prunus persica) rootstocks. 
Physiol. Plantatum 128: 324-333.  

 

Solari, L. I., S. Johnson and T.M. DeJong. 2006b. Hydraulic conductance characteristics 
of peach (Prunus persica) trees on different rootstocks are related to biomass 
production and distribution. Tree Physiol. 26: 1343-1350. 

 

Sosna, I. 2004. The influence of budding height on the growth, cropping and fruit quality 
of ‘Jonagold’ and ‘Golden Delicious’ apple trees on four rootstocks. Folia Univ. 
Agr. Stet. 96: 179-184.  

 

Soumelidou, K., N. H. Battey, P. Jhon and J. R. Barnett. 1994. The anatomy of the 
developing bud union and its relationship to dwarfing in apple. Ann. Bot. London 
74: 605-611. 

 

Taylor, B. H. 2001. Interstems/rootstocks improve yield and fruit size of ‘Ruby Jon’ 
apple trees. Acta Hort. 557: 91-96.  

 

Tojnko, S., Z. Cmelik and P. Zadravec. 2004. Influence of Interstock on growth and 
cropping of ‘Red Elstar’ apple. Acta Hort. 658: 303-306.  

 

Ullah, I., S. Muhammad and N. Naeem. 1997. Effect of different budding heights from 
the ground level on the growth of 'Fazali Manani' plum on local peach rootstock. 
Sarhad J. Agric. 13 (1): 35-39.  

 



 

118 
 

Veloso, M. E., L. F. Vasconcelos, V. A. Souza and L. Moura. 2004. Interstock effect on 
the vegetative growth of three mango cultivars at Teresina, Piaui State, Brazil. 
Acta Hort. 645: 223-226.  

 

Webster, A. D. 1995. Rootstock and interstock effects on deciduous fruit tree vigour, 
precocity, and yield productivity. New Zeal. J. Crop Hort. Sci. 23: 373-382. 

 

Webster, A. D. 1998. Strategies for controlling the size of sweet cherry trees. Acta Hort. 
468: 229-240.  

 

Webster and Wertheim, 2003 Apple rootstocks. In: D.C. Ferree and I.J. Warrington, 
Editors, Apples: Botany, Production and Uses, CAB International, Cambridge, 
MA. Pp. 91–124.  

 

Wertheim, S. J. and J. Vercammen. 2000. A multi-site pear interstem trial in the 
Netherlands and Belgium. J. Amer. Pom. Soc. 54 (4): 199-207.  

 

Yano, T., H. Inoue, Y. Shimizu and S. Shinkai, S. 2002. Dry matter partitioning and 
carbohydrate status of 'Kawanakajima Hakuto' peach trees grafted onto different 
rootstocks or with an interstock at pre-bloom period. J. Japan. Soc. Hort. Sci. 71 
(2): 164-170.  



 

119 
 

CHAPTER V 

 

WATER STATUS AND THE DWARFING MECHANISM OF PEACH 
ROOTSTOCKS 

 

Introduction 

 

Rootstocks have a profound influence on the reproductive and vegetative growth 

of a tree scion (Averi, 1970; Czynczyk, 1980; Bussi et al., 1995; Carusso et al., 1997; 

Reighard et al., 2006).  Unique rootstocks allow trees  to tolerate different edaphic 

conditions, such as dry, saline, heavy or wet soils, and the presence of disease organisms 

and soil-borne insects.  Perhaps the most important use of a specialized rootstock is to 

reduce the size of the scion while at the same time, increase its efficiency of fruit 

production (Mika et al., 1980).  Even though the dwarfing effect of the rootstock was 

suspected over 2000 years ago, the mechanisms involved are not well understood.  

Several theories about the effects and the mechanisms involved in dwarfing have been 

published (Lockard and Schneider, 1981; Crabbé, 1984; Rom and Carlson, 1987; 

Atkinson and Else, 2001; Atkinson et al., 2003; Webster and Wertheim 2003).  Recent 

studies link the hydraulic status of the whole tree with the dwarfing capacity of a 

particular rootstock; therefore, water uptake and transport may play a central function in 

the dwarfing of trees. 

Olien and Lakso (1984) studied water relations of ‘Empire’ apple on five 

rootstocks and suggested that differences in the mean midday stem water potential could 
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have been associated with either resistance to flow at the graft union or to root hydraulic 

resistance. Cohen and Naor (2002) found a lower conductance in the canopy of apple 

trees when grown on the dwarfing rootstock M.9 as compared to the conductance 

recorded when trees were grown on the more vigorous MM.106 and ‘Hashabi’ 

rootsstocks. Li et al. (2002) also reported a reduction in the canopy conductance when 

apple trees were grafted on M.9 rootstocks.  Chalmers et al. (1984) found that when water 

stress was applied to peach and pear trees, shoot growth was markedly reduced but the 

reduction in number of fruits produced and fruit growth was not as great as the reduction 

in shoot growth. Costes and Garcia-Vilanueva (2007) and Seleznyova et al. (2008) both 

reported that dwarfing rootstocks reduced the number of shoots as a consequence of the 

early transition to flowering induced by the rootstocks.  In trees grafted on dwarfing 

rootstocks, the proportion of reproductive buds was greater than the number of vegetative 

buds.  

Seasonal vegetative growth is the integrated result of diurnal growth over many 

days (Berman and DeJong, 1997b.). Diurnal growth is affected by temperature, solar 

radiation, and the water status of the plant (Hsiao and Bradford, 1983; McDonald et al., 

1992; Hsiao, 1993; Hsiao and Xu, 2000; Tsuda and Tyree, 2000).  Any tissue growth 

involves some biochemical processes such as loosening and formation of cell walls and 

solute transport in addition to the effects of physical parameters: turgor pressure and 

water transport (Hsiao and Jing, 1987).   Thus, the primary effect of water deficit is the 

reduction of expansive growth (Hsiao, 1973; Hsiao and Xu, 2000).  Diurnal changes in 

plant water status have been described for many perennial species including peach trees 
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(Chalmers and Wilson, 1978; Larson et al., 1988; Berman and DeJong, 1996, 1997ab; 

Basile et al., 2003, Weibel et al., 2003).  Putting these concepts together, it is possible to 

infer that dwarfing rootstocks may reduce the scion water potential and the scion would 

then respond as if under conditions of water stress. 

When vapor pressure deficit is increased (high temperature and low relative 

humidity), transpiration increases as does the gradient of water potential between soil and 

leaves (Tyree and Ewers, 1991). In dwarfing rootstocks that mimic this condition, 

hydraulic resistance would be over expressed causing the observed reduction of scion 

growth.  Reduction in hydraulic conductivity will reduce the carbon uptake and growth 

potential (Sperry, 2000; Hubbard et al. 2001; Clearwater et al. , 2004); thus producing a 

secondary effect of a reduction in the rate of photosynthesis. 

It is clear there is a correlation among vegetative growth, water status and 

rootstocks, but the question remains as to which tissue is mainly responsible for the 

reduction in the water pathway?  The graft union has a high degree of discontinuity, 

which could have strong effects on water flow, particularly when dwarfing rootstocks are 

involved. Olien and Lakso (1984) related their findings about the growth of ‘Empire’ 

apple on five rootstocks to either high resistance to flow at the graft union or to high root 

hydraulic resistance. 

Atkinson et al. (2003) found that the root system and graft union were responsible 

for most of the resistance when a dwarf rootstock was used in apples.  In cherries, graft 

union conductivity seems to reduce water transport in dwarfing rootstocks (Olmstead et 

al., 2004, 2006ab).  However, peaches seem to behave differently and show higher 
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resistance to water movement in the roots and lower resistance to water movement at the 

graft union (Basile et al. 2003b, 2007; Solari and DeJong, 2006; Solari et al., 2006ab).  

Glenn and Scorza (1992) compared root water resistance of reciprocal combinations of 

dwarf and standard cultivars of peaches and found that the tallest phenotypes had the 

lowest root water resistance.  When vines of kiwifruit were grafted on four different 

rootstocks, there was a positive correlation between growth and hydraulic conductivity 

(Clearwater et al. 2004).  The graft union in this study did not show a high resistance to 

water movement, indicating that roots could be the origin of the observed reduction in 

water movement. 

Mechanisms by which a fruit rootstock affects the scion could be explained by 

changes in the anatomical structure of cells and tissues (Olmstead, 2006ab).  Water 

transport could explain the behavior of dwarfing rootstocks in those cases where graft 

union and roots would be the main structures involved in these mechanisms.  Studies 

with cherries also would support this theory (Olmstead et al., 2004, 2006ab).  In apples, 

Simons (1986), working in one-year-old trees, found that the vascular tissues showed a 

swirling pattern and some senescent tissues became important at this level.  These 

abnormal structures in the vascular system have been suggested to be involved either in 

some kind of incompatibility present at the beginning of the formation of the graft union 

or during the subsequent growth as a consequence of biochemical or physiological 

interaction between the two tissues (Simons and Chu, 1984).  A common feature of 

dwarfed apple trees is the swollen, distorted tissues composed mainly of xylem elements 

that are produced in the region of the graft interface between rootstock and scion (Jones 
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1986).  Soumelidou et al. (1994) studied the early development of graft unions in the 

apple cultivars ‘Gala’ and ‘Bramley’.  This study showed that in the case of M.9 (a dwarf 

rootstock) the xylem linking the bud to the rootstock contained fewer vessels than in the 

semi-dwarfing MM.106. 

In peaches, past works showed that most of the hydraulic resistance was found in 

the roots instead of the graft union.  Roots were the major resistance to water flow when 

different peach rootstocks were compared by Basile et al. (2003b) and rootstocks that 

gave the greatest size control had the highest water resistance. 

In most cases that examine a whole plant, the highest resistance to water transport 

occurs in the root system (Liu et al., 1978; Molz, 1981; Pasioura, 1988; Tyree, 2003).  

Rieger and Litvin (1999) comparing different species found a negative correlation 

between root hydraulic conductance and root diameter.  There are two main components 

involved in the movement of water: the axial and radial conductance.  The first 

component represents the movement of water through the vessel elements up to the stem, 

and the second term describes the conductance of water from the root surface to the 

xylem vessels.  In general, the axial conductance in fruit trees is assumed to be sufficient 

to allow normal growth and not to limit the water pathway due to a secondary growth that 

increases the number of xylem vessels (Vercambre et al. 2002).  In the same study, 

Vercambre et al. (2002), working on a peach variety grafted on to ‘Damas GF 1869’ 

plum rootstock, found that woody roots had a higher conductance than the fine roots.  

However, they agreed that axial resistance did not reduce water transport unless some 

limitations were present such as very deep soil (Jackson et al., 2000) or some kind of 
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restriction of the root system that might reduce the water flow (Yamauchi et al., 1995).  

Fine roots exhibited larger variation in the conductance due mainly to the difference in 

the number of vessels compared to woody roots. 

We hypothezed that dwarfing mechanisms of peach rootstocks are linked to the 

water status of the tree and the differences in scion growth are a consecuence of water 

stress caused by the more-size controlling rootstocks.  Our study attempted to establish a 

relationship between the impaired growth of peach scions caused by rootstocks and the 

physiological responses of the scion,  so as to understand the dwarfing mechanism in 

peach trees.  

 

Materials and methods  

 

Experimental sites and plant materials 

Bearing trees  at Georgia and South Carolina 

Data were collected in 2005 and 2006 on trees of two peach [Prunus persica (L.) 

Batsch] cultivars, ‘Redhaven’ and ‘Redtop’, grafted on different rootstocks:  Lovell 

(Prunus persica), Pumiselect® (P. pumila), Krymsk® 1 (formerly called VVA-1) (P. 

tomentosa x P. cerasifera), Cadaman®-Avimag (P. persica x P. davidiana) and 

Controller® 5 (formerly called K-146-43) (P. salicina x P. persica).  Cadaman® is a 

vigorous rootstock.  Lovell is of standard vigor, while Pumiselect® and Controller® 5 are 

of semi-dwarf vigor.  The Krymsk® 1 rootstock produces the greatest control in size.  

Bearing trees were grown at two different locations: USDA Southeastern Fruit & Nut 
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Tree Laboratory, Byron, GA and Musser Fruit Research Center, Seneca, SC. Trees were 

part of two NC-140 rootstock trials, and were planted at 5 m along the row and 6 m 

between rows.  The NC-140 ‘Redhaven’ peach tree trial was planted in 2002 while the 

NC-140 ‘Redtop’ peach plot was planted in 2001.  Depending on the site and 

combinations, 4 to 6 repetitions were used per treatment. 

Young trees at South Carolina 

Young non-bearing ‘Redhaven’ and ‘Redtop’ peach trees were grown at the 

Musser Fruit Research Center. On June 2005, Lovell, Pumiselect®, Krymsk® 1 and 

Cadaman® rootstock trees, grown at the nursery, were budded with ‘Redhaven’, 

‘Redtop’ and self-grafted.  The dormant trees were cut back to 10 cm above the graft 

union and then transplanted into a field site in January 2006.  These trees were planted in 

double rows at 1.5 m x 1.5 m, 1.5 x 2.5 m and 1.5 x 3.0 m in the row and 6 m between 

rows.  In the spring (March 2006), only a single shoot was allowed to grow.  This shoot 

was the single main trunk of the tree.  Trees were not pruned during the experimental 

period, but all fruits were removed in Spring 2007.  Trees were irrigated as needed using 

micro-sprinklers to replace 100% estimated evapotranspiration.  

Nursery trees at South Carolina 

Lovell, Pumiselect® and Krymsk® 1 rootstocks were planted at the Musser Fruit 

Research Center nursery, Seneca, SC, at 0.5 m between plants and 1.5 m between rows in 

April 2006, then either budded with ‘Redhaven’ or self-grafted on June 2006, and then 

used for water potential and root studies in the following season (2007). All trees were 

cut back in January 2007 as described above. 
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All plots were managed according to standard commercial practices. Rows of 

trees received herbicide treatments, but a mowed grass strip was maintained between the 

rows, except in the nursery, where all areas between the rows were also treated with 

herbicide.  Mature and young non-bearing trees on the field were irrigated with micro-

sprinklers to replace 100% estimated evaporation.  Trees at the nursery were drip 

irrigated. 

Data collection 

Rootstock effect on the scion 

Vegetative growth was monitored by measuring trunk cross-sectional area 

(TCSA), tree height (main shoot) and number of active growing points.  For young non- 

bearing trees TCSA was calculated based on the diameter of the tree 5 cm above the graft 

union. For bearing trees, TCSA was calculated using the diameter 20 cm above the 

ground.  Trees were planted in a Complete Randomized Block Design (CRBD). 

Graft union effect on scion growth and scion effect on rootstock 

growth 

Vegetative growth measurements similar to those described above were recorded 

on one-year-old self-grafted trees to determine the effect of the graft union on vegetative 

growth and on midday stem water potential when the same genotype was used as scion 

and rootstock in an individual tree. In addition, to determine differences in dry matter 

partitioning, whole trees planted in the field at 1.5 m x 1.5 m in January 2006, were 

removed from the ground at the end of the first year of growth, weighed, dried and then 

weighed again to obtain fresh and dry weights.  Total shoot length and dry weight were 
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also measured.  To correlate tree growth with tree water status, midday stem water 

potential was measured on mature fully expanded leaves, close to the main shoot on May 

31, June 1 and August 3, 2006.  Two leaves per tree were used for measurement of stem 

water potential.  Leaves were covered with aluminum bags (McCutchan and Shackel, 

1992) at least one hour before measurements.  After this period, it was assumed that leaf 

water potential was equilibrated with that of the xylem sap of the stem to which the leaf 

was attached.  Then, leaves were cut and put in a pressure chamber. The excised leaves 

were pressurized with a 3005-model pressure chamber (Soil Moisture Equipment, Santa 

Barbara, CA). Trees in these experiments were planted in a CRBD. 

In another experiment to determine the effect of the scion (‘Redhaven’) on the 

rootstock, one-year-old ‘Redhaven’ trees were compared to self-grafted rootstocks.  

Measurements and design were as described for the graft union study. 

Diurnal shoot growth and stem water potential 

Diurnal stem extension rate (SER) was measured on six well exposed shoots of 

three-year-old ‘Redhaven’ peach trees at the Musser Fruit Research Center on July 27-28, 

2005. SER was measured by making fine ink marks with permanent marker on the stem.  

Only actively growing stems were chosen, while those showing reduction of growth, non-

growth or excessive growth (watersprouts) were discarded.  Distance between marks was 

measured with a digital caliper. SER was determined by dividing the length increment 

(amount of change in distance between marks) by the amount of time between 

measurements (Berman and DeJong, 1997).  Measurements were made at approximately 

4-hour intervals during the day and 6-hour intervals during the night.  Stem water 
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potential was measured on the same trees to correlate shoot growth and tree water status.  

Stem water potential was measured on mature leaves, close to the main shoot at about 1.5 

m from the ground. Water potential was recorded at the time of shoot growth 

measurements, following the same methodoly as described above.  Each treatment was 

replicated 5 times in a Complete Randomized Design (CRD).  Treatments were: Lovell, 

Cadaman®, Controller® 5, Pumiselect® and Krymsk® 1.  Diurnal stem extension rate 

and total number of actively growing shoot apices were measured to estimate the diurnal 

total growth per tree.  In addition, diurnal shoot growth and number of growing points 

were also measured on 3-year-old ‘Redhaven’ peach trees grafted on Lovell, Cadaman®, 

Controller® 5, Pumiselect® and Krymsk® 1 rootstock at the USDA Southeastern Fruit & 

Nut Tree Laboratory, on July 20-21, 2005.  Trees were irrigated the previous day until 

soil field capacity was reached to ensure water was not a limiting factor. 

In another experiment, SER, number of shoot growing apices, and water potential 

studies were done on one-year-old ‘Redhaven’ peaches trees grafted on Lovell, 

Cadaman®, Pumiselect® and Krymsk® 1 rootstocks at the Musser Fruit Research Center 

on June 22-23, 2006. The experiment was set up as described above for the 3-year-old 

trees. 

Midday stem water potential 

Different experiments on bearing and non-bearing trees were done to determine 

the effect of rootstock on tree water status in Spring and Summer of 2005, 2006 and 

2007.  Measurements of stem water potential at midday were made on ‘Redhaven’ and 

‘Redtop’ bearing trees at the USDA Southeastern Fruit & Nut Tree Laboratory and the 
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Musser Fruit Research Center in 2005 and 2006.  In these studies treatments included: 

Lovell, Cadaman®, Controller® 5, Pumiselect® and Krymsk® 1 rootstocks.  In addition, 

similar studies were done on one-year-old ‘Redhaven’ and ‘Redtop’ trees grafted on 

Lovell, Cadaman®, Pumiselect® and Krymsk® 1 rootstocks at the Musser Fruit 

Research Center in 2006. 

Water potential at Midday was also measured on young ‘Redhaven’ peach trees 

(less than one-year-old) on Lovell, Pumiselect® and Krymsk® 1 rootstocks at the Musser 

Fruit Research Center.  In addition, the water potential of these ‘Redhaven’ peach trees 

was compared with the water potential of those of rootstock trees, which had not been 

budded with a scion (own rooted). 

In another study, Lovell, Pumiselect®, Cadaman® and Krymsk® 1 rootstock 

trees were budded with ‘Redhaven’ peach cultivar at 20 cm from the ground.  Leaves 

situated on the rootstock portion of the tree were retained in order to measure water 

potential in the rootstock and scion stem at the same time and on the same tree.  

Differences in scion and rootstock stem water potential would be attributed to the graft 

union hydraulic resistance. As a control, some rootstock trees were self-grafted.  Trees 

were planted in January 2006, budded in July 2006 and water potential measurements 

were done in Summer 2007.  In addition, the work was repeated on younger ‘Redhaven’ 

trees at the nursery of the Musser Fruit Research Center in Summer 2007 with Lovell, 

Pumiselect® and Krymsk® 1 rootstocks as treatments. 
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Transpiration rate and stomata resistance measurements 

Resistance offered by stomata was measured using a steady-state porometer (Li 

1600, LICOR, Inc., Nebraska, USA) and expressed in s cm- 1.  Transpiration was also 

assessed using the steady state porometer readings and expressed in µg H2O cm- 2 s- 1.  

One sun-exposed and fully expanded leaf per tree and 6 trees per treatment (replications) 

were selected for measurement.  In order to reach the steady state conditions, it was 

necessary to hold the leaves attached to the instrument for at least 1.5 minutes before 

measuring stomatal resistance and transpiration rate. 

On one-year-old ‘Redhaven’ peach trees grafted on Lovell, Cadaman®, 

Pumiselect® and Krymsk® 1 rootstocks, diurnal measurements of transpiration rate as 

well as stomatal conductance were conducted on September 29 and October 6, 2006.  The 

measurements were made six to seven times at about 2-hour intervals from 9 am to 7 pm.  

At midday on different dates, stem water potential, transpiration rate and stomatal 

resistance were simultaneously measured to estimate correlations between tree water 

status and physiological responses of the stomata under these conditions.  Leaves from 

one- and four-year-old ‘Redhaven’, and one -year-old ‘Redtop’ peach trees grown at the 

Musser Fruit Research Center were used for the study in addition to rootstock trees that 

had not been budded. 

Evaporative method: tree hydraulic resistance  

One-year-old peach trees grown in greenhouses at Clemson University, SC, were 

used to measure tree hydraulic resistance.  The experiment included 4 treatments: 

‘Redhaven’ peach cultivar budded on Lovell and Krymsk® 1 rootstocks and trees of both 
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rootstocks which had not been budded.  In the field after growing one year, trees that had 

not been budded were cut at 20 cm from the ground, while those grafted with the scion 

were cut back at 10 cm above the graft union.  Then all trees were transplanted to pots 

and moved to the greenhouses.  For 3.5 months trees were grown under 16 photoperiod  

and 26°C air temperature during the day and 20°C at night.  Light was provided at ~700 

µmol photons m-2 s-1 photosynthetic photon flux density.  Trees grew in 57-l plastic 

containers filled with a mixture of 45% peat moss, 15%  perlite, 15%  vermiculite and 

25% bark (3B-Mix, C. Fafard, Inc., Agawan, MA) and amended with 0.4 kg per pot of 

18-6-12 Multicote fertilizer (N-P-K, Schultz Co., Bridgeton, MO).  Trees were planted at 

the end of February 2006 and the experiment was continued until June 21, 2006.  Trees 

were irrigated daily to maintain the soil media at near maximum water holding capacity.  

The experiment was a Completely Randomized Design with 5 replications (trees). 

The evaporative flow method involved the measurement of tree transpiration rates 

and water potential gradients.  The plastic containers in which the trees were growing 

were enclosed in plastic bags that were sealed around the base of the trunk to avoid 

evaporation from the soil medium during the experiment.  

All calculations were completed assuming that water relations had reached a 

steady state. It was assumed that all water loss came from the shoots and especially the 

leaves, and no losses were due to evaporation from the soil. Hydraulic resistance (R) and 

leaf-area-specific resistances (Rl) were calculated.  Hydraulic resistance was calculated 

for the whole tree (Rtree) and also partitioned between the stem and roots (Rstem + root) 

.  
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where ? leaf represents leaf water potential, ? soil the soil water potential and E the 

evaporative flux density, which was calculated gravimetrically. ?soil was measured in 

covered leaves at night, assuming an equilibrium between soil and stem water potential 

under low transpiration conditions.  E was calculated through the following equation:  

 
 

Where ? W is the weight change (kg) and ? t is the time change (s).  

At steady state, stem + root hydraulic resistance (Rstem  + Rroot) was calculated 

as: 

 
 

Where ? stem is the stem water potential measured on bagged non-transpiring 

leaves and ? soil is the stem water potential measured at night. 

 

Rl was calculated as follows: 

 

 
 

Where A is leaf area (m2) and El is the evaporative flux density.related to leaf 

area. 
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Transpiration rate was gravimetrically measured with an ES100L digital scale 

(Ohaus Corp., Pine Brook, NJ) every 2.5 hours, four times during the light period.  Trees 

were irrigated after weighing to replace transpired water and maintain the soil media at 

maximum water holding capacity. Conductivity (K) and leaf-area specific conductivity 

(Kl) were calculated as 1/R and 1/Rl, respectively. 

Fine root length and density 

Fine root development from 2-year-old ‘Redhaven’ peach trees grafted on Lovell, 

Cadaman®, Pumiselect® and Krymsk® 1 rootstocks was measured using root density 

cores.  Four 20 cm deep and 5.3 cm diameter cores were taken at 40 cm from the base of 

each tree trunk in April 2006.  These cores were taken in opposite directions from the 

trunk. Total of six trees (repetitions) were used for the experiment.  Cores were stored at 

4ºC until processing.  Soil was washed from the rootstock roots by hand. Length of fine 

roots (less than 3-mm-diameter) per sample was measured and converted with a 

WinRhizo system (Regent Instruments, Montreal, Quebec, Canada) and used to calculate 

the root length density (cm root cm-3 soil) of the soil surrounding the tree trunks. 

An additional experiment involved roots of young ‘Redhaven’ peach trees grafted 

on Lovell, Pumiselect® and Krymsk® 1 rootstocks grown at the Musser Fruit Research 

Center nursery, Seneca, SC, in September 2007.  Whole trees were removed from the 

ground, while trying to keep the root system intact .  Each tree root system was washed 

by hand and roots with diameter smaller than 3 mm were separated.  Three intact fine 

root branches (< 3-mm-diameter) per tree were scanned for length with WinRhizo 

software. After scanning, the three fine root branches were dried.  Also, the remaining 
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fine roots (< 3-mm-diameter) from each tree were dryed and weighed to calculate total 

root length of fine roots.  The rest of the material was separated in rootstock shank or tap 

root (included the trunk portion below the graft union), and roots > 3-mm-diameter 

(coarse roots).  All these tissues were dried for two weeks at 60°C and weighed 

thereafter.  The ratio dry weight: root length from the 3 fine roots was used to calculate 

the total length of roots smaller than 3-mm-diameter. 

Leaf area and fresh and dry weights from above ground tissues (shoot, branches 

and trunk) was also measured.  The experiment included 5 trees per rootstock as 

replications.  All data were analyzed by SAS (9.1 version) using the GLM procedure. 

 

Results 

 

Rootstock vegetative growth comparison 

Differences in tree vegetative growth were observed in three- to five-year-old 

‘Redhaven’ peach trees at the Musser Fruit Research Center.  TCSA of trees grafted on 

Lovell and Cadaman® rootstocks were the greatest (Fig. 5.1).  Controller® 5 and 

Pumiselect® had intermediate values for TCSA, while Krymsk® 1 had the smallest trunk 

growth.  

When one-year-old trees were compared, ‘Redhaven’ and ‘Redtop’ trees budded 

on Lovell had the greatest TCSA (Fig. 5.2).  Growth reduction was observed in trees on 

Cadaman® rootstock relative to those trees grafted on Lovell, probably due to the fact 
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that those trees on Cadaman® were planted later than the rest of the rootstocks, which 

reduced their initial and probably final size. 

Trunk cross-sectional area did not differ significantly when one-year-old 

‘Redhaven’ and ‘Redtop’ trees were compared on the same rootstock, with the exception 

of trees on Lovell rootstock.  In addition, trees on Lovell had larger TCSA after the 

second year of growth, while trees on Krymsk® 1 were the smallest (Fig. 5.2; Table 5.1).  

Similar results were found in the number of one-year-old shoots and tree height in the 

first season. Generally, the ‘Redhaven’ cultivar grew more than ‘Redtop’, except when 

trees were grown on Krymsk® 1 rootstock (Fig. 5.2; Table 5.1).  

Graft union effect. 

The effect of the graft union on tree growth and water status was studied on self-

grafted and non-grafted rootstock trees.  No differences were recorded when budded and 

non-budded trees on the same rootstock were compared. Figure 5.3 and Table 5.2 show 

differences in vegetative growth patterns due to rootstock genotypes independently of the 

graft unions.  Graft union, in these compatible combinations (self-grafted), did not affect 

the number of grown shoots per tree, tree height and TCSA at the end of the first season 

when the same root genotype was considered. Differences were attributed only to root 

genotypes (Table 5.2). 

The effects of the graft union on the midday stem water potential followed the 

same pattern as vegetative growth.  No significant differences were found for most of the 

combinations when the same genotype was studied. Only self-grafted Krymsk® 1 trees 

had significantly higher values (less negative) of water potential than those non-grafted 
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(Table 5.2).  Significant differences were found among genotypes, where Pumiselect® 

trees had the highest (less negative) midday stem water potential, whereas Krymsk® 1 

rootstock, in concurrence with the lowest vegetative growth, had the lowest (more 

negative) water potential at midday (Table 5.2). 

Scion effect on rootstock 

Generally, self-grafted Lovell trees had the largest trunks (Table 5.3), while 

Krymsk® 1 trees had the smallest trunks at the end of the first season.  The most 

vigorous rootstock, Lovell (self-grafted), had a reduction in TCSA when the material was 

grafted with ‘Redhaven’ scions; whereas, Pumiselect® and Krymsk® 1 trees increased 

their trunk diameter when grafted with ‘Redhaven’.  Similar results were found when the 

number of grown shoot apices and total shoot length per tree were considered.  However, 

in the case of trees grown on Lovell rootstocks, there were no differences in both number 

of growing points and total shoot length (Table 5.3). 

Shoot, root, total tree dry weight, and shoot: root ratios were significantly affected 

by the scion (‘Redhaven’) when the same root genotype was compared.   Generally, the 

scion reduced the vegetative tree growth of Lovell rootstocks.  Even though no 

significant differences in total tree dry weight were found on Pumiselect® and Krymsk® 

1 rootstocks due to scion effect, these rootstocks showed an increase tendency when trees 

were budded with the scion (Table 5.3).  TCSA was significantly greater when 

Pumiselect® and Krymsk® 1 rootstocks were grafted with ‘Redhaven’.  Clear significant 

differences were found when root genotypes were compared.  Krymsk® 1 had the lowest 

shoot, root and total tree dry weights while Lovell the highest.  Shoot: root ratio values 
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depended on the rootstock and were not affected by the scion.  Krymsk® 1 had the lowest 

ratios, while Pumiselect® had the highest ones (Table 5.3). 

Diurnal shoot growth 

Diurnal shoot extension growth rate of 3-year-old ‘Redhaven’ peach trees was 

higher on trees grafted on Lovell and Cadaman® rootstocks as compared with the rest of 

the combinations (Fig. 5.4).  Krymsk® 1, especially at midday, had the lowest shoot 

extension growth rate on the tagged shoots on July 27-28, 2005.  Table 5.4 shows the 

effect of rootstocks on the total number of active growing shoot apices per tree on July 

27-28, 2005. ‘Redhaven’ trees grafted on Lovell and Cadaman® rootstocks had a 

significantly greater number of growing shoots per tree.  Controller® 5 had intermediate 

number of shoots per tree, while Pumiselect® and Krymsk® 1 had the least.  Average 

diurnal growth of the selected shoots on Krymsk® 1 rootstock was significantly lower 

than shoots on Cadaman® and Lovell rootstocks.  The estimated total diurnal shoot 

growth per tree was calculated by multiplying the number of growing shoots per tree by 

the mean daily shoot growth.  Differences were directly correlated with the number of 

growing shoots per tree: Trees on Lovell and Cadaman® rootstocks grew approximately 

2 m per day.  Trees on Controller® 5 approximately 1 m per day and trees on 

Pumiselect® and Krymsk® 1 grew less than 0.4 m per day.  Trees grown in Georgia had 

similar results to those grown in South Carolina (Table 5.4).  Three-year-old ‘Redhaven’ 

trees on Lovell and Cadaman® rootstocks had significantly greater total estimated diurnal 

shoot growth (length) per tree than Pumiselect® and Krymsk® 1 rootstocks, and these 

differences were mainly due to the number of active growing shoots per tree (Table 5.4).  
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Controller® 5 had intermediate mean values and only differed significantly from 

Krymsk® 1 in the number of growing shoots per tree. 

One-year-old ‘Redhaven’ trees on Pumiselect® and Krymsk® 1 rootstocks had 

low stem water potentials, especially at midday and during the early hours of the 

afternoon (Fig. 5.5).  At the same time, trees on Cadaman® and Lovell rootstocks had 

high growth on the tagged shoots. Water potential was related to the temperature, since 

high temperatures corresponded with low stem water potentials.  Trees grafted on Lovell 

rootstocks had the highest number of growing shoots, and daily and total shoot growth 

per tree (Table 5.5).  Cadaman® trees had the highest diurnal growth of the tagged 

shoots; however, total estimated shoot growth was lower than Lovell because of the 

reduced size of the plants due to the fact that Cadaman® trees were planted later.  Both 

Pumiselect® and Krymsk® 1 had the smallest amount of growth. 

Midday stem water potential measurements  

Bearing trees  

In order to relate scion vegetative growth, tree water status, and rootstocks, 

different studies were done in bearing and young non-bearing peach trees based on the 

stem water potential at midday.   Midday stem water potential of mature bearing 

‘Redhaven’ and ‘Redtop’ peach trees at the Musser Fruit Research Center and the USDA 

Southeastern Fruit & Nut tree Laboratory were measured on different dates.   Similar 

trends were observed at both sites (Table 5.6). Trees on Cadaman® and Lovell rootstocks 

had greater stem water potential (less negative) than on  Pumiselect and Krymsk® 1 the 

lowest (more negative). 
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Young non-bearing trees 

During the season, one-year-old ‘Redhaven’ trees on the more vigorous 

rootstocks, Lovell and Cadaman®, had higher mean stem water potential  at midday than 

the less vigorous rootstocks, Pumiselect® and Krymsk® 1.  In general, trees on 

Krymsk® 1 rootstock had the lowest stem water potentials (Fig. 5.6).  When all dates 

were averaged, ‘Redhaven’ trees on Cadaman® and Lovell had the highest stem water 

potential at midday (-0.75 and -0.85 Mpa, respectively), while Pumiselect® had 

intermediate stem water potential values (-1.04 Mpa) and Krymsk® 1 the lowest values  

(-1.14 Mpa).  Young ‘Redtop’ trees on Cadaman® and Lovell rootstocks had 

significantly higher mean stem water potent ial (-0.90 and -0.92 Mpa, respectively) during 

the season than those trees on Pumiselect® and Krymsk® 1 rootstocks (-1.02 and -1.06 

Mpa, respectively). ‘Redhaven’ and ‘Redtop’ cultivars did not affect the stem water 

potential of those trees grafted on different rootstocks over two different dates (data not 

shown). 

In another experiment, self-rooted ‘Redhaven’ trees were compared with 

‘Redhaven’ on different rootstocks.  No significant differences were observed between 

self-rooted ‘Redhaven’ trees and the rest of the combinations except with Krymsk® 1.  

Midday stem water potential for trees grafted on Krymsk® 1 had -1.10 Mpa, while the 

rest of the combinations ranged between -0.82 and -0.94 Mpa. 
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Stem water potential comparison between rootstock and scion in 

different and same trees 

Midday stem water potential was measured on one-year-old ‘Redhaven’ peach 

trees grafted on four different rootstocks and in self-grafted rootstock trees on 3 different 

days (May 31, June 1 and July 11, 2006).  The most noticeable result was found in the 

combinations ‘Redhaven’ on Pumiselect® and self-grafted Pumiselect® trees.  In these 

cases, ‘Redhaven’ trees on Pumiselect® had the lowest mean midday water potential      

(-1.41 Mpa), while self-grafted Pumiselect® trees had the highest midday water potential 

(-0.71 Mpa).  ‘Redhaven’ trees on Lovell rootstock (-0.96 Mpa) did not differ from self-

grafted Lovell trees (-0.99 Mpa).  Differences between ‘Redhaven’ and self-grafted trees 

were the greatest when ‘Redhaven’ on Pumiselect® were compared to self-grafted 

Pumiselect® trees (Table 5.7). 

Measurements of midday stem water potential were made below and above the 

graft union on the same tree.  Because leaves were left on the rootstock, as well as on the 

cultivar, it was possible to measure the rootstock and scion (‘Redhaven’) stem water 

potential at the same time and on the same tree.  Differences between stem water 

potential above and below the graft union could be attributed to the graft union hydraulic 

resistance. 

Midday stem water potential differences between rootstock and scion were also 

measured on young ‘Redhaven’ trees at the nursery of the Musser Fruit Research Center 

(Table 5.7).  Similar to one -year-old trees, the RH/Pumiselect® combination had the 

largest difference between rootstock and scion stem water potential at midday.  Krymsk® 
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1 rootstock trees had the lowest rootstock water potential.  Mean scion midday stem 

water potential was lowest on trees grafted on Krymsk® 1 and Pumiselect® rootstocks. 

In another study, self- rooted rootstock trees were studied on two different days in 

June (June 10, 16, 2007).  In agreement with previous results, self-grafted Pumiselect® 

trees had the highest average midday stem water potential (-0.49Mpa), whereas Krymsk® 

1 trees had the lowest (-0.91Mpa).  Lovell trees had intermediate stem water potential 

values (-0.70 Mpa). 

Transpiration rate and stomatal resistance 

The rootstock had a significant effect on the stomatal resistance of ‘Redhaven’ 

leaves on September 29, 2006 (Fig. 5.7).  Leaves from trees on Pumiselect® rootstock 

had significantly greater stomatal resistance, especially at midday, as compared to leaves 

of trees grafted on Cadaman® rootstock.  Leaf stomatal resistance at midday remained at 

~1.5 s cm-1 in Pumiselect® trees and ~1 s cm-1 in Cadaman® trees.  Thus, the 

Pumiselect® genotype caused an increase (i.e., ~ 50% higher) in stomatal resistance 

compared to Cadaman® (Fig. 5.7). During the day, trees on Pumiselect® had the greatest 

average stomatal resistance (1.92 s cm-1), while trees on Cadaman® had the lowest (1.30 

s cm-1). Stomatal resistance for those trees on Krymsk® 1 (1.72 s cm-1) did  not differ 

from Lovell (1.60 s cm-1); however, the stomatal resistance observed in Lovell was 

greater than that observed in Pumiselect®.  During the same period transpiration rate 

followed an inverse relationship to that of stomatal resistance (Fig. 5.7).  Leaves on trees 

grafted on Cadaman® rootstocks increased the transpiration rate at midday to ~13 µg m-2 

s-1, while leaves on Pumiselect® increased to ~10 µg cm-2 s-1.  Although the differences 
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in transpiration rate between Pumiselect® and Cadaman ® were significant at midday, 

trees on Cadaman® tended to show a 30 to 40% greater transpiration rate during the 

sunlit hours when compared to that of Pumiselect®. 

Stomatal resistance and transpiration rate of different rootstock genotypes in one -

year-old ‘Redhaven’ trees were also studied on October 6, 2006 (Fig. 5.8).  Results were 

similar to those recorded on September 29, 2006.  Leaf stomatal resistance of trees grown 

on Pumiselect® rootstock was close to 1.5 s cm-1, while those on Cadaman® and Lovell 

rootstocks were approximately 1.0 s cm-1. Stomatal resistance increased remarkably at 

the end of the afternoon due to sunlight reduction.  The mean tendency showed that there 

was approximately a 50% increase in stomatal resistance for the Pumiselect® genotype 

as compared to trees on Cadaman® rootstock. During sunlit hours, mean stomatal 

resistance was 2.06 and 2.03 µg cm-2 s-1for Krymsk® 1 and Pumiselect®, respectively 

and was significantly greater than the stomatal resistance observed for Cadaman® and 

Lovell (1.52 and 1.40 µg cm-2 s-1, respectively).  Transpiration rate during the day 

averaged 8.50 µg cm-2 s-1 for Pumiselect® rootstock, 9.43 µg cm-2 s-1 on Krymsk 1, 11.02 

µg cm-2 s-1 for Lovell and 11.06 µg cm-2 s-1 for Cadaman®.  Leaf transpiration on 

Cadaman® and Lovell was significantly greater than on Pumiselect® and Krymsk® 1. 

In another experiment, root genotypes, stomatal resistance, leaf transpiration rate 

and midday stem water potential at midday were studied on one-year-old ‘Redhaven’ .  

Water vapor pressure deficit was expected to be highest at midday, where it might lead to 

increased stomatal resistance due to closing of stomata.  Results (Table 5.8) showed that 

trees on Lovell and Cadaman® rootstocks had significantly higher midday stem water 
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potentials, than trees on Krymsk® 1 rootstocks.  Trees on Pumiselect® had intermediate 

stem water potential.  Under these conditions, leaves on Cadaman® had the greatest 

transpiration rate.  Transpiration rate for leaves on Cadaman® rootstock was 35 and 50% 

greater than those leaves on Pumiselect® and Krymsk® 1 rootstocks, respectively.  In 

contrast, stomatal resistance was the highest in leaves on Krymsk® 1 rootstock and the 

lowest in leaves on Cadaman® rootstock. 

The evaporative method: tree hydraulic resistance 

Tree growth was significantly affected by the treatments (Table 5.9).  Above 

ground tree dry mass was higher in ‘Redhaven’ (RH) trees on Lovell (L) rootstock and in 

self-grafted Lovell trees when compared to selft-rooted Krymsk® 1 rootstock trees.  Root 

dry weight was lower in self-grafted Krymsk® 1 trees than in RH/L and Lovell.  Total 

tree dry weight was also affected by treatments; where RH/L tr ee dry weight was greater 

than trees on Krymsk® 1 roots.  In addition, shoot: root ratio was higher in the own-

rooted Krymsk® 1 trees compared to the other combinations. Leaf area was significantly 

greater in RH/L and Lovell trees (4.36 and 4.91 m2, respec tively).  Krymsk® 1 trees had 

significantly smaller leaf area (2.19 m2), while intermediate results were found in RH/K 

trees (3.03 m2).  Results from this study suggested that potted trees could suffer root 

growth limitations, which might prevent and modify tree vegetative growth potential.   

Significant differences were found in specific- leaf-area conductance (Kl) where 

self-grafted Krymsk® 1 trees had the least Kl when the whole tree and stem + root were 

considered (Table 5.10).  Although no differences were shown among the rest of the 

combinations, trees on Lovell roots tended to have a higher Kl than those on Krymsk® 1 
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roots.  Hydraulic conductance (K) did not differ among treatments; however, trees grafted 

on Lovell rootstock had a higher K value than those grafted on Krymsk® 1 rootstocks 

(Table 5.10). 

Root system: root length and density 

Vegetative growth of young ‘Redhaven’ trees grown in the nursery was 

significantly affected by root genotype.  Lovell roots induced a high vigor as compared to 

the ‘Redhaven’ cultivar; whereas Krymsk® 1 roots significantly reduced tree size (Table 

5.11).  In addition, the relationship between shoot and root dry weight was affected by the 

different rootstocks.  Trees on Krymsk® 1 had the lowest shoot: root ratio compared to 

the other two rootstocks. 

Lovell had significantly higher shank and total root dry weight (Table 5.12). 

However, fine root (<3-mm-diameter) dry weight was significantly higher in 

Pumiselect® than in Lovell, while Krymsk® 1 fine (small) root dry weight was 

intermediate between Pumiselect® and Lovell.  Dry coarse roots weighted more in Lovell 

than in Krymsk® 1.  No significant differences were found in total fine root length; 

however, the root system of Pumiselect® tended to have a greater total length of fine 

roots. This was readily observed when whole trees were pulled from the ground. 

Pumiselect® had long fine roots and most of them were located near the surface. Lovell 

roots had 90% of the total root dry weight as shank and coarse roots (>3-mm-diameter) 

although these two tissues represented less than 60% of total root dry weight in the case 

of the Pumiselect® root system.   When soil samples were taken near one-year-old 
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‘Redhaven’ trunks, no major differences were found either in root length or in root dry 

weight per soil volume among the treatments (Table 5.12). 

 

Discussion 
 

In our study, rootstocks significantly affected scion growth.  These results were 

comparable to those reported by Reighard et al. (2006) and DeJong et al. (2005).  Using 

‘Redhaven’ on Lovell as the control, TCSA of bearing 4-year-old ‘Redhaven’ trees 

grafted on Krymsk® 1 rootstock were only 30% of those control plants. TCSAs of trees 

on Pumiselect® rootstock were only 60% of the control trees.  Trees on Cadaman® had 

similar growth to those on Lovell. 

In young trees, differences among rootstocks were smaller when recorded for the 

first year than for the second season. ‘Redhaven’ on Krymsk® 1 rootstock was about 

50% of the size of those trees on Lovell after the first year of growth and 35% at the end 

of the second season. Seleznyova et al. (2004) suggested that dwarfing effects are 

cumulative and superimposed year-to-year.  This would be explained by the reduction in 

the number of internodes and buds at the end of every season, with the consequent 

reduction in the number of shoots coming in the following spring.  This annual behavior 

found in dwarfed trees year after year would end in smaller trees at the end of each year 

compared to trees grown on vigorous rootstocks.  In our study, differences in the number 

of current year shoots between trees on dwarfing and vigorous rootstocks at the end of 

the first year supported this supposition. 
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The effect of rootstock on the scion has been widely studied; however, less 

attention has been devoted to the scion effect on the rootstock.  The most vigorous 

rootstock, Lovell, had a reduction in total tree dry weight up to 20% when it was grafted 

with ‘Redhaven’. However, Krymsk® 1 trees increased 2.6 fold in dry weight when they 

were grafted with ‘Redhaven’. Pumiselect® had an increment of 30% in dry weight after 

having been budded with ‘Redhaven’.  When total dry weight of self-grafted Lovell trees 

was considered as 100%, self-grafted Pumiselect® trees grew only about 25% of Lovell, 

while Krymsk® 1 grew only about 9% (Tables 5.2 and 5.3).  Thus, when tables 5.1-5.3 

were considered, the dwarfing effects of rootstocks were remarkably dependent on 

rootstock genotype; the smaller the rootstock the greater the dwarfing effect. 

The reason why trees on dwarfing rootstocks are smaller should be directly 

connected to the mechanism that induces the reduction of the scion vegetative growth.  

Therefore, we focused this research on hydraulic conductance as the major cause of 

growth reduction, which has been suggested as a possible dwarfing mechanism by 

previous works (Atkinson and Else, 2001; Atkinson, 2003; Basile et al., 2003b; Webster 

and Wertheim, 2003; Weibel et al., 2003; Nakano et al., 2004; Solari and DeJong, 2006). 

The effect of the graft union on the resistance to water flow has been studied in 

apples (Beakbane and Thompson, 1939; Simons and Chu, 1980,1984; Soumelidou et al., 

2004; Atkinson et a., 2003), peaches (Basile et al., 2003b), and cherries (Olmstead et al., 

2004, 2006ab).  In this study, when rootstock trees were self-grafted, no effect was 

observed in either vegetative growth or in stem water potential.  Similarly, when good 

compatibility between rootstock and scion tissues is present, the newly formed 
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conducting elements (xylem and phloem) do not reduce the water pathways (Gascó et al., 

2007).  On the contrary, when species or cultivars are partially compatible or 

incompatible, discontinuities or distortion of the xylem or phloem are present (Moing and 

Carde, 1988; Olmstead et al., 2006; Zarrouk, 2006). 

Berman and DeJong (1997b), Basile et al. (2003a) and Weibel et al. (2003) 

showed that seasonal vegetative growth depends on the diurnal stem extension growth, 

which is directly related to the water status of the plant. In our work, diurnal shoot growth 

rates were comparable to those found by these authors in peach trees. However, in order 

to quantify the effect of rootstocks it was necessary to consider the total number of shoots 

that were growing at the same time.  On a daily basis, shoots from 4-year-old ‘Redhaven’ 

trees grew 0.18 m on Krymsk® 1, 2.17 m on Cadaman® and 1.88 m on Lovell.  

It is known that apple dwarfing rootstocks exhibit increased water flow resistance 

at the graft union (Atkinson et al., 2003) similar to cherries (Olsmtead et al., 2004).  

However, studies done in peaches showed that the major resistance to water transport was 

found in the roots (Basile et al., 2003b; Solari et al., 2003ab).  The results in peach were 

similar to those found in most plants where the major hydraulic resistance was accounted 

for by the root system (Passioura, 1988; Barrowclough et al., 2000; Tyree, 2003).  We 

found that at midday self-grafted Pumiselect® trees had higher stem water potentials than 

Krymsk® 1, suggesting a lower tree hydraulic resistance, compared to other self-grafted 

rootstocks.  When Krymsk® 1 rootstock was grafted with ‘Redhaven’, the scion water 

potential dropped less than 10%; however, when Pumiselect® was budded with 

‘Redhaven’, scion water potential dropped about 42% relative to the self-grafted 
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rootstock trees.  No change was observed in stem water potential at midday between self-

grafted Lovell trees and those grafted with ‘Redhaven’.  In addition, when leaves were 

left on the rootstock portion, the stem water potential from rootstock to scion dropped 9% 

and 34% for Krymsk® 1 and Pumiselect® trees, respectively.  Although no 

quantification of hydraulic resistance was made, the results suggested that in the case of 

Pumiselect®, the graft union might considerably increase the tree hydraulic resistance.  

Furthermore, it appeared that the major source of hydraulic resistance in Krymsk® 1 was 

the root system as was reported by Basile et al. (2003b) and Solari et al. (2006ab). 

Decrease in scion growth by dwarfing rootstocks is thought to be due  mainly to 

the reduction in shoot and leaf growth because of low water potential.  Low water 

potential of stressed trees grafted on dwarfing rootstock directly affect biochemical 

processes such as solute transport and cell wall loosening and formation.  In addition, 

physical parameters are affected such as turgor pressure and water transport (Hsiao and 

Jing, 1987; Hsiao and Xu, 2000).  Moreover, limitations on photosynthesis might affect 

growth in the long term by reducing carbohydrate availability for biochemical processes 

and reserves (Loreto and Chartzoulakis, 2003; Taiz and Zeiger, 2006).  In our study, leaf 

temperature, measured with the porometer, did not differ among rootstocks at any time.  

Even though photosynthesis was not measured in our work, transpiration rate and 

stomatal resistance were significantly different among rootstocks.  These differences 

were found particularly at midday and in the early afternoon hours; however, trends in 

transpiration and stomatal resistance tendencies during the high light intensity hours 

showed that the more dwarfing rootstocks, Krymsk® 1 and Pumiselect®, had the lowest 
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transpiration rate and the highest stomatal resistance.  Solari and DeJong (2006) working 

on both a semi-dwarfing (Controller® 5) and a vigorous rootstock (Nemaguard) found 

through root pressurization that higher increments in leaf water potential, transpiration 

rate and leaf conductance were expressed in the invigorating rootstock.  Similar results 

were found in apple rootstocks by Li et al. (2002) who concluded that differences in the 

lower canopy conductance in M.9 dwarfing rootstocks were caused by resistance in the 

water transport in the roots or graft union.  In contrast, Wilkins et al. (2002) did not find 

differences in leaf conductance, interna l CO2, and leaf transpiration among several peach 

rootstock selections, although they worked with non-dwarfing rootstocks.  Our results 

showed increments in stomatal conductance and transpiration rate at higher stem water 

potentials, which were associated with the more vigorous rootstocks. 

The evaporative method, as studied in potted trees, measured tree hydraulic 

conductance. In this study, significant differences were found among treatments in dry 

weight and leaf area; however, these differences were much smaller in magnitude than 

those observed in the same combinations growing in the field.  Effects of root 

confinement on vegetative growth, such as in containers, have been widely reported 

(Williamson and Coston, 1990; Rieger and Marra, 1994; Webster et al., 2000), to cause 

severe reduction in shoot and root growth.  Webster et al. (2000) demonstrated that there 

were no differences in tree dry weight when different apple rootstocks were grown in 

containers, even though the large differences in rootstock vegetative growth potential had 

been observed previously in the field under normal growth conditions.  In our 

experiment, tree hydraulic resistance values were similar to those found by Solari et al. 
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(2006a); however, we did not find differences among treatments as Solari et al. (2006a) 

did.  Constriction effects could have been more magnified in our trees because they grew 

in pots in the greenhouse where root growth conditions were more limiting; whereas trees 

observed by Solari et al. were growing in pots located outside (in the field). 

Trunk cross-sectional area, shoot: root ratio, leaf area, and shoot, root, leaf and 

total tree dry weight were all affected by treatments when young trees were grown in the 

nursery.  Significant differences were observed between Lovell, Pumiselect® and 

Krymsk® 1 rootstocks, and these differences were associated with the vegetative growth 

potential linked to each rootstock.  Total fine root length (<3-mm-diameter) did not differ 

statistically; however, the trends in total fine root length indicated that Pumiselect® roots 

had more fine roots than the other rootstocks, whereas Lovell roots had the smallest total 

length of fine roots. Pumiselect® had the highest midday stem water potential, thus the 

greater amount of fine roots, which are responsible for most of the water uptake 

(Barrowclough et al. 2000; Tyree, 2003) would support an explanation for the high 

hydraulic conductivity noted in Pumiselect®.  High root conductivity in Lovell could be 

explained as a consequence of high radial conductivity in the fine roots.  Basile et al. 

(2007), working on 5 different peach rootstocks, found differences in fine root length 

only in K-119-50 (Prunus salicinia x P. dulcis), which produced the greatest amount of 

fine roots, whereas there were no differences among the other 4 rootstocks.  In our work, 

trends observed in Pumiselect® fine roots agreed with our previous studies when one -

year-old ‘Redhaven’ peach trees were removed from the ground, and where Pumiselect® 

accounted for the largest amount of small roots (< 5-mm-diameter).  Vercambre et al. 
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(2002) reported that main roots in Prunus L. did not appear to limit axial water transport, 

so limitation in water uptake and transport should be limited to the fine roots.  In our 

experiment, Krymsk® 1 root system had similar total fine root length and dry weight to 

Lovell; however, larger roots (>3-mm-diamter) were found in Lovell.  Assuming that 

Krymsk® 1 had a larger root hydraulic resistance than Lovell roots; a larger radial 

hydraulic conductance is to be expected in the more vigorous rootstock (Lovell).  When 

the roots are very long or the water conducting elements are largely cavitated, the greatest 

resistance to the water flow in plants is located at the radial level (Frensch and Hsiao, 

1993; Steudle and Peterson, 1998; Vercambre et al., 2002; Tyree, 2003). 

Although measurements of hydraulic conductance of roots were not assessed by 

the present study, the results suggested that in peach rootstocks the main hydraulic 

resistance might be located at the root or graft union interface, depending on genotype 

combinations.  Differences observed between apple and peach hydraulic resistance might 

not be generally applicable for the species but probably is limited to specific 

combinations.  In addition, root system architecture which was not evaluated in our study 

might play an important role in hydraulic conductance (Huang and Eissenstat, 2000). 

After studying different cultivars, locations, tree ages, and rootstocks, the present 

work showed a relationship between scion vegetative growth and how it is affected by 

rootstock and tree water status.  In addition, the results of our study suggest that the 

seasonal changes in dry matter production and partitioning found in two peach cultivars 

may be influenced, at least in part, by seasonal variations in stem water potential, 

stomatal conductance and transpiration rates. 
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Table 5.1. Trunk cross-sectional area (TCSA) (2006-2007), number of growing points per 

tree (NGP) (2006) and tree height (2006) of ‘Redhaven’ (RH) and ‘Redtop’ (RT) peach 

trees grafted on different rootstocks. Trees were planted in January 2006. 

Redhaven (RH) and Redtop (RT) vegetative growthy 

Combinations 
TCSA one -

year-old trees 
(cm2) 

TCSA two-
year-old trees 

(cm2) 

NGP one-
year-old trees 

 

Height one -
year-old trees 

(cm) 

RH/ Cadamanz    16.01   bc 43.12   b 145.9   b   209.5   ab 

RT/ Cadamanz  13.18   c 38.14   b   83.63   cd    177.2   cde 

RH/ Lovell 19.78   a 55.92   a 202.7   a 224.5   a 

RT/ Lovell 16.65   b 51.76   a 145.1   b   208.7   ab 

RH/ Pumiselect   16.03   bc - 139.6   b   192.0   bc 

RT/ Pumiselect   14.92   bc - 107.9   c    189.8   bcd 

RH/ Krymsk 1   9.47   d 18.89   c     68.6   de   171.9   de 

RT/ Krymsk 1   7.82   d 11.47   c   42.4   e 160.2   e 
yDifferent letters within columns indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
zTrees were planted in April 2006. 
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Table 5.2. The TCSA, annual TCSA increment, number of grow points per tree (NGP), 

tree height and midday stem water potential (MSW) of rootstock trees self-grafted and 

non-grafted. Trees were planted at the Musser Fruit Research Center, South Carolina, in 

January 2006. Midday stem water potential was measured on May 31, June 1 and August 

3, 2006. 

Graft union effect y 

Rootstocks 
TCSA 
2006 
(cm2) 

TCSA 
2007 
(cm2) 

TCSA 
increm. 
(cm2) 

NGP 
 

Tree 
height 
(cm) 

MSW 
(Mpa) 

Cadaman/ 
Cadaman 

29.3   a - - 179.3   b 294.4   a   -1.17  bc 

Cadaman 
 25.0   ab 65.4   a 41.4   a 152.0  b 282.3  ab -1.25  c 

Lovell/ 
Lovell 26.8   ab - - 225.7  a 232.7  d   -1.06  ab 

Lovell 
 23.9   b 57.2   b 33.7   b 218.3  a 228.8  d   -1.08  ab 

Pumiselect/ 
Pumiselectz 

9.5   c - - 28.8  c 233.1  d -0.98  a 

Pumiselectz 9.9   c - - 29.8  c 227.3  d -0.97  a 

Krymsk 1/ 
Krymsk 1 

3.2  d 8.4   c 5.3   c 8.1  c 264.8  bc -1.29  c 

Krymsk 1 
 3.3   d 9.6   c 6.3   c 9.8  c 242.8  dc -1.44  d 

yDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
z Combinations were removed for dry weight studies in January 2007. 
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Table 5.3. Effect of the scion (Redhaven) on trunk cross-sectional area (TCSA), number 

of growing points (NGP), total shoot length, shoot, root and total tree dry weight of one -

year-old rootstock trees in Winter 2006-07. Trees were planted at the Musser Fruit 

Research Center, South Carolina in January 2006. 

 Scion effects on the rootstocksz  

Combinations  

TCSA 
(cm2) 

NGP 
/tree 

Shoot 
length 
(cm) 

Shoot 
dry 

weight 
(g) 

Root 
dry 

weight 
(g) 

Total 
tree 

weight 
(g) 

Shoot: 
root 
ratio 

Redhaven/ 
Lovell 

20.5  b 233.7  a   8787  a 2063  b 1796  b 3859  b 1.13 dc 

Lovell 
 

27.7  a 229.7  a 10512  a 2796  a 2121  a 4917  a 1.31 bc 

Redhaven/ 
Pumiselect 

13.1  c 114.2  b   5167  b 1104  c   707  c 1811  c 1.60  a 

Pumiselect 
 

  8.4  d   31.2  dc   2719  c  768 dc   494  c 1261  c 1.53 ab 

Redhaven/ 
Krymsk 1 7.44  d   63.8  c   2408  c  561 dc   600  c 1161 dc 0.93  d 

Krymsk 1 
 3.04  e     8.0  d   756.5  d   236  d   211  d   447  d 1.12 dc 

zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
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Table 5.4. Effect of rootstocks on the number of active growing points (NGP), average 

diurnal shoot growth (ADSG) and estimated total diurnal shoot growth (EDSG) per tree 

of 3-year-old Redhaven peach trees grown at the USDA Southeastern Fruit & Nut Tree 

Laboratory, Byron, Georgia and the Musser Fruit Research Center, South Carolina, July 

20-21 and 27-28, 2005, respectively.  

 Diurnal shoot growth and NGP per treez  

 Georgia South Carolina  

Rootstocks NGP ADSG 
(mm/d) 

EDSG 
(cm) 

NGP ADSG 
(mm/d) 

EDSG 
(cm) 

Lovell 221.8  a 8.0   a 175.8   a 252.2   a   7.3   ab 187.6   a 

Cadaman 194.0  a 7.5   a 147.1   a 248.6   a 8.8   a 217.2   a 

Controller 5   151.0  ab   6.5   ab  104.8   ab 128.6   b 8.9   a 112.8   b 

Pumiselect     55.7  bc 3.9   b 36.4   b   53.0   c   6.5   ab 37.6   c 

Krymsk 1 23.4  c 7.8   a 20.5   b   28.2   c 5.2   b 18.3   c 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test 
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Table 5.5. Effect of rootstocks on the number of growing points (shoots) and estimated 

total diurnal shoot growth of one -year-old Redhaven peach trees grown at the Musser 

Fruit Research Center, June 22-23, 2006. Trees were planted in January 2006. 

 Diurnal shoot growthz  

Rootstocks 
Number of growing 

points per tree 
Average diurnal 

shoot growth 
(mm/d) 

Total diurnal shoot 
growth per tree (cm) 

Lovell 44.2    a 11.0   a 475.5   a 

Cadamany 19.8   b 13.4   a 259.9   b 

Pumiselect 27.2   b   7.7   b 215.8   b 

Krymsk 1 14.2   b   6.4   b 91.5   b 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
yTrees on Cadaman were planted in April 2006. 
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Table 5.6. Midday stem water potential of bearing Redhaven and Redtop peach trees 

grafted on different rootstocks at the Musser Fruit Research Center, Seneca, South 

Carolina and USDA Southeastern Fruit & Nut Tree Laboratory, Byron, Georgia, 2005-

2006.  Redtop trees were planted in 2001 and Redhaven trees in 2002. 

 Midday water potential (Mpa)z  

 Georgia South Carolina  

Rootstocks Redhaveny Redtopw Redhavenv Redtopu 

Lovell -0.55   a -0.46   a -0.78   a -0.42   a 

Cadaman -0.58   a - -0.78   a -0.48   b 

Controller 5 -0.63   a -0.68   b -0.93   b -0.54   c 

Pumiselect -1.04   c -0.85   c -1.17   c - 

Krymsk 1 -0.80   b -0.85   c -0.98   b -0.54   c 
zLSmeans within a column with different letters are significantly different (P <0.05). 
yMeasured on 5/12 and 7/19/2005.  
wMeasured on 5/12/2005.  
vMeasured on 5/18, and 7/27/2005, and 7/12 and 7/28/2006.  
uMeasured on 5/18/2005.  
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Table 5.7. Mean midday stem water potential comparison between one-year-old 

Redhaven (RH) peach trees (scion) grafted on different rootstocks and self-grafted 

rootstock trees (root) in 2006, and rootstock (root) and scion midday stem water potential 

of young Redhaven peach trees measured on the same tree in 2007 at the Musser Fruit 

Research Center, Seneca, South Carolina. 

Midday stem water potential of (Mpa)z  

 Different tree (2006)y Same tree (2007)w 

Combinations  Scion Root Differ. Scion Root Differ. 

RH/Lovell -0.96  a -0.99  b -0.03  b -0.77  a -0.65  a 0.11  b 

RH/Pumiselect -1.21  b -0.71  a  0.50  a -1.00  b -0.66  a 0.34  a 

RH/Krymsk 1 -1.17  b -1.07  b  0.10  b -0.98  b -0.81  b 0.16  b 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
yMeasured on May 31, June 1 and July 11, 2006. 
wMeasured on July 20, August 17 and September 4, 2007. 
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Table 5.8. Average midday stem water potential, leaf transpiration rate and stomata 

resistance of one-year-old Redhaven peach trees grafted on 4 different rootstocks at the 

Musser Fruit Research Center, Seneca, South Carolina on June 29 and July 12, 2006. 

 Redhavenz 

Rootstock Water potential 
(Mpa) 

Stomatal resistance 
(s cm-1) 

Transpiration  
(µg cm-2 s-1) 

 1-year-old 1-year-old 1-year-old 

Lovell -0.96   a   0.47   bc 37.4   b 

Cadaman -0.92   a 0.36   c 44.8   a 

Pumiselect -1.18   b   0.59   ab   33.6   bc 

Krymsk 1 -1.31   c 0.69   a 29.6   c 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
 
 
 
Table 5.9. Tree dry weight (DW), leaf area (m2 ), and shoot: root ratio (S:R) of 15-gal 

potted Redhaven trees grafted on Lovell and Krymsk 1 rootstocks and own-rooted Lovell 

and Krymsk® 1 trees after 3.5 months of growth in a greenhouse at Clemson, SC 

harvested June 21, 2007. 

 Dry weightsz  (DW) (g)  

Combinations  Shoots Leaves  Shoots + 
leaves 

Root Total 
DW (g) 

S:R 
ratio 

Redhaven/ 
Lovell 

448   a 227.4  a 675  a 258  a 934  a 2.75  b 

Lovell 397  ab 236.7  a 634  a 227  a 861  ab 2.93  b 

Redhaven/ 
Krymsk 1 305   b 164.0  b 469  b 206  ab 675  b 2.36  b 

Krymsk 1 472   a   99.8  c 572  ab 135   b 706  b 4.23  a 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
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Table 5.10. Hydraulic conductance (K in kg Mpa-1 s-1 x 10-5) and leaf-area-specific 

conductance (Kl in kg Mpa-1 m-2 s-1 x 10-5)  of young Redhaven trees grafted on Lovell 

and Krymsk 1 rootstocks, and self-grafted Lovell and Krymsk 1 rootstock trees  after 3.5 

months of growth in the greenhouse, harvested on June 21, 2007. 

Hydraulic conductance 

Combination 
K (tree) 

(kg Mpa-1 s -1 10-5)
K (Stem + root) 

(kg Mpa-1  s -1 10-5)
Kl (tree) 

 (kg Mpa-1 m-2 s-1 10-5) 
Kl (stem + root) 

(kg Mpa-1 m-2 s -1 10-5) 
Redhaven/ 
Lovell 6.87   a 9.96   a 19.25   b 3,789   b 

Lovell 
 6.92   a 9.17   a 19.13   b 3,530   b 

Redhaven/ 
Krymsk 1 5.25   a 8.10   a 14.43   b 4,392   b 

Krymsk 1 
 

3.49   a 7.72   a  7.34   a 6,327   a 

Different letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 

 

Table 5.11. Effect of rootstocks on scion trunk cross-sectional area (cm2 ), leaf area (cm2), 

leaf, root, shoot and total tree dry weight (g), and shoot: root ratio dry weight (S:R) of 

young Redhaven peach trees grown in nursery at the Musser Fruit Research Center, 

Seneca, South Carolina. 

Redhavenz  

Rootstocks TCSA 
(cm2) 

Leaf area 
(cm2) 

Leaves 
(g) 

Stems  
(g) 

Roots 
(g) 

Tree 
(g) 

S:R 

Lovell 6.9  a 32,586  a 202.6  a 352.7  a 208.4  a 763.7  a 2.7  a 

Pumiselect 4.4  b 19,822  b 120.0  b 190.1  b 118.8  b 428.8  b 2.65  a 

Krymsk 1 2.0  c   6,759  c   47.9  c   56.5  c   71.8  c 176.2  c 1.44  b 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
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Table 5.12.  Effect of rootstocks on root dry weight (DW) (g) and total fine root length 

(cm) of young Redhaven peach trees grown at a nursery, and root length (cm) and dry 

weight (mg) per unit of soil volume (cm-3) of one-year-old Redhaven trees grown in the 

field at the Musser Fruit Research Center, Seneca, South Carolina, 2007. 

Redhaven 

Less than one-year-old 
(nursery trees) 

One-year-old trees 
(field trees) 

Rootstocks Shank 
DW (g) 

Coarse 
roots 

DW (g) 

Small 
roots 

DW (g) 

Total 
DW (g) 

Fine root 
length 
(cm) 

Fine root 
length/ soil 

vol. 

Fine root 
DW/soil 

vol. 
Lovell 112. 2  a 59.0  a 19.0  b 190.2  a 17,221  a 3.32   a 0.894   a 

Pumiselect    27.2  b   39.6 ab 40.5  a 107.3  b 32,705  a 3.51   a 0.868   a 

Krymsk 1    22.7  b 22.7  b   22.4 ab   66.4  c 21,846  a 2.86   a 0.819   a 

Different letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 
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Fig. 5.1. Winter trunk cross-sectional area (TCSA) of Redhaven open vase trees grafted 

on different rootstocks, Musser Fruit Research Center, Seneca, SC, 2005-2007. Standard 

errors are given for each point. Different letters indicate differences at P<0.05 (Duncan’s 

multiple range test). 
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Fig. 5.2. The seasonal pattern of trunk cross-sectional area (TCSA) growth (A), number 

of growing shoot apices per tree (B), and tree height (C) of one-year-old ‘Redhaven’ trees 

growing on different rootstocks in 2006. Standard errors are given for each point. 

Asterisks indicate significant differences at P < 0.05 (Duncan’s multiple range test). 
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Fig. 5.3. The seasonal pattern of trunk cross-sectional area (TCSA) (A), number of active 

growing shoot apices per tree (B), and tree height (C) of one-year-old rootstock trees 

growing in 2006. Rootstock trees were self-grafted while others were not grafted. 

Standard errors are given for each point. Asterisks indicate significant differences at P < 

0.05 (Duncan’s multiple range test). 
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Fig. 5.4. The diurnal extension growth rate of shoots of 3-year-old Redhaven, open vase 

trees growing on five different rootstocks at the Musser Fruit Research Center, Seneca, 

SC, for July 27-28, 2005. (A) Average air temperature; (B) hourly shoot extension rate ; 

(C) stem water potential. Error bars represent ± 1 standard error of the mean.   Asterisks 

indicate significant differences at P < 0.05 (Duncan’s multiple range test) 

 



 

166 
 

T i m e  o f  t h e  d a y

8 1 2 1 6 2 0 2 4 2 8 3 2

S
te

m
 w

at
er

 p
ot

en
tia

l (
M

pa
)

- 1 . 8

- 1 . 6

- 1 . 4

- 1 . 2

- 1 . 0

- 0 . 8

- 0 . 6

- 0 . 4

- 0 . 2

0 . 0

C a d a m a n
L o v e l l
P u m i s e l e c t
K r y m s k  1

J u n e ,  2 2 - 2 3 ,  2 0 0 6

E
xt

en
si

on
 g

ro
w

th
 ra

te
 (m

m
/h

s)

- 1 . 0

0 . 0

1 . 0

2 . 0

3 . 0

4 . 0

5 . 0

C a d a m a n
L o v e l l
P u m i s e l e c t
K r y m s k  1

T
em

pe
ra

tu
re

 (º
C

)

2 0

2 2

2 4

2 6

2 8

3 0

3 2

3 4

3 6

3 8

4 0

A

B

C

 

Fig. 5.5. The diurnal extension growth rate of shoots of one-year-old Redhaven peach 

trees growing on four different rootstocks, at the Musser Fruit Research Center, Seneca, 

SC for June 22-23, 2005. (A) Average air temperature; (B) hourly shoot extension rate; 

(C) stem water potential. Error bars represent ± 1 standard error of the mean. 
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Fig. 5.6. Seasonal pattern of midday stem water potential of one-year-old Redhaven (A) 

and Redtop (B) peach trees grafted on four different rootstocks at the Musser Fruit 

Research Center. Standard errors are given for each point. Asterisks indicate significant 

differences at P < 0.05 (Duncan’s multiple range test). 
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Fig. 5.7. Changes in stomatal resistance and transpiration rate of one-year-old Redhaven 

peach trees growing on four different rootstocks at the Musser Farm Research Center on 

September 29, 2006. (A) Leaf temperature, relative humidity and light; (B) Transpiration 

rate; and (C) Stomatal resistance.  Each point represents the mean ± the standard error. 



 

169 
 

Li
gh

t (
u 

m
ol

 s
-1

 m
-2
)

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

L e a f t  t e m p e r a t u r e  
L i g h t  
R e l a t i v e  h u m i d i t y

Le
af

 T
. (

°C
)

3 0
3 5

2 5

_

_
_

_ 6 0

4 5

R
H

 %

T i m e  o f  t h e  d a y

8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8

S
to

m
at

a 
re

si
st

an
ce

 (
s 

cm
-1

)

0

1

2

3

4

5

6

L o v e l l
P u m i s e l e c t
K r y m s k  1
C a d a m a n

O c t o b e r  6 ,  2 0 0 6

T
ra

ns
pi

ra
tio

n 
ra

te
 (

ug
 c

m
-2

 s
-1
)

2

4

6

8

1 0

1 2

1 4

1 6

1 8

_

4 0 _

_ 3 0

A

C

B

* *

*

*
* *

 

Fig. 5.8. Changes in stomatal resistance and transpiration rate of one -year-old Redhaven 

peach trees growing on four different rootstocks at the Musser Farm Research Center on 

October 6, 2006. (A) Leaf temperature, relative humidity and light; (B) Transpiration 

rate; and (C) Stomatal resistance. Each point represents the mean ± the standard error. 

Asterisks indicate significant differences (P< 0.05). 
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CHAPTER VI 

 

SCION AND ROOTSTOCK XYLEM VESSEL SURFACE 

 

Introduction 

 

Mechanisms by which fruit rootstock affects the scion still remain unclear despite 

extensive investigation.  Water relations might explain the behavior of dwarfing 

rootstocks where graft union and root system would be the main structures involved in 

these mechanisms. Zimmermann (1983) supported the theory that vessel size (cross-

sectional area), vessel number and total vessel area might affect the efficiency of water 

conductance by roots, indicating that a larger total cross-sectional area of vessels should 

facilitate transport of greater volumes of water per unit time to the scion.  Also, the graft 

union is considered to be important in apples and it is related to the hydraulic 

conductivity (Atkinson et al., 2003).  Tissues showing abnormal growth might indicate 

the effect of dwarfing rootstocks on apple cultivars by reducing the water and nutrient 

transport from the rootstock to the scion. Simons (1986) working in one-year-old apple 

trees found that the vascular tissues showed a swirling pattern and some senescent tissues 

became important at this level.  

However, roots represented the major resistance to water flow when different 

peach rootstocks were compared by Basile et al. (2007) and Solari et al. (2006ab).  In 

these works, a dwarfing rootstock had higher root water resistance when it was compared 
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with the more vigorous ones.  Rieger and Litvin (1999) compared different species and 

found a negative correlation between root hydraulic conductance and root diameter.  

When Atkinson et al. (2003) compared the root hydraulic conductivity of excised roots, 

the dwarfing rootstocks showed about 50% lower conductivity than trees onto semi-

dwarf rootstocks.  In the same work, when two ungrafted apple rootstocks, M.27 

(dwarfing) and M.M.106 (semi-vigorous) were studied, the authors found that root 

hydraulic conductivity (ratio between water flow and driving force) was highest in the 

semi-dwarf rootstock tree.  These researchers found a lower leaf and stem section 

conductivity in the dwarfing trees, suggesting that the dwarfing effect might be a 

consequence of the reduction in the number and/or size of the vessels.  

Vessels conduct large amounts of water in spring (Zimmermann, 1983).  Once the 

water deficit starts developing (low soil water availability, high vapor pressure deficit), 

the sizes of the newly formed vessels are reduced.  Most of the vessels originated in the 

previous season are able to conduct water very early in the spring, before new xylem is 

generated by the cambium; however, these old vessels start to plug with tyloses or air 

(embolism) (Zimmermann, 1983)  

Based on the Hagen-Poiseuille equation, the flow rate (dV/dt) in a capillary is 

proportional to the hydraulic conductivity (Lp) and to the pressure driving force or 

pressure gradient between two points at a determined distance (dP/dl). Where dV is the 

velocity and dt is time.  Considering that Lp= r4 p/8 ?, where r= radius of the capillary, 

and ? is the viscosity of the liquid.  Conducting vessels are quite different from perfect 

tubes because they are not infinite, have pits, pit diameter is variable, vessel surface is not 
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smooth (especially for the pits) and conductivity of pit membranes are quite variable too.  

For that reason the predicted and real measurement of hydraulic conductivity could have 

a difference in 26 to 67%.  However, to obtain an approximation the Hagen-Poiseuille is 

useful for this  proposal.   By this equation, the flow rate is increased by the fourth power 

of the radius.  So, for vessels with large diameters, the conductivity of the xylem is 

increased in an exponential way; however, tree vessels are not pipes (Lewis, 1998, 1992). 

In ring porous trees, most of the old conducting xylem becomes non- functional 

with the age (Zimmermann, 1983; Tyree, 2003).  However, the levels of conductance are 

surprisingly higher for these trees, when they are compared to small diameter vessels of 

diffuse porous trees.  By doubling the size of a capillary (vessel), the flow rate is 

increased sixteen times. 

The objective of this study was to compare the average vessel diameter and area 

developed in spring at above (scion) and below (rootstock) the graft union, to determine 

the relationship between low water status observed in dwarfing or semi-dwarfing 

rootstocks and lumen area of xylem vessels. 

 

Materials and methods  

 

Rootstock cultivars were planted in the nursery at the Musser Fruit Research 

Center, Seneca, South Carolina, in April 2006.  Three rootstocks were used and classified 

by their dwarfing effect: Lovell (standard, non-dwarfing), Pumiselect® (semi-dwarfing) 

and Krymsk® 1 (dwarfing) rootstocks.  Trees were planted at 0.5 m between plants and 
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1.5 m between rows, and then budded with ‘Redhaven’ in June 2006.  The dormant trees 

were cut back to 10 cm above the graft union in January 2007.  These trees were used for 

vessel studies in Summer 2007.  The nursery was managed according to standard 

commercial practices. Rows of trees and areas between the rows received herbicide 

treatments.  Trees were drip irrigated.  Vegetative growth measurements were described 

previously in Chapter IV in the section of fine root length and density of trees grown in 

the nursery. 

Transverse sections from above (scion) and below (rootstock) the graft unions 

were harvested in September 2007.  Samples were divided into the physical location: 

scion and rootstock for the three combinations and collected to 5 cm below and above the  

graft union.  After harvesting, the samples were sectioned into transverse sections (25 

µm) with a sliding microtone, and placed in Petri dish in a 1:1 alcohol-water solution 

until analyzing the images under the microscope.  

Imagines were captured with a microscope and vessel area was measured within 

the current year’s growth.  Vessel measurements were restricted to similar cell lineage, 

considering the last growth ring and the first lines of vessels, which represented the first 

growth in Spring 2007.  In order to estimate the highest hydraulic conductivity, only the 

first 10 largest vessels were considered from the new growth in each sample.  These 

vessels were expected to have the highest hydraulic conductance.  Vessel area was 

determined through the vessel diameter, which was calculated from the mean of two 

measurements perpendicular to each other across the widest part of the lumen for each 
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vessel.  Diameter measurements were done by hand, from the imagines taken with the 

microscope 

 

Results 

 

Radius and surface of xylem vessels were affected significantly by rootstocks in 

the scion (‘Redhaven’) and rootstock portions of the trees.  Trees grafted on Lovell 

rootstocks had greater xylem vessel radius than Pumiselect® and Krymsk® 1 in the scion 

portion of the  trunk, and these differences in xylem lumen radii were greater in the 

rootstock portions (Fig. 6.1, Table 6.1).  In the rootstock section, Lovell rootstocks had 

the greatest radii, while Krymsk® 1 rootstock the smallest.  In this last trunk section, 

Pumiselect® had intermediate xylem lumen radii (Table 6.1).  The fourth exponent of the 

radius (radius4), which is related to the hydraulic conductivity, followed the same pattern 

as the radius.  For the rootstock section of the tree, the mean radius4 of those trees grafted 

on Lovell were 1,128,375 µm4, 479,930 µm4 for Pumiselect® and 145,173 µm4 for 

Krymsk® 1.  At the scion portion no significant differences were observed (data not 

shown). 

Differences in vessel surfaces between those found at the scion and rootstock 

portion of the trunk were not significantly different in ‘Redhaven’ trees grafted on the 

three different rootstocks.  However, a trend was observed were Pumiselect® (1,660 

µm2) and Krymsk® 1 (1,617 µm2) had higher differences than trees on Lovell (796 µm2).  

In addition, graft union tissues from all the combinations showed normal development 
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(data not shown) and no abnormal tissue was visually observed.  Vegetative growth 

patterns of trees are shown in Tables 5.11 and 5.12 in Chapter V. 

 

Discussion 

 

Average lumen areas of the largest vessels were greater than those found in 3-

year-old Populus sieboldii by Sano et al. (2005) and less than one-year-old cherry 

rootstock trees reported by Olmstead et al. (2006ab); however these authors based their 

works on average xylem vessels instead of the largest ones, which were used in our 

research. Gonçalves et al. (2007), who worked with mature cherry trees grafted to five 

different rootstocks, found a higher vessel frequency (number of vessels per mm2) in 

roots of dwarfing rootstocks compared to those roots from trees grafted on vigorous 

rootstocks. However, in the same research vessel diameter was significantly larger in 

roots from vigorous rootstocks than from dwarfing rootstocks. Our study showed that the 

more vigorous rootstock, Lovell, had a vessel radius about 20% larger than Pumiselect® 

and almost 40% larger than Krymsk® 1. When the vessel surface is considered, 

differences among rootstocks become larger, where vessel surface of Lovell was 3-fold 

of those vessel of Krymsk® 1. Differences in vessel diameter were correlated with the 

vigor imparted by cherry rootstocks (Gonçalves et al. (2007), and these differences were 

also correlated with the hydraulic conductivity.  

In addition, our work found significant differences between the largest vessel 

diameters in the scion portion of trees when ‘Redhaven’ was grafted onto Lovell 
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rootstocks. These results agree with those reported in apple (Beakbane and Thompson, 

1939; Soumelidou et al., 1994) and cherry (Olmstead et al. 2007ab).  

In conclusion, the vessel diameter differences observed in the scion and rootstock 

portion of the peach trees from the new spring growth used in our experiment would 

indicate that differences in growth imparted by the rootstocks were associated with the 

hydraulic conductivity. The smaller hydraulic conductivity of more size-controlling 

rootstocks would be primarily affected by smaller vessel diameter in the rootstock portion 

and secondary by the smaller vessel area in the scion portion of those  trees. Because only 

the largest vessels were used in the present work, further study involving all of the 

vessels would be needed to confirm the results observed in our work. 
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Table 6.1. Radius, radius4 and surface (µm2 ) of the ten largest xylem vessels from the 

initial spring growth of ‘Redhaven’ trees grafted on three different rootstocks.  

Average vessel surface 

 Scion portion z  Rootstock portion 

Rootstock Radius  (µm) Surface (µm2) Radius (µm) Surface (µm2) 

Lovell 36.5   a 4,224   a 31.8   a 3,226   a 

Pumiselect 30.7   b 3,041   b 25.7   b 2,106   b 

Krymsk 1 29.7   b 2,798   b 19.3   c 1,180   c 
zDifferent letters within a column indicate significant differences at P <0.05 (Duncan´s 
multiple range test). 

 

 

 

Fig.  6.1. Image captured using a microscope of the vessels in the rootstock section of 

Redhaven peach trees grafted on Krymsk® 1 (A), Lovell (B) and Pumiselect (C) 

rootstocks; and those vessels in the scion portion (Redhaven) of trees grafted on 

Krymsk® 1 (D), Lovell (E) and Pumiselect (F) rootstocks. Sections were taken at the 

same height and zoom, nsg = new spring growth, ve = vessel elements. 
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CHAPTER VII 

 

CONCLUSIONS 

 

Unique rootstocks allow trees to tolerate different edaphic conditions such as dry, 

saline, heavy or wet soils, and the presence of disease organisms and soil-borne insects.  

Probably, the most important use of a specialized rootstock is to reduce the size of the 

scion while at the same time increases its precocity and efficiency of fruit production.  

Even though the dwarfing effect of the rootstock was suspected over 2000 years ago, the 

mechanisms involved are not well understood.  

Differences in TCSA growth were observed very early from the first month after 

initial bud break, thus the cumulative effect started to show very early mainly due to a 

reduction in leaf area and stem growth.  The experiments demonstrated a significant 

effect of rootstocks on vegetative growth.  Krymsk® 1, the most dwarfing rootstock, 

reduced the size of the tree at the end of the first year to almost 50% of the control 

(Lovell), and by the end of the second year, Krymsk® 1 controlled the vigor to just 35% 

of Lovell.  Our results showed that dwarfing effects are cumulative and superimposed 

year-to-year.  In addition, when self-grafted rootstock trees were studied, dwarfing effects 

of rootstocks were remarkably dependent on rootstock genotype; the smaller the tree 

rootstock cultivar, the greater the dwarfing potential effect. 

Root TNC concentration was at least twice the shoot TNC concentration, where 

Lovell roots had the highest accumulation of reserves and Krymsk® 1 the lowest. 
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Rootstock bark accumulated the largest amount of TNC, followed by scion bark; where 

Lovell had the highest TNC content.  Accumulation of TNC in bark tissues indicated an 

important location of storage in fruit trees.  ‘Redhaven’ trees had the highest 

accumulation of TNC in roots of the more vigorous rootstock (Lovell). About 70% of 

TNC were accumulated in root tissues, where smaller roots accounted for most of the 

carbohydrates (>80%). The more vigorous rootstocks, not only had the higher 

accumulation of dormant carbohydrates but also the highest root and shoot dry weight per 

tree, suggesting that the initial difference in new spring growth could be the result of both 

effects.  The size of the root system, and to a lesser extent the concentration of TNC, 

could be the reason for the observed differences in the  amount of early flush of growth.  

However, how much of this reserve-dependent initial growth may be responsible for the 

season´s growth differences that were observed between dwarfing and vigorous 

rootstocks is still unclear. 

Trees with a Krymsk® 1 interstem reduced TCSA up to 19% compared to trees 

on Lovell rootstocks in the first season, while the reduction was close to 50% at the end 

of the second season.  Our results indicated that interstems, and probably budding height, 

affected peach scion growth.  In addition, the interstock effect was related to the tree 

water status.  Thus, different processes other than root and graft union effects were 

involved in scion dwarfing by peach rootstocks, thereby indicating a more complex 

mechanism exists for dwarfing in peach. 

When high compatibility between rootstock and scion tissues was present, the 

newly formed conducting elements (xylem and phloem) did not reduce the water 
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pathway.  Although hydraulic resistance was not quantified, stem water potential 

measurements taken below and above the graft union suggested that in the case of 

Pumiselect®, the graft union might considerably increase the tree hydraulic resistance.  

However, it would be possible that the major source of hydraulic resistance in Krymsk® 

1 would be the root system.  In addition, rootstock xylem diameter appears to be related 

to the hydraulic conductance where the more vigorous rootstocks had larger xylem 

diameter than the more size-controlling rootstocks. 

There were significant differences in leaf transpiration rate and stomatal 

resistance among rootstocks.  These differences were found particularly at midday and in 

the early afternoon hours, where trees grafted on Krymsk® 1 and Pumiselect® had the 

lowest transpiration rate and the highest stomatal resistance.  Moreover, our results 

showed greater shoot growth, stomatal conductance and transpiration rate at higher stem 

water potentials, which were associated with the more vigorous rootstocks. 

After studying different cultivars, locations, tree ages, and rootstocks, the present 

work found a relationship among scion vegetative growth as affected by rootstock, winter 

carbohydrate content, tree water status and rootstocks.  Greater accumulations of 

carbohydrates in invigorating rootstocks ensured a greater initial vegetative growth in 

spring which was a characteristic of trees on vigorous rootstocks. 
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