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1. Background
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Synthetic peptides mimicking protective B- and T-cell epitopes are good candidates for safer, more effective FMD vaccines.
Nevertheless, previous studies of immunization with linear peptides showed that they failed to induce solid protection in cattle.
Dendrimeric peptides displaying two or four copies of a peptide corresponding to the B-cell epitope VP1 [136-154] of type O
FMDV (O/UKG/11/2001) linked through thioether bonds to a single copy of the T-cell epitope 3A [21-35] (termed B,T
and B,T, resp.) afforded protection in vaccinated pigs. In this work, we show that dendrimeric peptides B,T and B,T can
elicit specific humoral responses in cattle and confer partial protection against the challenge with a heterologous type O virus
(O1/Campos/Bra/58). This protective response correlated with the induction of specific T-cells as well as with an anamnestic
antibody response upon virus challenge, as shown by the detection of virus-specific antibody-secreting cells (ASC) in lymphoid
tissues distal from the inoculation point.

inactivated vaccine. For example, the vaccine provides
short-term protection, resulting in the need for revaccination
[1], and there is a risk of the infectious virus being released

The foot-and-mouth-disease virus (FMDYV) causes a highly
contagious disease with high morbidity in cloven-hoofed ani-
mals, including cattle and swine. FMDV can be controlled by
the use of a chemically inactivated whole-virus vaccine; how-
ever, some disadvantages are associated with the use of

during vaccine production. Therefore, a number of countries
with large livestock industries have abandoned vaccination.
However, this policy leaves livestock herds prone to sudden
outbreaks of FMD, with dramatic effects on livestock
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economy and animal welfare, as seen in the United Kingdom
in 2001 [2, 3] and in turn has led to intensive research on
alternative vaccination strategies.

The FMD viral particle consists of a positive-strand RNA
genome, a single open reading frame (ORF) which encodes
four capsid proteins, VP1, VP2, VP3, and VP4, and eleven
different mature nonstructural proteins (NSP).

The B-cell binding site located in the G-H loop (around
residues 140-160) of FMDV VP1 protein has been identified
as a predominant epitope that elicits neutralizing antibodies
against this virus in natural hosts and animal models [4, 5].
A T-cell epitope, located at residues 21 to 35 of FMDV NSP
3A, efficiently stimulates lymphocytes from pigs infected
with a type C virus [6].

The current inactivated FMD vaccines only promote
serological protection against a given FMDV serotype, do
not confer interserotype protection, and may not, in some
cases, confer intraserotype protection given the antigenic
variation existing within some serotypes [7]. Additionally,
these vaccines present other shortcomings, such as possible
incomplete inactivation of virus, need for biosafety level 4
(BSL-4 OIE) laboratories, and requirement for a cold chain
to preserve virus stability. On the other hand, the vaccine
virus must be purified enough as not to induce detectable
antibodies against viral NSP to allow a distinction between
vaccinated and infected animals [8].

Peptide vaccines are an attractive alternative strategy
that relies on the usage of short peptide fragments to engi-
neer the induction of highly targeted immune responses,
consequently avoiding allergenic and/or reactogenic
sequences [9]. Various synthetic peptide or recombinant
protein vaccines based on the FMDV VP1 G-H loop have
been shown effective in pigs [10-12], but they have shown
limited efficacy in cattle [13-15], pointing to the limitations
of these vaccines in eliciting broad protective responses
in different hosts. Synthetic peptides are particularly
attractive FMDV vaccine candidates as they are highly
pure, defined, stable, and safe, and due to their modular
approach, they can incorporate different B- and T-cell
peptides [9, 16].

Multiple antigenic peptides (MAPs) are dendrimeric
(branched) macromolecules built from a lysine core from
which a defined number of epitopes radiate [17, 18]. An effec-
tive peptide vaccine needs a B-cell epitope to elicit a high neu-
tralizing antibody response and a T-cell epitope to provide
adequate cooperation between T-cells and B-lymphocytes.

The dendrimeric peptide design improves the effective-
ness of viral antigenic site presentation to the immune
system. Recent studies indicate that vaccination with dendri-
meric peptides based on the amino acid sequence of 3A (T-
cell epitope) and VP1 GH loop (B-cell epitope) from the type
O FMDV O/UKG/11/2001, and branched by means of
thioether or maleimide conjugation chemistries, elicits an
immune response that achieved protection in up to 100% of
the vaccinated pigs [16]. Likewise, we recently reported that
similar dendrimeric peptides, based on the amino acid
sequences from the type O FMDV O1l/Campos/Bra/58,
including a VP4 sequence as T-cell epitope, can protect cattle
against homologous challenge [19].
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The aim of this study was to investigate whether dendri-
meric peptides elicited protection against heterologous
viruses, a relevant issue for efficient vaccine design. To this
end, the immune response elicited in cattle by dendrimers
containing amino acid sequences of 3A and VP1 GH loop
from type O FMDV O/UKG/11/2001, B,T and B,T, and
the protection they afforded against the heterologous type
O virus O1/Campos/Bra/58, was analyzed.

Our results indicate that B,T and B,T elicited specific
humoral responses in cattle and conferred partial protection
against the challenge with a heterologous virus O1/Campos/
Bra/58. This protective response correlated with the induc-
tion of FMDV-specific T-cells as well as with an anamnestic
antibody response upon virus challenge, as shown by the
detection of virus-specific ASC in lymphoid tissues distal
from the inoculation point.

2. Material and Methods

2.1. Peptides. The dendrimeric peptides reproduced the B-cell
(PVINVRGDLQVLAQKAART, residues 136-154 of VP1)
and T-cell (AAIEFFEGMVHDSIK, residues 21-35 of 3A)
epitopes of FMDV O-UKG 11/01 (Figure 1). As detailed in
[19], B, T and B, T constructions were assembled by conjuga-
tion of a T-epitope N terminally elongated with Lys residues
providing 2 or 4 levels of branching and functionalized with
chloroacetyl units and an N-acetylated B epitope with a C-
terminal Cys whose thiol group reacts with the chloroacetyl
group to give a thioether link. Additional details on the syn-
thesis are available in previously published works [11, 20].
The final products were purified to near homogeneity by
HPLC and characterized by mass spectrometry.

2.2. Virus. FMDV O1/Campos/Bra/58 was kindly provided
by Biogenesis Bagd SA as binary ethylene-imine (BEI) inacti-
vated (iIFMDV). Purified virus was obtained by a sucrose
density gradient centrifugation method [21] and was used
for ELISA and lymphoproliferation assay. For challenging
and virus neutralization assays, infective FMDV O1/Cam-
pos/Bra/58 (kindly donated by the Argentine National
Service of Animal Health) was used in BSL-4 OIE laborato-
ries and boxes at INTA. The sequence corresponding to the
B-cell epitope of VP1 from FMDV O1/Campos/Bra/58 (140-
158) comprises the amino acid residues AVPNVRGDLQV-
LAQKVART. The amino acids that differ between strains
O1/Campos/Bra/58 and O/UKG/11/2001 are those corre-
sponding to positions 140, 142, and 156 (indicated with the
italic and bold formats).

A virus stock derived from FMDYV isolated O/UKG/11/
2001 (The Pirbright Institute, UK) by two amplifications in
swine kidney cells was used in the virus neutralization assays.

2.3. Animals, Vaccines, Immunization, Infection, and
Sampling of Cattle. Ten Hereford calves serologically nega-
tive for FMDV, approximately 6 months old, were used in
the experiment. Groups of four animals were inoculated
twice (days 0 and 18), by subcutaneous injection in the front
left quarter, with 2mg of B,T or B,T peptide in 2ml of a
water-in-oil single emulsion. The adjuvant included was the
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Peptide General structure
BT B epitope
B epitope s Lys \
B epitope N, Lys
B epitope
BT B epitope VIHL
B epitope J‘r‘f

In both cases, epitope B = acetyl-PVINVRGDLQVLAQKAARTC and epitope T = AAIEFFEGMVHDSIK (both
in C-terminal carboxamide form). The C-terminal Cys side chain thiol is linked to Lys via a 3-maleimidopropionic

O 0
acid unit ( vww —\&/\)k)
(6]

F1GURE 1: Dendrimeric peptides used in this study.

same contained in commercial vaccines. At 38 days post-
vaccination (dpv), the animals were challenged by nasal
instillation with 1ml (0.5ml for each nostril) of 10000 of
50% bovine infective doses (BID50) of infective FMDV O1/
Campos/Bra/58 (determined by titration on cattle tongue)
[22-26]. This method is intended to mimic a natural FMDV
infection [27]. Control unvaccinated bovines (n =2) were
challenged at the same time, and the same procedure was
followed. All animals were monitored for 7 days for the
emergence of FMD clinical signs and then were euthanized.
The clinical score was determined by the number of feet pre-
senting FMD lesions (with score one for each foot with
lesions typical of FMDV) plus the presence of vesicles in
the snout (score one) and/or mouth (score one), 6 being the
maximum score.

Seven days postchallenge (dpc), all animals were checked
for FMDV-induced lesions on the feet and tongue. Bovines
with the absence of FMDV-induced lesions at the feet were
considered as protected to podal generalization (PPG), while,
animals with a delay in the onset of symptoms were consid-
ered partially protected (PP). At 7dpc, different lymphoid
organs were obtained postmortem from each animal: man-
dibular lymph nodes (ML), medial retropharyngeal lymph
nodes (MRL), and tracheobronchial lymph nodes (TBL).
All lymphoid organs were collected aseptically and placed
in ice-cold wash buffer (RPMI 1640, 10mM HEPES,
100 U/ml penicillin G sodium, 100 pug/ml streptomycin,
and 20 ug/ml gentamicin) until processing.

Another five calves were immunized by subcutaneous
injection with a single dose of commercial FMDV vaccine
(water-in-oil single emulsion containing FMDYV strains A
Arg 2000, A Arg 2001, A24 Cruzeiro, and O1 Campos). This

vaccine has been approved by the Argentine Animal
Health Service (SENASA) with more than 80% of expected
percentage of protection against all vaccine strains [28].
Experiments were performed according to the INTA ethics
manual Guide for the Use and Care of Experimental Animals.
The protocol was approved by the Institutional Animal Care
and Use Committee (CICUAE INTA CICVyA) (Permit
Number: 14/2011).

2.4. Measurement of Anti-Dendrimer and Anti-FMDV
Antibodies. For the estimation of the immune response elic-
ited by the dendrimers, we followed the methods of Soria
et al. [19]. An indirect ELISA was used for anti-dendrimer
antibody measurement. MaxiSorp 96-well plates (Nunc) were
coated with B, T peptide (30 pg/ml), the plates were washed
and blocked with PBST-OVA 1%, and dilutions of serum sam-
ples were added. After incubation, the plates were washed and
horseradish peroxidase- (HRP-) labeled goat anti-bovine IgG
antibody (KPL, USA) was added. After washing, ortho-pheny-
lenediamine- (OPD-) H,O, was added as HRP substrate.

FMDV-specific antibodies were detected by means of an
indirect ELISA, as described by Quattrocchi et al. [29].
Briefly, Immulon II 96-well ELISA plates were coated with
2.6 ug/ml FMDV O1/Campos/Bra/58 and processed as
described above.

The antiviral ELISA detailed above was modified in order
to detect FMDV-specific IgG1 and IgG2 (in sera) and IgGl
and IgA (in nasal swabs) antibodies. After incubation with
samples, a mouse anti-bovine IgG1, IgG2, or IgA monoclonal
antibody was added (kindly provided by Dr. S. Srikumaran,
University of Nebraska, USA). Lastly, a (HRP)-labeled goat
anti-mouse IgG antibody was added after wash. OPD was



used as HRP substrate. Absorbance was recorded at 492 nm
(A492) in a microplate photometer (Multiskan FC, Thermo).
The cut-off was established as the mean A492 of the negative
sera (from all unvaccinated animals) plus two standard devi-
ations (SD). Antibody titres were calculated for IgGl and
IgG2 as log,, of the last reciprocal dilution above cut-off.
IgA levels were expressed as the ratio between the OD
A492 of the nasal swabs from 22 dpv to 0dpv. Positive con-
trol sera were included in every plate.

2.5. Neutralizing Index. The neutralizing index (NI) of serum
(variable virus and fixed serum) from cattle immunized with
B,T, B,T, or conventional vaccine, at 38 dpv (upon 2 doses of
peptide), was measured. A 1/16 serum dilution was incubated
with 10-fold dilutions of infective FMDYV (1000 to 1 of 50%
tissue culture infective dose—TCID50), and the infective
virus recovered was determined by a TCID50 assay. The NI
of a serum was calculated as the ratio between the titres of
the virus in the presence of vaccinated animal serum and in
the presence of a negative serum. The results were expressed
as log,, of NL

2.6. Neutralizing Antibody Titres. Serum samples were exam-
ined for anti-FMDYV neutralizing antibodies (fixed virus and
variable serum) as described before [29]. Briefly, serial
dilutions (from 1/4 to 1/512) of inactivated sera were incu-
bated for 1h at 37°C with 100 TCID50 of infective FMDV
O/UKG/11/2001 or O1/Campos/Bra/58. Then virus-serum
mixtures were seed on BHK-21 monolayers. After 40 min at
37°C, fresh MEM-D/2% fetal calf serum was added to the
monolayers and incubated at 37°C, under 5% CO,. Cyto-
pathic effects were observed after 48 h. Titres of virus neutral-
izing antibodies (VNT) were expressed as log,, of the
reciprocal of the serum dilution, which neutralizes 50% of
100 TCID50 FMDV.

2.7. Lymphoproliferation Assay. Peripheral blood mononu-
clear cells (PBMC) were obtained from cattle as described
[30]. To this end, 100 gl of 2.5 x 10° cells/ml suspension were
added to 96-well plate containing (i) 5ug/ml iIFMDV; (ii)
50 ug/ml of B,T, B,T, or T peptides; and (iii) 5 g/ml conca-
navalin A (Sigma-Aldrich, St. Louis, MO) and the cells were
incubated at 37°C in 5% CO, atmosphere for 4 days. During
the last 18 h of culture, 1 uCi [3H]-thymidine (sp. act. 20 Ci
(740 Gbq)/mMol; PerkinElmer) was added to each well. Cells
were collected using a semiautomatic harvester (Skatron),
and the incorporation of radioactivity into the DNA was
measured by liquid scintillation counting with a counter unit
(Wallac 1414, PerkinElmer) that was controlled by the Win-
Spectral software system. Results were expressed as stimula-
tion index (SI). The SI was calculated as the cpm of
antigen-specific proliferation/cpm of cell basal proliferation
(in the absence of antigen).

2.8. Interferon-Gamma Detection. PBMC were cultured with
either 50 yug/ml of B,T, B,T, or T peptides or with 5 pg/ml
iFMDV for 72h. Supernatants were analyzed using ELISA
as described previously [30]. Briefly, plates were coated with
a mAbD against interferon-gamma (IFN-y) (kindly donated
by Dr. L. Babiuk). Samples and recombinant IFN-y standard
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(Serotec, UK) were added, and IFN was detected using rabbit
polyclonal anti-IFN-y antibodies. After incubation, biotinyl-
ated goat anti-rabbit IgG antibody was added and then HRP-
conjugated streptavidin (KPL, USA) was added. The plates
were washed, incubated with (OPD)-H,0O,, and read at
492 nm. The IFN-y concentration was calculated from inter-
polation of data in the standard curve.

2.9. ELISPOT Assay for FMDV-Specific ASC. Mononuclear
cell (MNC) suspensions were obtained from lymphoid
tissues as previously described [31]. A FMDV-ASC ELISPOT
assay was developed for this study. Ninety-six-well nitrocel-
lulose plates (Millipore, MA) were coated overnight with
2.4 pg/well inactivated purified FMDV O1/Campos/Bra/58
and blocked with 4% skim milk for 1h at room temperature
(RT). MNC were seeded in FMDV-coated plates in 2-fold
dilutions (2.5 x 10° and 1.25 x 10 cells per well) in triplicate,
and wells were incubated overnight at 37°C with 5% CO,.
After 5 washes with phosphate-buffered saline (PBS), mouse
anti-bovine IgG1 or IgG2 monoclonal antibodies (BD-Sero-
tec, Oxford, UK) were added (1:500 dilution) and incubated
for 1 h at RT. Reactions were revealed with anti-mouse IgG
(HRP)-labeled conjugate (KPL, UK) for 1h at RT, followed
by the addition of TrueBlue peroxidase substrate (KPL,
UK). IgM and IgA ASC were detected with HRP-labeled
sheep anti-bovine IgM and IgA sera (Bethyl), diluted
1:5.000, and revealed as described above. Spots correspond-
ing to ASC were visualized and counted manually under a
stereomicroscope. Spots from control wells were subtracted
from experimental wells, and results were expressed, unless
otherwise indicated, as the mean number of ASC per
1x10° cells for triplicate wells.

2.10. Statistical Analysis. The InfoStat program was used.
One-way analysis of variance (ANOVA) and posttests were
used to compare data between three or more groups.

3. Results

3.1. B,T and B,T Induce Anti-Peptide and FMDV-Specific
Antibodies in Cattle. At 38 dpv, all animals inoculated with
either B,T or B,T constructs developed specific and pro-
nounced anti-peptide (Figure 2(a)) as well as anti-FMDV
total IgG (Figure 2(b)) and IgG1 responses (Figure 2(c)).

At 38 dpv, high anti-FMDV IgG titres were detected in all
animals with an average titre of 3.4+ 0.4 and 3.3+0.3 in B,T
and B,T groups, respectively (Figure 2(b)). However, some
animals showed a significant increase in IgG titre only after
the second peptide dose (168, 164, and 166), while the others
were able to achieve high IgG titres since the first immuniza-
tion. Lastly, the results showed that the anti-FMDV IgG1 was
the predominant isotype in all vaccinated animals given that
there was a minor difference between total IgG and IgGl,
and low levels of specific FMDV IgG2 were detected in
B,T and B,T groups with average antibody titres of 1.1+0.3
and 1.9+ 0.7, respectively (data not shown).

3.2. FMDV-Specific Mucosal Immunity. Animals from the
B,T group exhibited high levels of anti-FMDV IgGl in nasal
secretions at 22dpv, with the exception of bovine 166;
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FIGURE 2: Antibody detection by ELISA in vaccinated cattle. Animals were immunized on days 0 and 18 (arrow) with B,T or B,T vaccine. (a)
Kinetics of anti-peptide serum antibodies. Bars represent the mean IgG titres from bovines in each group (gray, B, T; black, B,T) throughout
the experiment (error marks, SD). (b, ¢) Kinetics of total IgG and IgG1 anti-FMDV O1/Campos/Bra/58 serum antibodies. Titres were
calculated as log;, of the last reciprocal dilution above cut-off. Data points represent the IgG titre (b) or IgGl1 titre (c) from each animal
represented by different shapes (right legend) throughout the experiment. (d) FMDV-specific mucosal IgGl and IgA responses. Nasal
swabs were collected at 22 dpv. Each point represents the nasal IgG1 anti-FMDYV antibody titres (log,,) (black) or IgA (gray) anti-FMDV
O1/Campos/Bra/58 antibody level of each animal. The cut-off was established as the mean value of mock-vaccinated animals plus twice

the SD value (dotted line).

however, at this time, animals from the B,T group did not
present high anti-FMDV IgGl titres (Figure 2(d)). When
IgA was measured in nasal secretions, animals 44 and 170
in the B,T group and 36 in the B,T group showed positive
anti-FMDV IgA levels, indicating that these peptide con-
structs were able to induce not only systemic but also local
mucosal immunity.

3.3. Analysis of the Neutralizing Capacity of the Sera. The
VNT against the homologous virus O/UKG/11/2001 were
determined at 32dpv, and average values of 1.2+0.3 and
1.3+ 0.3 were found in the B,T and B,T groups, respectively
(Table 1). Although the VNT against the heterologous type O
virus (O1/Campos/Bra/58) was in the limit of the detection
threshold, a log;, neutralization index with values of

1.3+0.5and 1.8 0.7 could be determined for sera from ani-
mals of the B,T and B,T groups, respectively (Table 1). As
expected, no NI values were found in the preimmune sera
(T =0). The log,, NI of sera from 4 bovines vaccinated
with commercial vaccine was 2.0 +0.3 (data not shown).

3.4. Specific Cellular Immune Response and IFN-y Release in
Vaccinated Animals. Before challenge, at 32dpv, specific
in vitro lymphoproliferations were conducted using different
stimuli. Significant values of proliferation (SI > 2) to the pep-
tide used for immunization (B,T or B,T) were found in 2 out
of 4 animals of the B, T group and in 3 out of 4 animals of the
B,T group (Table 2(a)). Responses to dendrimers not used
for immunization were similar to those achieved with the
immunizing peptide while the number of animals that
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TaBLE 1: Virus neutralizing titres prechallenge.
Neutralizing
. antibodies (38 dpv)
Group Animal no. VNT® log, NI
O/UK/01 01/C
44 1.60 2.0
170 1.20 1.3
B,T
168 1.10 0.8
169 0.90 1.0
36 1.20 1.3
431 1.75 2.7
B,T
164 1.10 2.0
166 1.20 1.3
522 — 1.8
800 — 2.1
Commercial vaccine 809 — 1.6
810 — 2.3
820 — 2.8
, 167 <0.9 0.0
Negative controls
997 <0.9 0.3

“Titre of virus-neutralizing antibody at day 38 post vaccination. O/UK/01:
FMDV O/UKG/11/2001; O1/C: EMDV O1/Campos/Bra/58.

recognized the T-cell peptide alone was lower. In the B,T
group, PBMC from bovine 44 significantly proliferated in
response to the T peptide, and animals 168 and 169 showed
no response to any stimulus. In the B, T group, only cells from
bovine 36 proliferated when stimulated with the T peptide.
PBMC from negative control animals (Table 2(a)) and from
all bovines at day 0 did not respond to any peptide (data not
shown). In the group immunized with the commercial vac-
cine, 3 animals out of 5 showed positive proliferation against
iFMDYV and 1 out of 5 against both dendrimers (Table 2(a)).

The levels of IFN-y secreted in vitro by PBMC from
immunized animals were also determined at 32dpv
(Table 2(b)). Positive IFN-y responses to the immunizing
peptide were found in 3 out of 4 animals of both the
B,T and B,T groups, and the responses were similar to
those induced by the dendrimers not used for immuniza-
tion. In the B,T group, only cells from bovine 44 secreted
IFN-y when they were stimulated with the T peptide,
whereas 3 out of 4 animals of the B, T group secreted IFN-y
even without stimulus (Table 2(b)).

On the other hand, bovines 169 and 166 did not secrete
IFN-y and were considered as nonresponders. PBMC from
negative control animals (Table 2(b)) and from all bovines
at day 0 (data not shown) did not respond to any peptide.

3.5. Different Clinical Score Protection after Challenge. Since
the aim of the study was to investigate the protection afforded
by the dendrimeric peptides and the infection with FMDV
type O other than O1/Campos/Bra/58 was not possible at
INTA, bovines were challenged with this virus, an experi-
mental design that allows the assessment of the cross-
protection conferred by the dendrimers. Thus, all animals
were challenged at 44 dpv by nasal instillation with infective

Journal of Immunology Research

TaBLe 2: Cellular immune response of cattle 32 days
postvaccination analyzed by *H-thymidine incorporation (a) and
IFN-y production (x 10? pg/ml) (b).

(a)

Group Animal SI (cpm Ag/cpm medi}lm)
no. Ag-B,T Ag-B,T Ag-T iFMDV
44 560 396 40 11
B,T 170 3.0 52 1.0 1.2
168 14 1.8 1.1 1.1
169 2.0 1.9 0.9 1.5
36 25 36 23 14
BT 431 35 16 10 12
164 42 73 14 18
166 40 57 08 13
522 2.9 25 20 32
) 800 14 2.0 1.2 1.6
Sa"crg;fmal 809 1.5 19 12 41
810 1.2 1.4 0.9 0.9
820 0.7 0.7 0.7 2.8
Negative 167 1.0 0.7 1.0 1.0
controls 997 1.0 1.4 0.9 0.9
(b)
Group Animal . IEN-y (x 10°pg/ml)
no. Medium Ag-B,T Ag-B,T Ag-T iFMDV
44 7.8 578 762 614 7.1
B.T 170 14.0 32.1 30.2 12.4 11.3
2 168 193 173 13.2 11.8 13.3
169 12.3 14.0 14.6 150 179
36 287 360 160 279 281
. 81 328 157 40 340 350
! l64 339 242 400 312 378
166 7.9 6.0 6.5 6.8 6.8
52 516 304 198 116 361
. 800 7.4 7.6 7.4 7.1 7.5
Saocrcr;?eeraal 809 243 442 361 258 442
810 169 143 137 180 159
820 7.3 7.3 6.5 9.4 6.9
Negative 167 8.4 5.2 6.5 7.2 6.1
controls 997 9.6 12.0 14.0 13.3 14.8

(a) Lymphoproliferation of PBMC from vaccinated cattle (32dpv)
determined by *H-thymidine incorporation. Results were expressed as SI.
PBMC were stimulated in vitro following incubation with dendrimeric
peptides B,T, B,T or epitope T, iFMDV O1/Campos/Bra/58, or medium
alone. Radioactivity was measured with b-scintillation counter. SI was
calculated as cpm of each antigen specific proliferation Ag/cpm of cells
basal proliferation. SIvalues>2.5 are considered positive. (b) IFN-y
production by PBMC after peptide stimulation as in (a). Supernatants were
tested by ELISA, and the results, expressed in pg/ml, were calculated by
interpolation in a cytokine standard curve. For each peptide, the cut-off
was calculated as the mean IFN-y production of PBMC from animals at
day 0 plus 2 SD (215.0 x 10” pg/ml). Positive IFN-p productions above
cut-off are underlined.

FMDV O1/Campos/Bra/58, and protection was measured
by monitoring clinical signs in animals after the challenge.
As shown in Table 3, the two negative control animals
showed typical FMDV lesions, while, remarkably, bovines
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TaBLE 3: Clinical scores of vaccinated cattle after challenge.
. Clinical score (dpc)* . b
Group Animal no. 2 dpe 3dpe 4dpe 7 dpe Protection
44 0 0 0 2 PPG
170 0 0 0 5 PP
B,T
168 0 0 5 6 NP
169 0 0 3 6 NP
36 0 0 0 2 PPG
431 0 0 0 5 PP
B,T
164 0 0 3 5 NP
166 0 5 6 6 NP
. 167 0 0 4 6 NP
Negative controls
997 0 4 4 6 NP

“Clinical score was established after the challenge and was determined by the number of feet presenting FMD lesions plus the presence of vesicles in the snout
and/or mouth, 6 being the maximum score. ®Animals with no lesions on the feet were PPG. Animals with a delay in the onset of symptoms of disease were PP,

and animals with lesions on their feet before 7 dpc were considered NP.

44 (from the B,T group) and 36 (from the B, T group) did not
show any lesions on their feet along the 7 days of clinical
observation and were considered as PPG, albeit they showed
a single vesicle in the tongue at 7 dpc. In addition, animals
170 (from the B,T group) and 431 (from the B,T group)
showed a delay in the onset of symptoms (PP) during the
normal course of disease, and the lesions in the feet appeared
on 7dpc, while those in the mock-vaccinated animals
appeared on 3 or 4 dpc. Bovines 168, 169, 164, and 166 were
nonprotected (NP); they presented vesicle in the tongue,
mouth, and feet. At 7 dpc, all animals showed lesions in their
mouth or tongue (Table 3).

3.6. Mucosal Adaptive Antibody Responses in Peptide-
Vaccinated Cattle after Nasal Infection. Animals were eutha-
nized at 7dpc, and the FMDV-specific mucosal immune
responses were studied along the respiratory tract by means
of a FMDV-ASC ELISPOT assay (FMDV-ASC ELISPOT).
The results showed three profiles of responses (Figure 3(a))
according to the degree of protection (PPG, PP, or NP)
observed in the animals. In general, PPG and PP bovines
showed a very low number of ASC in mandibular lymph
nodes (ML) and medial retropharyngeal lymph nodes
(MRL), with the exception of bovine 431. Tracheobronchial
lymph nodes (TBL) of animals 44 and 170 from the B,T
group (PPG and PP, resp.) and animals 36 and 431 from
the B, T group (PPG and PP, resp.) did not show secretory
cells producing FMDV -specific antibodies (Figures 3(a) and
3(b)). When ASC from peptide-immunized NP animals were
studied, IgM and IgG1 were the dominant isotypes of anti-
body detected in ML; high amounts of IgA ASC (>200 ASC/
10° cells) were detected in animal 168. However, the other NP
bovines (169, 164, and 166) presented a low number of IgA
ASC (<50 ASC/10° cells). On the other hand, IgG2 ASC were
detectable in ML at this time with values 10- to 80-fold lower
than the IgGl1 value. Finally, in vaccinated NP animals, high
amounts of IgM and IgGl ASC were detected in MRL
(excluding bovine 164). Finally, animals 168, 169, and 166
presented a high level of total ASC in ML and MRL
(Figure 3(b)). NP vaccinated (168,169, 164, and 166) and

mock-vaccinated animals (167 and 997) also showed
responses in TBL at the lower respiratory tract. IgM and
IgG1 antibodies against FMDV were the isotypes secreted.

Animal 166, which showed delayed humoral response
against virus, presented the highest number of IgGl ASC
(>2x10° ASC/10° cells) in ML and MRL. Concordantly,
bovine 166 was the only animal that showed high numbers
of IgM and IgG1 ASC in TBL.

In mock-vaccinated animals (167 and 997), ML and MRL
were the most stimulated secondary lymphoid organs at
7dpc, IgM was the dominant isotype among the FMDV-
ASC developed in these organs. In animal 167, IgG1l was
the next isotype with regard to the detection level, with levels
10- to 30-fold lower than those detected in the ML of NP vac-
cinated bovines. When the total FMDV-ASC was calculated,
PPG and PP animals presented very low numbers of ASC in
comparison with NP vaccinated animals (Figure 3(b)).

3.7. IFN-y Secretion by Mononuclear Cells (3 Days Post-
FMDYV Challenge). In order to determine the memory immu-
nity induced in vaccinated animals after the challenge with
the live virus, the level of [FN-y secreted in vitro by mononu-
clear cells of those animals was measured (Figure 4). At 3 dpc,
PPG animals (44 and 36) presented IFN-y levels between 8
and 9.5x 10’ pg/ml in the supernatant of PBMC stimulated
with iFMDV, B,T, or B,T peptides. On the other hand, PP
animals (170 and 431) showed high levels of IFN-y even with-
out stimuli as also observed in PPG animal 36. Significant dif-
ferences were found in ASC, ML, and MRL of PPG and PP
animals compared to NP-vaccinated cattles. Surprisingly,
bovine 169 presented high levels of IFN-y.

4. Discussion

Synthetic peptides corresponding to the protective B- and T-
cell epitopes can be considered good candidates for FMD
vaccines as, among other advantages, they are safe and
support a rational design and their production and character-
ization are simple. The development of successful peptide
vaccines has been limited for a number of reasons, including
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F1GURE 3: Profiles of the FMDV-ASC detected in B,T- and B, T-vaccinated cattle after FMDV challenge. (a) Mononuclear cells were purified
from mandibular lymph nodes (ML), medial retropharyngeal lymph nodes (MRL), and tracheobronchial lymph nodes (TBL) and
characterized by the FMDV-ASC ELISPOT assay, using monoclonal (IgG1 and IgG2) or polyclonal (IgM and IgA) antibodies against
bovine immunoglobulin isotypes as probes. (b) Total FMDV-ASC in ML, MRL, or TBL. Results are expressed as the mean number of
FMDV-specific ASC per 1x 10° extracted cells. Each bar represents the mean value of 3 replicates + SD. PPG: protected against podal
generalization; PP: partial protected; NP: non-protected.
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FI1GURE 4: IFN-y production by PBMC from peptide-vaccinated bovines after challenge. PBMC were purified at 3 dpc and cultured in the
presence of peptide or inactivated virus. The supernatants were tested by a sandwich ELISA. Results are expressed in pg/ml by
interpolation in a cytokine standard curve. Each bar represents the mean value of 2 replicates of supernatants + SD. PPG: protected
against podal generalization; PP: partial protected; NP: nonprotected.

those associated with “in vivo” stability, poor immunogenic-
ity of linear peptides, and lack of adequate T-cell activation
due to MHC polymorphism of the host species [32, 33].
Previous results in pigs vaccinated with B,T or B, T dendri-
meric peptides allow concluding that multiple presentation
of the B-cell epitope is advantageous over a simple juxtaposi-
tion of the epitopes for the induction of humoral and cellular
immune responses [34]. Recently, Blanco et al. [16] reported
that 100% of pigs vaccinated with B,T dendrimeric peptides
bearing type O FMDV O/UKG/11/2001 sequences of a B-
(VP1 136-154) and a T-cell epitope (3A 21-35) were pro-
tected after the challenge with homologous FMDV. In this
report, we have explored the immunogenicity of B,T and
B,T dendrimers in cattle and showed that they can elicit
cross-reactive immune responses against a heterologous type
O strain, FMDV O1/Campos/Bra/58, including partial
protection to challenge.

In our experiment, specific antibody responses to virus
were observed in all cattle receiving peptide vaccines;
however, even when neutralizing antibodies against FMDV
O/UKG/11/2001 were detected, their levels were lower than
those found in pigs immunized with the same peptides.

The amino acid sequence of the B-cell epitope VP1
(136-154) between FMDV O/UKG/11/2001 and O1/Cam-
pos/Bra/58, the virus used for cattle challenge, differs in 3
amino acids. Nevertheless, Wang et al. [10] reported that
pigs vaccinated with a peptide containing a consensus type
O VP1 sequence (residues 129-169) from 75 historic and
prevalent isolates (including O1I/Campos/Bra/58 and
O/UKG/11/2001) and a promiscuous artificial Th site, devel-
oped humoral immunity against FMDV O1/Campos/Bra/58.
Indeed, the neutralizing activity against FMDV O1/Campos/
Bra/58 was detected in our peptide-immunized cattle, albeit
the magnitudes of the responses were lower than those
elicited against FMDV O/UKG/11/2001. B,T and B,T
peptides induce neutralizing antibodies against FMDV O/

UKG 11 at low levels, but they do not neutralize FMDV
01 Campos (100 DITC50).

Despite the presence of anti-peptide and anti-FMDV
antibodies in sera, they may not have the affinity necessary
to effectively neutralize the virus, and only 25% of the B,T-
or B, T-vaccinated animals were PPG after the challenge with
FMDV O1/Campos/Bra/58. It is possible that when using
another adjuvant or other amounts of peptides in the vaccine,
the immune response could increase in cattle, achieving the
maturation of the antibodies affinity for the viral neutraliza-
tion of FMDV O1/Campos/Bra/58.

The isotype of antibodies elicited in cattle by the two
dendrimers differs from those induced in swine [16]. Pigs
vaccinated with B,T showed a trend towards increased levels
of specific IgG1 and IgG2 relative to pigs vaccinated with
B,T. In contrast, here B,T- or B,T-vaccinated bovines elicit
levels of IgG1 higher than those of IgG2. These changes seem
to reflect marked differences in how the immune systems of
swine and cattle recognize and process the dendrimeric
immunogens. In any case, it is noteworthy that the same
nomenclature for subclasses among different species often
leads to the misleading belief that these subclasses are homol-
ogous and have the same functions.

Animal-to-animal variation is found in the protective
responses evoked by peptide vaccines, including those
against FMDV [13, 35], which has been associated with the
MHC-restricted recognition of T-cell epitopes included in
their composition. On the other hand, the different immune
responses against peptide might be indicative of marked dif-
ferences in the recognition of T epitopes between cattle and
swine. The T-cell peptide 3A (21-35) was well studied in pigs
[6] but not in cattle, and our results support that T epitope
3A (21-35) is not recognized by the majority of bovines.

Our findings suggest that in some instances, animals
showing the highest immunological parameters measured
against peptides and iIFMDV were better protected against
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viral challenge. Bovines 44 (B,T) and 36 (B,T) elicited high
levels of antibodies against virus (although animal 36 showed
levels of neutralizing antibodies of 1.2) and developed high
levels of IgA specific against virus in nasal secretions as well
as a positive lymphoproliferative response not only against
dendrimeric peptides but also against the epitope T 3A
(21-40). All these positive parameters in bovines 44 and 36
correlated with a protective immune response. Indeed, these
were the only two PPG animals. On the other hand, and
despite at the time of challenge the level of antibodies (mea-
sured by ELISA) being similarly high for all cattle, animals
that showed modest humoral response initially (at 18 or
22 dpv) failed to be protected against viral challenge, which
may be due to the lack of antibody maturation. Nonpro-
tected animals 168 (B,T) and 164 (B,T) showed antibody
responses against iFMDV only after receiving a second dose
of vaccine, and their viral neutralization titres were lower
than 1.2 (VNT positive for FMDV > 1.2 [27]). These results
suggest that although neutralizing antibodies are important
in protecting against viral challenge, other factors could also
favor protection.

Cattle are highly susceptible to FMDYV, and the virus usu-
ally gains entry through the respiratory tract of these animals
[36]. Moreover, FMDV replicates in tissues of the upper
respiratory system [37, 38], the soft palate and pharynx being
preferential sites of FMDYV replication and persistence in
ruminants. A feature of the mucosal system in ruminants is
the prominence of IgG1 relative to IgA in nasal secretions.

The study of antibody responses in local lymphoid tissues
indicates that the systemic FMD vaccination of cattle with
dendrimeric peptides can effectively promote the presence
of anti-FMDV ASC in lymphoid tissues associated with the
respiratory tract. In addition, the detection of both FMDV
O1/Campos/Bra/58-specific ASC and antibodies following
vaccination shows that these peptides, encompassing FMDV
O/UKG/11/2001 sequences, were able to induce a cross-
reactive ASC response.

In peptide-vaccinated unprotected animals, viral chal-
lenge by nasal instillation triggered an antibody response
compatible with a local anamnestic recall upon contact
with replicating FMDV, suggesting that peptide vaccina-
tion might induce the circulation of virus-specific B-lym-
phocytes, including memory B-cells that differentiate into
ASC soon after contact with the infective virus. Thus,
NP animals showed a strong stimulation of FMDV-specific
B-lymphocytes to locally produce antibodies all along the
respiratory tract, including in the tracheobronchial lymph
nodes (TBL) with frequencies of ASC much higher than
those in mock-vaccinated infected animals. In the NP
animals, ASC were detected in all studied organs, and the
isotype of the antibodies (mainly IgM and IgGl) revealed
that even when B,T and B,T peptides elicited specific
memory B-cells, the response failed to stop the advance of
the challenge virus. Conversely, in peptide-vaccinated PPG
and PP animals, no FMDV-ASC were detected in TBL possi-
bly because the virus did not reach that area. Thus, in animals
44 and 36 (PPG) and 170 and 431 (PP), cells producing
antibodies against FMDV were not found in TBL, and in
general the total number of ASC induced was low.

Journal of Immunology Research

It has been proposed that structural features lend FMDV
capsids towards stimulating B-cells in a T-independent man-
ner [39, 40] and acute cytopathic viral infections can result in
the accelerated induction of antibody in a T-independent
manner [41, 42], providing a rapid means of stopping the
systemic spread of the virus [43]. In the absence of CD4+
T-cells, cattle can produce class-switched antibody rapidly
in response to the FMDYV challenge [40], and a rapid induc-
tion of FMDV-specific plasma cells has been also reported in
local lymphoid tissue following live-virus exposure, which,
again, is consistent with a T-independent response [21]. In
this report, at 7 dpc, limited amounts of IgM and IgG1 ASC
were detected in ML, MRL, and TBL of one of the negative
control animals (167), and only IgM was found in the other
(997), a result that is consistent with a primary response
against FMDV. A greater increase in the number of ASC of
isotypes IgA, IgM, IgG1, and IgG2 was found by Monso et al.
[20] at 6 dpc in ML, TBL, and MRL; this discrepancy may be
related with the difference in the viral dose and inoculation
route employed by these authors (107 TCID50, aerosol) com-
pared with those of our study (10* BID50, nasal instillation).

Overall, our results support that immunization in cattle
with dendrimeric peptides B,T and B,T can elicit humoral
and cellular immune responses and confer partial protection
against a heterologous virus challenge that is associated with
the induction of solid T-cell responses as well as of an anam-
nestic antibody response. Experiments are in progress to
address whether modifications such as the replacement of
the T-cell peptide by one widely recognized by cattle can
result in an improvement of the protective response elicited
by these dendrimeric peptides.

Additional Points

Highlights. Dendrimeric peptides containing T and B epitopes
were designed as vaccine candidates against FMDYV for cattle.
Dendrimeric peptides evoke in immunized cattle heterolo-
gous cellular and humoral immune responses. Tetravalent
and bivalent presentation of B-cell epitopes linked to the T
epitope conferred partial heterologous protection in cattle.
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