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Abstract

Plants under water deficit reduce leaf growth, thereby
reducing transpiration rate at the expense of reduced
photosynthesis. The objective of this work was to
analyse the response of leaf growth to water deficit in
several sunflower genotypes in order to identify and
quantitatively describe sources of genetic variability
for this trait that could be used to develop crop
varieties adapted to specific scenarios. The genetic
variability of the response of leaf growth to water
deficit was assessed among 18 sunflower (Helianthus
annuus L.) inbred lines representing a broad range of
genetic diversity. Plants were subjected to long-term,
constant-level, water-deficit treatments, and the re-
sponse to water deficit quantified by means of growth
models at cell-, leaf-, and plant-scale. Significant
variation among lines was found for the response of
leaf expansion rate and of leaf growth duration, with an
equal contribution of these responses to the variability
in the reduction of leaf area. Increased leaf growth
duration under water deficit is usually suggested to be
caused by changes in the activity of cell-wall enzymes,
but the present results suggest that the duration of
epidermal cell division plays a key role in this re-
sponse. Intrinsic genotypic responses of rate and
duration at a cellular scale were linked to genotypic
differences in whole-plant leaf area profile to water
deficit. The results suggest that rate and duration
responses are the result of different physiological
mechanisms, and therefore capable of being combined
to increase the variability in leaf area response to
water deficit.

Key words: Cell division, leaf expansion, leaf growth duration,
leaf growth rate, sunflower (Helianthus annuus L.), water
deficit.

Introduction

Plants generally respond to water deficits by reducing
their transpiration rate. Depending on the species and
genotype, this can be achieved by stomatal closure
(Tardieu and Davies, 1993), wilting, or leaf rolling
(O’Toole and Cruz, 1980). However, one of the earliest
water-saving mechanisms, present in a great majority of
plants, is reduced leaf growth. Changes in leaf area can be
a consequence of reduced leaf number (although it is not
affected to a great extent; Aguirrezdbal et al., 2006) and/or
reduced area of individual leaves. Reduced leaf expansion
rates under water deficit have been found to be related to
different mechanisms, such as decreased cell division rate
(Schuppler et al., 1998; Granier et al., 2000), to cell wall
hardening (Matthews et al., 1984; Neumann, 1995), or to
decreased turgor (Hsiao et al., 1998; Bouchabké et al.,
2006).

The extent of leaf growth reduction caused by water deficit
is very important in determining the adaptation of a certain
crop variety to a climate scenario. In a scenario where long-
term droughts are expected, a genotype which reduces its leaf
growth is more likely to reach maturity with a certain amount
of available water. On the other hand, in a scenario where
short-term water deficits are expected, a genotype which
maintains leaf growth is likely to have higher yields
(Reymond et al., 2003). It has been shown that a genotype
can maintain its leaf area by maintaining growth rate
(Reymond et al., 2003) or by increasing the duration of leaf
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growth (Aguirrezabal et al., 2006). Moreover, an increased
duration of growth could have the benefit of increasing the
opportunity for recovery after rainfall (Alves and Setter,
2004). The natural genetic variability for these traits could
be used to develop crop varieties adapted to specific
scenarios. Despite this, breeding for these traits is not
a common approach for obtaining drought resistance in crop
species, probably because of a lack of well-characterized
sources of genetic variability.

The genetic variability of leaf growth response to water
deficit has not been studied in many crop species. In
maize, the response of leaf extension rate to water deficit
has been genetically analysed (Reymond et al., 2003).
This analysis, however, disregards the effect of water
deficit on the duration of leaf growth, which has been
shown to be significant in the model species Arabidopsis
thaliana (Aguirrezéabal et al., 2006). In sunflower, reports
about the response of leaf growth duration to water deficit
have been contradictory (Takami ef al., 1981; Granier and
Tardieu, 1999). The analysis of responses to water deficit
should also take into account how processes at cell- and
leaf-level affect the leaf area of the whole plant, since
radiation interception, and hence photosynthesis and
transpiration, are largely determined at this scale. In
sunflower, a whole-plant model of leaf growth has been
developed (Dosio et al., 2003), which uses a set of
parameters to describe the co-ordinated growth of differ-
ent leaves of the plant, and could be used as a framework
for quantitatively analysing the response of leaf area to
water deficit.

The objective of this work was to analyse the response
of leaf growth to water deficit in several sunflower
genotypes in order to identify and quantitatively describe
sources of genetic variability for this trait. Plants were
subjected to stable, long-term, mild water deficits, and leaf
growth kinetics was analysed. Genotypes with contrasting
response in terms of leaf growth rate and leaf growth
duration were identified. The response of these genotypes
was further characterized at cell-level (cell division and
cell growth kinetics), and at plant-level (using the whole-
plant model of Dosio et al., 2003). The response of each
genotype to water deficit was quantified in terms of the
changes in the parameters of this model. The relationships
between responses at cell, organ, and plant level were
analysed.

Materials and methods

Eighteen non-branching sunflower inbred lines were selected, based
on pedigree data (Korell et al., 1992), so as to comprise most of the
genetic variability of cultivated sunflower. This group included two
lines showing high and low osmotic adjustment (lines ‘OA+’ and
‘OA-’; Chimenti et al., 2002). Four experiments were carried out to
investigate the response of leaf growth to a water stress in these
genotypes. The first experiment was conducted with the complete

set of genotypes. Based on the results from this experiment, four
genotypes were selected for the second experiment. Experiments 3
and 4 were conducted with the two most contrasting genotypes in
terms of the response of leaf growth rate and duration.

Culture methods and growth conditions

Seeds were sown in 35-cm-deep, 10-cm-wide containers made of PVC
pipe, filled with soil (Typic Argiudoll, horizon A). Soil water content
was measured initially by oven-drying soil samples at 105 °C for 48 h,
and then monitored daily by weighing the container. Plants were
grown without water limitations (—0.05 MPa) until ~100 degree-days
(base temperature = 4.8 °C; Granier and Tardieu, 1998) after leaf 8
initiation in each genotype. At this moment, soil water content was
decreased until —0.65 MPa was reached, using the method described
in Pereyra-Irujo et al. (2007). The method consists of sowing maize
(Zea mays L.) plants earlier, in the same pots as sunflower plants.
This method allows the desired soil water content to be reached
quickly, the resulting soil water content in the pot is uniform, the rate
of soil water depletion is independent of the sunflower genotype
being evaluated (Pereyra-Irujo et al., 2007). Maize plants did not
affect the growth of the sunflower plant (Pereyra-Irujo et al., 2007).
The specified water content in each treatment was maintained by
daily irrigation as in Granier et al. (2005).

Experiments were carried out under controlled (growth chamber;
Refrimax SRL, Mar del Plata, Argentina) or semi-controlled (heated
greenhouse) environmental conditions. Air temperature, relative
humidity, incident radiation, and leaf temperature were measured
every 15 min, and averaged and recorded every 1 h, with
dataloggers (Cavadevices, Buenos Aires, Argentina). Thermal time
was calculated as the daily integral of the difference between
temperature and base temperature (4.8 °C; Granier and Tardieu,
1998). The base temperature for leaf initiation and leaf expansion
did not differ significantly among the evaluated inbred lines in
a preliminary experiment (not shown).

Leaf growth measurements

Non-destructive measurements of length and width (in the green-
house experiments) or area (by means of a digital photograph, in the
growth chamber experiment) of the 8th leaf were made at least three
times a week until the end of its expansion, in four (experiment 1)
or five (experiments 2, 3, and 4) plants per genotype and treatment.
A highly significant linear relationship (R” > 0.99, n=1755, P <
0.0001) was established between lengthxXwidth and leaf area, which
was applicable to any leaf regardless of leaf number, leaf age,
genotype, or treatment. In addition, all leaves of the plant were
measured every 7 d.

In experiments 3 and 4, destructive measurements of leaf area
were made in leaves larger than 0.005 mm? (average area at
initiation; Dosio et al., 2003) from three plants harvested every 2—4
d (experiment 3) or 6-12 d (experiment 4). Leaves were scanned or
photographed under a microscope and measured with image
analysis software (Matrox Inspector; Matrox Electronic Systems
Ltd, Quebec, QC, Canada).

In addition, the number of initiated leaves was determined under
a microscope in two plants harvested every 1-2 d, until the initiation
of leaf 12 (experiments 1, 2, and 4) or leaf 20 (experiment 3).

Absolute leaf expansion rate (LER) was calculated as the slope of
the relationship between leaf area (L) and thermal time (f) in two
consecutive measurements, and leaf relative expansion rate (RER)
as the slope of the relationship between the logarithm of leaf area
and thermal time:

LER = [d(L)/d1] (1)
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RER = [d(InL)/d/] 2)

Cell growth measurements

At five different moments during experiment 4, leaf 8 was divided
into two to four transects (depending on the size of the leaf). The
area of each transect was measured, and imprints (obtained after
evaporation of a varnish spread on the leaf) of the adaxial epidermis
were taken halfway between the mid-rib and the leaf margin. The
size of 25 cells/imprint was measured under a microscope coupled
to an image analyser. Mean cell area of the leaf was calculated as
the sum of the products of average cell area and transect area for
each transect, divided by the sum of all transect areas. Epidermal
cell number was calculated as the ratio between leaf area and mean
cell area. Relative cell expansion rate (RCR) was calculated as the
slope of the relationship between the logarithm of cell area (C) and
thermal time (¢) in two consecutive measurements:

RCR = [d(InC) /d1] (3)

Growth curves fit

In experiments 1 and 2, growth of leaf 8§ was described by means of
a sigmoidal curve as described in Aguirrezabal et al. (2006):

y=A/(1+exp{ - [(x —x0)/b]}) 4)

Final leaf area was calculated as the upper asymptote (A) of the
sigmoidal curve. The duration of leaf expansion was calculated as
the time elapsed between leaf initiation and the moment the leaf
reaches 95% of its final area as calculated from the fitted curve. The
mean expansion rate was calculated as the ratio between the final
leaf area and the duration of leaf expansion.

In experiments 3 and 4, growth of different leaves of the plant
was described by means of the model proposed by Dosio et al.
(2003). This model divides the growth of each leaf into three
distinct phases (Fig. 1). During phase 1 growth is initially
exponential, at a high constant relative rate. During phase 2, growth
continues to be exponential but at a lower rate (Fig. 1B). During
phase 3 most of the growth of the leaf occurs (high absolute growth
rate), in an almost linear fashion (i.e. with declining relative growth
rate, Fig. 1B), until the end of expansion. Leaf area in each phase is
defined by these equations:

to<t<t; Iny =1InAy+ Rl(x — lo) (5)
H<t<ty Iny=1InA; +R2(X—l‘1) (6)

h<t Iny =1nA; + R3/a{l —exp[ — a(x — )]} (7)

Parameters for these equations are the moments of leaf initiation
(tp) and end of phases 1 and 2 (#; and 1,), relative leaf expansion
rates (RER) during phases 1 and 2 (R and R,) and at the beginning
of phase 3 (R3), and a parameter describing the decline in RER
during phase 3 (a). The values used for leaf area at initiation (Ao),
and R; in well-watered conditions were those reported by Dosio
et al. (2003), which were confirmed to be the same in the genotypes
used in this study, in a preliminary experiment (not shown). Leaf
area at the beginning of phases 2 and 3 (A; and A,) are calculated
from equations 5 and 6. The duration of each phase was determined
as in Dosio et al. (2003). The total duration of leaf expansion was
calculated as in experiments 1 and 2.

A log-normal three-parameter curve was fitted to describe the
time-course of relative cell expansion rate (RCR) (Cookson and
Granier, 2006):
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Fig. 1. Dynamics of leaf area (A) and relative expansion rate (B) of
a leaf, according to the model of Dosio et al. (2003). Growth of a leaf is
divided into two successive phases of exponential growth at constant
relative rate (phases 1 and 2), followed by a phase of growth at
declining relative rate but high absolute rate (phase 3).

y = aexp( — 0.5(mnl(x/x0)/)}) (8)

Relative cell division rate (RDR) was estimated by subtracting
RCR from RER, as in Cookson and Granier (2006).

All curves were fitted using least-squares (Marquardt-Levenberg
algorithm; Sigma-Plot software version 8.0, SPSS Science,
Chicago, IL, USA). Analysis of variance was carried out using
SAS (SAS Institute Inc., Cary, NC, USA)

Relative contributions of rate and duration to final leaf area

In experiments 1 and 2, the relative contributions of the changes in
expansion rate and duration of growth to the changes in final leaf
area under water deficit were quantified for each genotype, in order
to select the most contrasting genotypes for further analyses. The
impact of a reduced expansion rate was quantified, independently of
changes in duration, as the reduction in leaf area observed at the
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end of leaf growth in the control treatment (‘rate effect’). This
measure equals the reduction in final leaf area in the case of no
increase in the duration of growth (Fig. 2A). The impact of an
increased duration of growth was quantified by the compensatory
expansion that takes place between the end of leaf growth in the
control treatment and the end of leaf growth in the water-deficit
treatment (‘duration effect’). In the case that duration is increased,
the sum of both indicators equals the reduction in final leaf area
(Fig. 2B).

A -Duration of growth
is not increased

Leaf area

B - Duration of growth
is increased

Leaf area

Thermal time

Fig. 2. Examples of quantification of the relative contributions of the
changes in rate and duration on final leaf area. (A) If duration is not
increased under water deficit, the effect of rate (a 50% reduction in area
at the moment the leaf reaches 95% of its final area in the control
treatment) accounts completely for the reduction in final leaf area. (B) If
duration is increased under water deficit, its effect on final leaf area is
quantified as the growth that takes place after the leaf reaches 95% of its
final area in the control treatment. The 35% reduction in final leaf area
results from the sum of the (negative) effect of reduced rate and the
(positive) effect of increased duration.

Results

Water deficit reduced leaf area to a different extent
depending on the genotype

In the group of 18 genotypes evaluated in experiment 1,
total leaf area after 28 d of the beginning of the treatments
ranged between 716 cm? and 1245 cm? in the control
plants (Fig. 3A), and between 312 cm?® and 569 cm? in the
water-deficit treatment. This represents a reduction be-
tween 49% and 62% (Fig. 3B). The response of total leaf
area is a complex combination of the responses of different
leaves of the plant, which were at different developmental
stages at the onset of water deficit. The response of leaf 8
was chosen for comparison between genotypes, since the
initiation of this leaf was taken as reference for the
imposition of treatments. The final area of leaf 8 ranged
between 50 cm? and 156 cm? in control conditions (Fig.
3C), and between 30 cm? and 86 cm? under water deficit
(reduction between 38% and 57%; Fig. 3D).

A two-factor (genotype and treatment) analysis of
variance was performed, showing significant genetic
variability for the area of leaf 8§ (P < 0.0001) as well as
a significant response to water deficit (P < 0.0001). The
interaction between both factors, which represents the
genetic variability for the response of leaf area to water
deficit, was also highly significant (P < 0.0001). The
response of leaf 8 area to water deficit was not related to
the total leaf area of each genotype (compare D and A in
Fig. 3).

Responses of leaf expansion rate and duration were
variable between genotypes

The growth of leaf 8 under well-watered conditions
followed the typical sigmoidal shape, with rates and
durations that differed between genotypes (Fig. 4). Water
deficit altered the kinetics of leaf growth by reducing
expansion rate and, in most cases, increasing the duration
of leaf growth. The reduction in expansion rate in the
water deficit ranged between 44% and 67%. The duration
of expansion was increased between 2% and 26%.

The relative contributions of the change in leaf
expansion rate and the change in the duration of growth
to the final reduction in the area of leaf 8 are plotted in
Fig. 5 for each genotype. As explained in Materials and
methods, the contribution of the reduction in expansion
rate was quantified as the reduction of leaf area observed
at the end of leaf growth in the control treatment (‘rate
effect’, Fig. 2). The effect caused by an increased duration
of growth was quantified by the compensatory expansion
that takes place between the end of leaf growth in the
control treatment and the end of leaf growth in the water-
deficit treatment (‘duration effect’, Fig. 2). The sum of
both indicators equals the reduction in final leaf area (i.e.
the reduction in final leaf area increases downward and to
the left of the graph).
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Fig. 3. Total plant leaf area for each genotype, in the well-watered treatment (A) and in the water-deficit treatment (B, expressed as a % of control),
28 d after the beginning of treatments. Final leaf area of leaf 8 for each genotype, in the well-watered treatment (C) and in the water-deficit treatment

(D, expressed as a % of control). Data are from experiment 1.

Differences between genotypes in the reduction of final
leaf area were caused either by differences in the
reduction of expansion rate (‘HA64’ versus ‘OA+’) or
differences in the compensatory growth during the in-
crease in the duration of growth (‘HAR2’ versus ‘OA+’).
The genotypes showing high and low osmotic adjustment
(‘OA—" and ‘OA+’) differed mainly in the response of
their expansion rate to water deficit. Relative responses of
the four genotypes analysed in both experiments were
conserved.

The genetic variability for both effects was quantita-
tively similar. Average (experiments 1 and 2) differences
between genotypes for the relative contribution of reduced
rate were 15.6 percentage points, while differences for the
relative contribution of increased duration were 15.3
percentage points.

Water deficit affected the rate and duration of
different phases of leaf growth

Two genotypes, ‘HAR2’ and ‘HA64’, were selected for
further analysis based on their contrasting response to
water deficit, both in terms of rate and duration of growth
(Fig. 5). In experiments 3 and 4, leaf growth dynamics
showed the same three-phase pattern described by Dosio
et al. (2003), consisting of two phases of exponential
growth followed by a phase of quasi-linear growth. Water
deficit altered the duration of the phases and the relative
expansion rates in each of them, as can be observed for
leaf 8 in Fig. 6.

In leaf 8, growth rates were reduced to a greater extent
in genotype ‘HAR2’ than in ‘HA64’, both during phase 2
(30% versus 12%, average of experiments 3 and 4) and
phase 3 (57% versus 38%). The increase in the duration of
growth was greater for ‘HAR2’ than ‘HA64’, both for
phase 2 (40% versus 6%) and for phase 3 (48% versus
8%). The effect of water deficit on phase 1 could not be
analysed in leaf 8 since the treatments began approxi-
mately at the end of this phase, but in upper leaves it was
found that its response was similar in both exponential
phases (phases 1 and 2; not shown).

The whole-plant framework of analysis described by
Dosio et al. (2003) was applied to leaf growth data from
experiment 3. Figure 7A and E shows the beginning of the
water-deficit treatment relative to the leaf development in
each genotype. These figures also show that durations of
exponential growth and total growth were increased
in genotype ‘HAR2’ and were similar to the controls in
‘HA64’. Leaves of genotype ‘HAR2’ that were already
at phase 3 at the onset of water deficit (up to leaf 4)
showed less response than leaves that were at phase 1 or 2
(e.g. leaves 8 and 10). In both genotypes, the rates
of expansion during the exponential phases of growth
(Fig. 7B, F) were increasingly affected from leaf 6
onwards, while the expansion rates during phase 3 were
affected in all the measured leaves. Water deficit reduced
the final area of leaves 8 onwards in genotype ‘HAR2’
(Fig. 7D), while in ‘HA64° leaves 4 onwards were
affected (Fig. 7H).
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are shown as black circles. Dotted lines indicate the midpoint of the
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Water deficit affected cell division and expansion

In experiment 4, mean adaxial epidermal cell area and cell
number were measured at different moments during
growth of leaf 8. Water deficit reduced the relative rates
of leaf expansion (Fig. 8A, D), cell expansion (Fig. 8B,
E), and cell division (Fig. 8C, F), in both genotypes. In
genotype ‘HAR?2’ the period of cell division was extended
by 80 degree-days (Fig. 8C), and the end of cell (and leaf)
expansion was delayed by an additional 70 degree-days
(Fig. 8B). In this genotype, the increase in the duration of
cell division under water deficit is similar to the increase
in the duration of exponential leaf growth (Fig. 8A). In
genotype ‘HA64’, the duration of the phases of exponen-
tial and linear growth were only slightly modified (Fig.

8B). The duration of cell division and expansion also
remained almost unchanged (Fig. 8E, F).

Discussion

A water-deficit treatment was imposed on 18 sunflower
genotypes by maintaining a reduced soil water content
for a long period. A method specially designed for
sunflower (Pereyra-Irujo et al., 2007) was used to apply
this treatment independently of the leaf area of the
sunflower plant, thus allowing a fair comparison between
genotypes. This kind of water-deficit (constant intensity)
allowed intrinsic genotypic differences in leaf growth
responses to be identified independently of differences in
total plant leaf area (Fig. 3) or water depletion rate (not
shown).

It has been generally assumed that the effect of water
deficit on leaf growth consists solely of a reduction in
expansion rate, without any change in the duration of
growth, as evidenced by the assumptions included in crop
models, both in specific (e.g. for sunflower; Villalobos
et al., 1996) and general (Connor and Fereres, 1999) crop
models. In the case of sunflower, this assumption was later
supported by experimental evidence that showed that, in
one sunflower hybrid, water deficit did not increase leaf
growth duration (Granier and Tardieu, 1999). On the other
hand, it was recently reported that several A. thaliana geno-
types showed increased leaf growth duration under water
deficit, with significant genetic variability (Aguirrezdbal
et al., 2006). The present results showed that there are
sunflower genotypes that respond to water deficit by
considerably increasing leaf growth duration. This vari-
ability in the responses of leaf growth to water deficit
could be incorporated into existing sunflower simulation
models, in order to improve the estimations of the
performance of different genotypes under water stress.

Changes in rate and duration contributed in a similar
amount to the variability in the response of
final leaf area

The analysis of the growth dynamics of individual leaves
permitted the dissection of the response of each genotype
into its components, leaf growth rate and duration. A novel
approach that quantifies the relative contributions of the
changes in rate and duration on final leaf area was used to
select genotypes of contrasting response to water deficit.
The effect of an increased duration on final leaf area was
smaller than the effect of a reduced growth rate, since
expansion rate is usually low during the final stage of leaf
expansion. Nevertheless, the average (experiments 1 and
2) range of variation between genotypes in the effect of
increased duration (15.3%) was similar to that of reduced
rate (15.6%), rendering both components of the response
equally interesting from a breeding point of view.
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Fig. 6. Time-course of leaf area (A, D), leaf expansion rates (B, E), and relative leaf expansion rates (C, F) in well-watered (black circles) and water-
deficit treatments (white circles), for genotypes ‘HAR?2’ (left) and ‘HA64’ (right). Fitted lines in (A) and (D) are leaf growth curves obtained by the
model of Dosio et al. (2003) using equations 5-7. Fitted lines of leaf expansion rate (B, E), and relative leaf expansion rates (C, F) were calculated
using equation 1 and equation 2, respectively. Continuous lines correspond to the well-watered treatment, and dotted lines to the water-deficit

treatment. Vertical bars represent =SE. Data are from experiment 3.

Correlation between the response of rate and duration
was weak, as was previously found in A. thaliana
(Aguirezabal et al., 2006). However, of the four possible
combinations of high or low rate response and high or low
duration response, only three of them were identified (i.e.
responses of ‘HAR2’, ‘HA64’, and ‘OA+’). No genotype
was found combining a relatively low reduction in rate
and a relatively large increase in duration. In A. thaliana,
genotype ‘An-1" showed this kind of response, reaching
a similar leaf area under well-watered or water-deficit
conditions (Aguirrezabal et al., 2006). Under the hypoth-
esis that rate and duration are governed by different
physiological mechanisms, a cross between two genotypes
showing a differential response in terms of rate and
duration (e.g. ‘HAR2’ and ‘HA64’) could theoretically
produce an offspring with a response to water deficit
ranging from that of ‘AO+’ (high rate response, low

duration response) to a final leaf area response smaller
than that of the parents (low rate response, high duration
response). This hypothesis is supported by the low
correlation between both components of the response.
This is currently being tested by means of a genetic
analysis of a segregating population derived from the
cross between ‘HAR2’ and ‘HA64’.

The rate of tissue expansion is proportional to cell wall
extensibility and turgor pressure above a yield threshold
(Lockhart, 1965). The genotypes differing in osmotic
adjustment capacity differed mainly in the response of
their leaf expansion rate (Fig. 4), with the genotype with
high osmotic adjustment showing the greatest reduction in
expansion rate. This is in agreement with previous
findings which showed that sunflower genotypes having
a high degree of osmotic adjustment showed relatively
lower leaf expansion and tissue elasticity (increased bulk
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Fig. 7. Whole-plant representation of leaf growth responses of genotypes ‘HAR2’ (top) and ‘HA64’ (bottom) to water deficit, using the framework
proposed by Dosio et al. (2003). (A, E) Number of leaves which are initiated (circles), which have ended the exponential growth (triangles), and
which have ceased to expand (squares). (B, F) Mean RER of each leaf during phases 1 and 2 (exponential growth). (C, G) Mean LER of each leaf
during phase 3 (quasi-linear growth). (D, H) Final leaf area of each leaf. In all cases, black symbols correspond to the well-watered treatment, and

white symbols to the water-deficit treatment. The vertical dotted line in (A) and (E) indicates the beginning of the water-deficit treatment. The

horizontal dotted lines indicate data from leaf 8. Data are from experiment 3.

modulus of elasticity) under water stress (Chimenti and
Hall, 1994). These results suggest that, in this case,
differences in growth rate could be mainly determined by
cell wall characteristics, with osmotic adjustment being
a consequence of reduced growth decreasing the rate of
solute dilution, as has been previously suggested (Van
Volkenburgh and Boyer, 1985; Munns, 1988).

Using a whole-plant framework to describe the
response of the leaf area profile to water deficit

Granier and Tardieu (1999) showed that the effect of
water deficit depended largely on the timing of the
treatment, relative to the development of the leaf. A
similar behaviour was observed in the present experi-
ments, where young leaves generally showed larger
reductions in their area under water deficit. In spite of
this, the whole-plant framework used allowed the genetic
differences in the response of leaf growth to water deficit
to be highlighted, and changes in the leaf area profile to
be understood.

Irrespective of leaf position, genotype ‘HAR2’ showed
a higher sensitivity to water deficit, both in terms of
expansion rate and growth duration. In ‘HAR2’, the
increase in duration of leaves stressed at phase 3 (e.g. leaf
4) was able to compensate the reduction in relative growth
rate, allowing them to reach the same area as in the control
treatment. In ‘HA64’, these leaves showed a similar re-
duction in relative growth rate but no increased duration,
leading to a reduced final area. In younger leaves (e.g. leaf
10), the more marked reduction in relative growth rate
shown by ‘HAR?2’ prevails over the compensatory effect of
increased duration, and the reductions in final leaf area
become larger than in ‘HA64°. These differences in the
response to water deficit result in the plant’s leaf area profile
being altered in a different fashion on each genotype (Fig.
7D, H). On the other hand, the relatively high expansion
rate of ‘HA64’ under water deficit results in a leaf area
profile similar to that of control plants (Fig. 7H).

To allow a fair comparison of genotypes in the experi-
ments where only leaf 8§ was analysed (experiments 1 and
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Fig. 8. Time-course of relative leaf expansion rates (A, D), relative cell expansion rates (B, E), and relative cell division rates (C, F) in well-watered
(black circles) and water-deficit treatments (white circles), for genotypes ‘HAR2’ (left) and ‘HA64’ (right). Fitted curves of relative leaf expansion
rates (A, D) were calculated using equation 2, from the leaf growth curve fitted using equations 5-7. Fitted curves of relative cell expansion rate (B,
E) were fitted using equation 8. The curves of relative cell division rate (C, F) were calculated by subtracting the fitted values of relative cell
expansion rate from those of relative leaf expansion rate. Continuous lines correspond to the well-watered treatment, and dotted lines to the water-

deficit treatment. Data are from experiment 4.

2), care was taken to start the water-deficit treatment at
a fixed developmental stage of this leaf, and not at a fixed
date after emergence. The whole-plant analysis of the two
contrasting genotypes confirmed that their differential
response was not due to differences in timing of the
treatment relative to leaf age, since each genotype’s
specific responses could be observed in different leaves
of the plant.

The increase in the duration of exponential growth
was correlated to an extended period of
epidermal cell division

In the present work, it was found that, in one of the two
genotypes analysed in detail (‘(HAR?2’), the increase in the
duration of the phase of exponential growth coincided
with an increase in the duration of epidermal cell division,

while in the other genotype (‘HA64’) neither of these
durations were appreciably affected. An increase in the
duration of cell division in response to water stress was
also observed in wheat leaves (Schuppler et al., 1998). In
sunflower, however, it had been reported that neither
water nor light stresses caused any increases in the period
of cell division in leaves (Granier et al., 2000). These
results, obtained with a different genotype (cv. ‘Albena’),
support the existence of genetic variability for this trait.
Increased leaf growth duration under water deficit is
usually suggested to be caused by changes in the activity
of cell-wall enzymes (Aguirrezdbal et al., 2006), such as
peroxidases (which increases drastically at the end of cell
expansion; MacAdam and Grabber, 2002). The present
results, however, suggest that the duration of cell division
in the epidermis plays a key role in this response. During
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the early stages of leaf development, proliferative growth
is highly energy-requiring (Fleming, 2006). Maintaining
cells under a proliferative growth state in the epidermis
could allow the leaf to maintain the high relative
expansion rates which occur during the first two phases
of leaf growth, by acting as a strong sink for carbon and
nutrients (as suggested previously by Van Volkenburgh,
1999). This would be in agreement with the fact that the
epidermis has been shown to be the leaf tissue which
drives and restricts leaf growth (Savaldi-Goldstein et al.,
2007). Subsequently, a delayed entry of cells into a non-
proliferative, vacuole-associated growth state could lead to
delayed leaf growth cessation at leaf level. A similar
increase in the duration of epidermal cell division,
accompanied by an increase in total leaf growth duration
has been reported in A. thaliana plants subjected to light
stress (Cookson and Granier, 2006). Based on these
results, the genetic variability for the response of the
duration of cell division can be considered a likely cause
of the apparently contradictory responses of leaf growth
duration to water deficit in sunflower (Takami et al., 1981;
Granier and Tardieu, 1999).

In the genotypes analysed in detail, the largest increase
in duration of cell division coincided with the largest
decrease in cell division rate. Genetic evidence in
A. thaliana, however, suggests that rate and duration of
cell division are not necessarily linked. Inactivation or
overexpression of different genes in this species were able
independently to alter cell division rate (cyclin-dependent-
kinase inhibitors KRP1 and KRP2: Wang et al., 2000; de
Veylder et al., 2001) or the duration of the period of cell
division (AINTEGUMENTA: Mizukami and Fischer,
2000; STRUWWELPETER: Autran et al., 2002). The
genotypes of contrasting response described in the present
paper could be useful for further studying the relationship
between duration and rate of epidermal cell division under
changing environmental conditions.

Conclusions

Significant variation among lines was found for the re-
sponse of leaf expansion rate and for leaf growth duration.
The experimental and statistical methods applied allowed
the identification of intrinsic genotypic differences in leaf
growth responses at cell-, leaf-, and plant-level, that were
not due to differences in timing or intensity of the treatment,
or differences in plant leaf or water depletion rate.

One of the objectives of this work was to identify the
mechanisms underlying genetic differences in the re-
sponse of leaf growth to water deficit, as has been done
previously for different environmental factors (Harrison
et al., 1998; Masle, 2000; Stiles and Van Volkenburgh,
2002). The present results suggest that genetic differences
in leaf growth rate under water deficit could be de-

termined by cell wall properties, while increased duration
of leaf growth is partly due to a prolonged phase of
epidermal cell division. This implies that rate and duration
responses could be the result of different physiological
mechanisms, and are therefore capable of being combined
to increase the variability in leaf area response to water
deficit in sunflower.
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