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ABSTRACT Among the viruses that encode microRNAs (miRNAs) and infect cattle, such 
as bovine leukemia virus (BLV), bovine foamy virus (BFV), and Bovine herpesviruses, BLV 
has gained attention due to the critical role that BLV-miRNAs play in inducing lymphosar­
coma in infected animals. BLV is highly prevalent in the Americas and negatively affects 
dairy herds, primarily due to restrictions on the commercialization of dairy products from 
infected animals and a decrease in milk production. Co-infections involving BLV and BFV 
appear to be common in cattle. Considering the ability of foamy viruses to cross species 
barriers, preventing their presence within the food chain is essential. We identified 
the co-expression of seven BLV-derived miRNAs (blv-miR-B1-3p, blv-miR-B2-5p, blv-
miR-B2-3p, blv-miR-B3-5p, blv-miR-B3-3p, blv-miR-B4-3p, and blv-miR-B5-5p) and three 
BFV-derived miRNAs (bfv-miR-BF1-5p, bfv-miR-BF1-3p, and bfv-miR-BF2-5p) in naturally 
BLV-infected cows. Besides, seven differentially expressed bovine miRNAs (bta-miR-375, 
bta-miR-133a, bta-miR-677, bta-miR-1, bta-miR-3613a, bta-miR-9-5p, and bta-miR-95) 
were identified between cows with high BLV proviral load and uninfected counterparts 
(|fold change| > 1.5 and q-value < 0.05). A comprehensive analysis of protein-protein 
interaction networks for genes targeted by viral and host-derived miRNAs suggests a 
functional convergence on key pathways related to immune response, tumorigenesis,
and chromatin remodeling. Although BLV- and BFV-derived miRNAs target different 
genes, these targets participate in shared biological processes. This convergence might 
reflect a coordinated viral influence on host functions, with implications for disease 
progression and the increased dissemination of BFV. These findings offer new perspec­
tives for creating diagnostic and treatment approaches to manage viral persistence and 
tumorigenesis in cattle.

IMPORTANCE The bovine leukemia virus (BLV) and bovine foamy virus (BFV) are 
retroviruses that encode microRNAs (miRNAs) and infect cattle. While the role of 
BFV-derived miRNAs remains unclear, BLV miRNAs have gained attention for their 
potential involvement in oncogenesis. BLV-BFV co-infections are common, and given 
foamy viruses’ potential to cross species barriers, it is essential to prevent their presence 
in the food chain. We reported the co-expression of three BFV-derived miRNAs and seven 
BLV-derived miRNAs in naturally infected cattle. A protein-protein interaction graph 
analysis of genes targeted by viral and host-derived miRNAs revealed key metabolic 
pathways associated with tumorigenesis, immune response regulation, and chromatin 
remodeling. Although BLV- and BFV-derived miRNAs target different genes, these targets 
participate in shared biological processes, suggesting a functional convergence that may 
influence disease progression and BFV dissemination. These findings offer opportunities 
for developing diagnostic and therapeutic strategies to control viral persistence and 
tumor development in cattle.
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T he study of virus-host interactions has traditionally focused on how viral proteins 
modulate host proteins to hijack cellular processes in favor of viral replication 

and pathogenesis (1). However, like their host cells, many viruses encode regulatory 
non-coding RNAs, including small RNAs such as microRNAs (miRNAs), which provide 
new capacities for regulating host gene expression to ensure successful viral infection 
(2–5). miRNAs are enzymatically processed small RNAs, typically 19–24 nucleotides (nt) 
long, that fine-tune gene expression at the post-transcriptional level (6). The regula­
tory function of miRNAs is primarily mediated by the RNA-induced silencing complex 
(RISC), which facilitates base pairing between the mature miRNA’s 2–7 nucleotide seed 
region and the 3' untranslated region (3'UTR) of the target mRNA (7, 8). The miRNA-
mRNA interaction induces mRNA degradation by cellular endonucleases or translational 
repression (8, 9). It is estimated that miRNAs may regulate at least 60% of the human 
coding genome (10, 11).

Host-derived miRNAs regulate viral infections by exhibiting a dual nature that can 
benefit either the virus or the host. For example, host miRNAs that directly target 
viral RNA often enhance the viral life cycle. Conversely, host miRNAs can exert an 
indirect negative effect on the virus by targeting mRNAs that encode essential host 
factors necessary for the viral cycle or for establishing immune responses and defense 
mechanisms (5, 12). Given their high versatility in fine-tuning gene expression and their 
small coding size, it is not surprising that viruses have evolved the ability to express 
their own miRNAs (13). Since the first report of miRNAs encoded by the Epstein-Barr 
virus (14), miRNAs encoded by DNA viruses have proven to be the most abundant, 
particularly those expressed by the Herpesviridae family. In contrast, RNA viruses that 
express miRNAs are far less common and are typically restricted to those with a DNA 
intermediate. Additionally, several miRNA-like molecules have been identified in both 
positive and negative-sense RNA viruses (3, 15–28).

Usually, viral miRNAs follow the same biogenesis and effector pathways as host 
miRNAs. However, certain retroviruses, such as members of the Spumaretrovirinae 
subfamily (e.g., simian foamy virus [SFV] and bovine foamy virus [BFV]) and the 
Orthoretrovirinae subfamily (e.g., bovine leukemia virus [BLV]), decouple miRNA 
transcription from genomic transcription by employing RNA polymerase III instead of 
RNA polymerase II (21–23). This mechanism likely prevents the auto-degradation of viral 
genomes mediated by endonucleases during miRNA biogenesis (29, 30).

Generally, the functional role of viral miRNAs involves the downregulation of both 
viral and host proteins; however, upregulation would also occur, either indirectly through 
the modulation of genes that act as transcriptional repressors, or directly, as some 
miRNAs can function as transcriptional activators by binding to specific DNA sequen­
ces or interacting with factors that enhance gene expression (18, 31, 32). Collectively, 
these actions modulate gene expression to regulate the viral life cycle (e.g., promoting 
or inhibiting cell proliferation and apoptosis), evade the host immune response, and 
establish latent or persistent infections (4, 16, 33–35). This is particularly evident in 
retroviruses and herpesviruses, where viral protein expression is highly restricted during 
latency. The production of a low-antigenicity regulatory molecule provides a significant 
advantage for viral persistence while evading host immune detection (13, 36).

Viruses that encode miRNAs and infect cattle include BLV (21), BFV (23), bovine 
herpesvirus 1 (BoHV-1) (37), and bovine herpesvirus 5 (BoHV-5) (38). BoHV-1 encodes 
at least 10 miRNAs, two of which have been implicated in maintaining latency both 
in vivo and in vitro (39, 40). In contrast, the functional roles and target genes of the 
three BFV-derived miRNAs remain poorly understood (41). Among BLV-encoded miRNAs, 
blv-miR-B4-3p is the most extensively studied. It shares a seed sequence with miR-29a, 
an oncomiR that targets tumor suppressors such as peroxidasin homolog (PXDN) and 
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HMG-box transcription factor 1 (HBP1), as reported in murine tumor-induction studies 
(42, 43). In vitro reporter assays have demonstrated that blv-miR-B4-3p exerts a repressive 
effect on the expression of HBP1 and PXDN. However, a negative correlation between 
blv-miR-B4-3p and HBP1 expression has been documented, while levels of PXDN 
remained unchanged in ovine primary tumor B cells (21, 44). Additionally, recent findings 
indicate that PXDN expression is significantly downregulated in naturally BLV-infected 
cattle expressing blv-miR-B4-3p when compared to their non-infected counterparts. 
Notably, miR-29a expression remains unaffected in both groups (45).

The BLV prevalence reaches up to 85% in North America at farm level and over 
80% in the lactating cows of Argentina’s main dairy region (46–49). International trade 
restrictions of livestock products from affected herds negatively impact the economy 
(50), but greater losses stem from reduced milk production and earlier culling of 
asymptomatic BLV carriers compared to BLV-free herds (51, 52).

Mixed infections involving BLV and BFV appear to be common in cattle (53). Given the 
ability of foamy viruses to cross species barriers and cause zoonotic infections in humans, 
their presence in the food chain may be a potential risk to both human and animal 
health. Furthermore, cattle infected with BLV are more susceptible to co-infections with 
BoHV-1 (54–56).

This study identified the expression of three BFV-derived miRNAs and seven BLV-
derived miRNAs in naturally BLV-infected cattle through small RNA sequencing analysis. 
No miRNAs from BoHV-1/5 were found. Seven bovine miRNAs showed differential 
expression between cattle infected with BLV/BFV and those uninfected with BLV. A 
functional analysis of the protein-protein interaction (PPI) network for genes potentially 
targeted by both viral and host-derived miRNAs revealed key metabolic pathways 
associated with tumorigenesis and immune response regulation.

MATERIALS AND METHODS

Selection of animals

BLV-infected and non-infected samples were obtained from a previously phenotyped 
population as described in Petersen et al. (57). Briefly, 129 adult Holstein cows (over 3 
years old sharing the same lactation period) from a dairy farm in the central region of 
Argentina—where the average individual prevalence of BLV exceeds 80% (49)—were 
initially screened. Since antibody levels have been reported to reflect proviral load 
(PVL) in vivo (49, 58), anti-BLV enzyme-linked immunosorbent assay (anti-BLV ELISA) (see 
below) was assessed at 10 months (T1) and 5 months (T2) before final sampling; mean 
percentage of reactivity (PR) was 122.7 ± 34.8 at T1 and 146.3 ± 55.6 at T2. Animals in 
the highest PR quartile (Q; Q4: T1 = 148.6–178.6%, T2 = 194.4–239.6%) and those testing 
negative at both times were selected for further PVL quantification via quantitative PCR 
(qPCR) (details provided later) at 3 months (T3) and at the time of sampling (T4). Based 
on the consistency of PVL results, four cows with persistently high PVL (HPVL) and three 
cows with consistently negative qPCR results were ultimately selected for small RNA 
sequencing.

Isolation of peripheral blood mononuclear cells

Fresh blood samples from animals were collected via jugular venipuncture and 
supplemented with EDTA (225 µM). Peripheral blood mononuclear cells (PBMCs) were 
isolated on the same day of collection using Ficoll-Paque Plus (GE Healthcare, Uppsala, 
Sweden) density gradient centrifugation, following the manufacturer’s protocol. The 
plasma fraction was kept for anti-BLV ELISA serology. After isolation, PBMCs were 
preserved in RNAlater solution (Ambion, Austin, TX) and stored at −80°C until further 
use.
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Serology

The anti-BLV ELISA assay, as described by Trono et al. (59), was employed to identify 
BLV-infected animals. The whole BLV viral particle served as the antigen for detecting 
plasma anti-BLV antibodies in each sample. Briefly, a sample-to-positive (S/P) ratio, 
referred to as the PR, was calculated using the following formula: S/P = [(ODSample − 
ODWS−)/(ODWS+1/7 − ODWS−)] × 100, where OD refers to optical density, WS− indicates 
the negative serum, and WS+1/7 is the international standard weak positive control 
serum (diluted 1:7 in negative serum). Samples with a PR greater than 25% were 
considered positive (BLV[+]), while those below were regarded as negative [BLV(−)].

BLV PVL quantification

Genomic DNA was extracted from PBMCs using the High Pure PCR Template Preparation 
Kit (Roche, Penzberg, Germany) following the manufacturer’s instructions. The quality 
and concentration of genomic DNA from whole blood samples, extracted with the Blood 
Genomic DNA AxyPrep kit (Axygen Biosciences, Union City, CA, USA), were assessed 
using a microvolume spectrophotometer (NanoDrop Technologies, Inc., Wilmington, DE, 
USA).

A BLV POL gene-based PVL qPCR assay based on the SYBR Green dye detection 
system was conducted as described by Petersen et al. (60). Each 25 µL qPCR reaction 
contained Fast Start Universal SYBR Green Master Mix (2×; Roche), forward and reverse 
primers (800 nM; BLVpol_5 f:5′-CCTCAATTCCCTTTAAACTA-3′ and BLVpol_3 r:5′-GTACCGG
GAAGACTGGATTA-3′; Thermo Fisher Scientific), and 200 ng of genomic DNA template. 
Amplification and detection were carried out using a Step One Plus system (Applied 
Biosystems, Foster City, CA). The specificity of each BLV-positive reaction was confirmed 
by melting temperature dissociation curve (Tm) analysis. Based on the assumption of a 
low natural infection rate (1% of BLV-infected cells in the peripheral blood), PVL values 
below 1,500 copies/µg of total DNA were classified as low, while values above this 
threshold were classified as high (61).

Small RNA sequencing

Total RNA was extracted from PBMCs using the miRNeasy kit (Qiagen, Hilden, Germany) 
according to the manufacturer’s protocol. RNA quality (integrity) and concentration were 
assessed via digital electrophoresis on an Agilent 2200 TapeStation system (Agilent 
Technologies, Santa Clara, CA, USA).

The QIAseq miRNA Library Kit (Qiagen, Hilden, Germany) was used for miRNA 
sequencing library construction, which integrates unique molecular indices (UMIs) tags 
into the adapters during the cDNA synthesis step. These UMI tags help to mitigate PCR 
amplification biases and sequencing artifacts by allowing identification and collapsing 
reads with the same amplification origin. A specific 8-nt barcode was assigned to 
each sample for multiplexing. The multiplexed libraries were pooled to an equal molar 
concentration and processed in a NovaSeq run (Illumina, San Diego, CA, USA) with a 75 × 
50 bp configuration (300−400 million read pairs per lane).

Small RNA sequencing reads processing and deduplication

The quality control of sequencing reads was performed sequentially to ensure reliable 
reads for unbiased miRNome identification and quantification. The 12-nt UMI pattern 
was extracted from each read using the umi_tools v1.1.6 software (62). Forward (Fw) 
and reverse (Rv) reads were processed independently before collapsing. Reads with low 
quality (quality cutoff < 30), a minimum length of <16 nt, the presence of ambiguous 
bases (N), or adapter sequences were removed using Cutadapt v5.0 (63).

Singleton reads resulting from QC processing were discarded, and only paired Fw and 
Rv reads were considered. Forward read sequences were aligned to the Rv-complement 
and merged into a single consensus read using BBMap v25.85 (64) with a minimum 
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insert size of 16 nt and a minimum overlap of 18 nt. After merging, Qiagen-specific 
adapter sequences were removed using Cutadapt v5.0 (63).

A stringent mapping strategy was employed for read deduplication using Bowtie2 
v2.5.4 (65). Reads were aligned to the bovine reference genome ARS-UCD1.2 (acc. 
GCF_002263795.1) and to viral genomes encoding miRNAs that infect cattle, including 
BLV (acc. NC_001414.1), BFV (acc. NC_001831.1), BoHV-1 (acc. NC_063268.1), and BoHV-5 
(acc. NC_005261.3). No mismatches were allowed in the first 18 bases of the read (left 
end). After alignment to the reference sequences, reads were deduplicated based on 
their mapping coordinates and the previously extracted UMI tags using UMICollapse 
v1.0.0 (66).

miRNAs identification and quantification

Deduplicated reads were mapped to the reference precursor miRNA sequences for 
bovine, BLV, BFV, BoHV-1, and BoHV-5 obtained from miRBase v22.1 (67). Mature 
miRNA expression was quantified using miRDeep2 v0.1.3 (68) with default parameters, 
generating a count matrix of miRNA expression for each sample.

Differential miRNA expression analysis

The raw count matrix for all samples was analyzed using DESeq2 v1.44.0 (69) to assess 
differential miRNA expression between BLV-infected and non-infected animals. Based on 
miRNA expression profiles, an exploratory analysis of variation patterns between infected 
and non-infected animals was performed using principal component analysis (PCA). To 
ensure homoskedasticity of the data, raw miRNA counts were transformed using the 
variance stabilizing transformation method implemented in DESeq2 v1.44.0. Pairwise 
distances between samples were calculated based on the root-mean-square deviation of 
miRNA expression levels.

To test for differential miRNA expression, the DESeq2 model adjusts miRNA counts 
by accounting for sample-specific differences, such as library size, sequencing com­
position, and miRNA-specific biases, using negative binomial models. Under the null 
hypothesis, the model assumes that a miRNA has the same mean expression across the 
two conditions [BLV(−) and BLV(+) groups]. The statistical significance of the log2 fold 
change (Log2FC) between conditions was assessed using the Wald test. The correction 
for multiple comparisons was performed using the Benjamini-Hochberg false discovery 
rate (BH-FDR) method (70). The miRNAs with BH-FDR-adjusted P-values (q) < 0.05 and a 
|Log2FC| > 1.5 were considered statistically significant. The PCA and volcano plots were 
performed under the R environment (71).

miRNAs gene target prediction

Significantly differentially expressed (DE) bovine and viral-derived miRNAs between 
BLV(+) and non-infected cows were used to predict potential bovine gene targets in 
silico (miRNA:mRNA interactions) using miRanda v3.3 (72), PITA v6.0 (73), and RNAhy­
brid v2.1.1 (74), with default parameters. The analysis utilized 3'UTR sequences of 
21,400 bovine genes from the ARS-UCD1.2 annotation (75). Each gene target predic­
tion algorithm employed a distinct strategy: miRanda relied on seed-site alignment 
and the thermodynamic stability of RNA-RNA duplexes; PITA incorporated target-site 
accessibility; and RNAhybrid used the minimum free energy of hybridization between 
miRNA-mRNA sequences. Predicted targets were filtered using the following threshold: a 
score of ≥140 and free energy ≤−20 kcal/mol (miRanda) and free energy ≤−20 kcal/mol 
(PITA and RNAhybrid). Only gene targets predicted by all three tools (consensus gene 
targets) were retained for downstream analysis.

Gene ontology and graph-based pathway analysis of miRNA target genes

The functional annotation of the potential target genes was carried out using STRINGdb 
(76) with gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes 
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(KEGG) pathways (77). Next, a PPI network of the identified target genes was construc­
ted using STRINGdb. This platform integrates curated and predicted interactions from 
multiple sources, including experimental evidence, computational predictions, scientific 
literature, co-expression data, and primary public databases. Highly interconnected 
protein clusters within the network were identified using the Markov Cluster Algorithm 
with default parameters (inflation parameter = 2.5). Only clusters with more than 15 
nodes (genes) were considered. GO terms and KEGG pathways overrepresentation 
analysis were performed on the identified clusters using Fisher’s exact test based on 
the hypergeometric distribution, using a term similarity threshold >0.7 (78). A GO 
term category–gene target graph was generated to visualize the connections between 
significantly enriched GO terms and their associated genes using the R graphical 
environment (71).

RESULTS

In this study, four animals consistently exhibited both high antibody reactivity across all 
sampling times (IND_5671 = 178.6 ± 28.4; IND_5841 = 191.3 ± 32.8; IND_6021 = 169.8 
± 42.7; and IND_6097 = 183.2 ± 25.4) and high proviral loads at T-3 and T0 (average 
proviral load: IND_5671 = 63,148.0; IND_5841 = 44,234.3; IND_6021 = 52,902.4; and 
IND_6097 = 91,255.4). These cows were classified as BLV(+). In contrast, three animals 
that consistently tested negative for both anti-BLV ELISA and qPCR were classified as 
BLV(−).

Total RNA quality was confirmed (RIN 7.8−9.6), and small RNA libraries were prepared 
using UMI-tagged adapters. High-quality, non-redundant reads were obtained through 
a multi-step processing pipeline. A descriptive characterization of each sample, the 
number of sequencing reads before and after quality control, merging and deduplica­
tion, and mapping statistics are summarized in Table 1.

Demultiplexed reads were mapped to the reference miRNA sequences of bovine, BLV, 
BFV, BoHV-1, and BoHV-5 (n = 1,060) to identify and quantify the miRNAs present in 
each sample. On average, 351 miRNAs (with mapped reads ≥5) derived from both bovine 
and viral sources were identified and quantified across all samples (Table S1). A PCA of 
sample distances based on the normalized miRNA expression matrix revealed that BLV(−) 
samples clustered together, forming a distinct group separate from BLV(+) samples. PC1 
explains 62% of the variance in the expression matrix, while PC2 accounts for 17% (Fig. 
1).

In the BLV(+) group, a total of 10 viral-derived miRNAs were consistently expressed, 
including seven from BLV: blv-miR-B1-3p (avgexp = 27,681.1), blv-miR-B2-5p (avgexp 
= 59,058.0), blv-miR-B2-3p (avgexp = 112.5), blv-miR-B3-5p (avgexp = 309.6), blv-miR-
B3-3p (avgexp = 49,312.2), blv-miR-B4-3p (avgexp = 65.1), and blv-miR-B5-5p (avgexp = 

TABLE 1 Sample characterization and small RNA sequencing outputd

Sample_ID Pr (SD)a PVL RIN Raw reads (n) Reads after QC, merging,
and deduplication (n)

Reads mapped to bovine (%)/
viral mature miRNAsb,c (%)

Total number of identified 
miRNAs (viral miRNAs)

IND_5671 178.6 (28.4) 63,148.0 9.6 8,090,674 4,243,257 2,353,523 (96.53)/81,744 (3.47) 470 (10)
IND_5841 191.3 (32.8) 44,234.3 9.6 11,869,092 4,038,887 2,556,676 (97.08)/74,665 (2.92) 403 (10)
IND_6021 169.8 (42.8) 52,902.4 7.8 15,487,902 6,148,370 4,484,871 (92.62)/331,369 (7.38) 503 (10)
IND_6097 183.2 (25.4) 91,255.4 9.3 12,511,860 4,744,543 3,485,727 (94.31)/198,477 (5.69) 460 (10)
IND_5830 <25 −e 9.0 11,903,095 5,115,654 3,835,811 (99.995)/215 (0.005) 503 (0)
IND_6493 <25 − 9.3 10,871,552 4,312,484 3,180,484 (99.994)/190 (0.006) 482 (0)
IND_6962 <25 − 9.0 11,545,292 4,950,884 3,575,583 (99.994)/224 (0.006) 510 (0)
aAnti-BLV enzyme-linked immunosorbent assay percentage of reactivity; percentage of reactivity values <25.0 indicated negative samples.
bhttps://www.mirbase.org/.
cA total of 95.7% of reads from BLV(+) samples (n = 18,402,926) and 99.9% of reads from BLV(−) samples (n = 14,378,553) aligned at least once to the bovine reference 
genome (acc. ARS-UCD1.2). Number of reads aligned to the BLV (acc. NC_001414.1) and BFV (acc. NC_001831.1) reference genomes: 648,383 reads from all BLV(+) samples 
showed at least one alignment to BLV, while only 600 reads from BLV(−) cows mapped to the same genome; regarding the BFV, 138,138 reads from BLV(+) and 141 reads 
from BLV(−) samples had at least one alignment.
dID = sample identification; PR = percentage of reactivity; RIN = RNA integrity number; PVL = T-3 and T0 BLV average proviral load; QC = quality control.
e"–” indicates that the sample was BLV qPCR negative.
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951.7). Additionally, three BFV-derived miRNAs were identified: bfv-miR-BF1-5p (avgexp 
= 6,844.7), bfv-miR-BF1-3p (avgexp = 8,257.3), and bfv-miR-BF2-5p (avgexp = 14,920.6). 
In contrast, viral-derived miRNA expression was low (avgexp <30.0) or undetectable in 
the BLV(−) group, except for blv-miR-B2-5p (avgexp = 67.4) and blv-miR-B3-3p (avgexp = 
49.8; Table 2).

The mapping of all reads from BLV(−) samples to the bovine reference genome (acc. 
ARS-UCD1.2) showed that only 716 out of 14,378,553 reads failed to align, indicating 
that nearly all reads were derived from bovine transcripts. Besides, the number of reads 
aligned to the BLV (acc. NC_001414.1) and BFV (acc. NC_001831.1) reference genomes 
from BLV(−) cows was only 600 and 141 reads, respectively (Table 1). Moreover, the 
alignment of the same reads data set to the identified BLV and BFV miRNAs resulted 
in 642 reads with at least one alignment. Among these, only six reads also map to 
the bovine reference genome, and none aligned to any other known miRNA from any 
organism in the miRBase database (n = 48,871 mature miRNAs). Figure S1 shows the 
coverage of all reads from BLV(+) and BLV(−) cows across the reference genomes of BLV 
and BFV. The detectable read coverage is located in known miRNA regions for both viral 
genomes.

Differential expression analysis of host miRNAs identified a total of seven bovine 
miRNAs (bta) with a |fold change| (FC) >1.5 and a q-value <0.05 as differentially 
expressed (BTA-miRNAs-DE) between the BLV(+) and BLV(−) groups: bta-miR-375, 

FIG 1 PCA of miRNAs expression matrix. Blue triangles and red circles represent BLV(+) and BLV(−) 

samples, respectively. PC = principal component. PC1 and PC2 represent 62% and 17% of the variance 

contained in the expression matrix data, respectively.
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bta-miR-133a, bta-miR-677, bta-miR-1, bta-miR-3613a, bta-miR-9-5p, and bta-miR-95 (Fig. 
2; Table S2).

To evaluate the potential functional impact of 7 differentially expressed BTA-miRNAs 
and 10 viral-derived miRNAs, a target gene prediction analysis was performed. A total of 
1,518 genes were identified as putative targets, based on the consensus of three 
independent prediction tools. Among these, 281, 977, and 260 genes were exclusively 
targeted by BTA-miRNAs-DE, BLV-miRNAs, and BFV-miRNAs, respectively (Table S3). No 
overlap was observed among the predicted targets. Then, functional annotation of the 
1,518 potential target genes was conducted using GO terms and metabolic pathways, 
revealing 91 significantly overrepresented GO biological process (BP) terms, 10 GO 
molecular function terms, and 30 GO cellular component terms. The overrepresentation 
analysis of KEGG and Reactome metabolic pathways revealed four significant terms: “Ras 
signaling pathway” (bta04014, q = 0.04), “Pathways in cancer” (bta05200, q = 0.02), 
“Oxytocin signaling pathway” (bta04921, q = 0.024), and “Cushing syndrome” (bta04934, 
q = 0.04). Additionally, the terms “Signal Transduction” (BTA-162582, q = 0.0002) and 
“Metabolism” (BTA-1430728, q = 0.01) were significant in Reactome pathways analysis 
(Table S4).

A PPI network was developed, comprising 1,518 nodes (genes) and 6,075 edges 
(interactions; Fig. S2). From this network, three highly interconnected protein clusters 
(C1, C2, and C3) were identified (PPI P-value < 1.0e−16), which potentially represent hubs 
of specialized biological function (Fig. 3). Functional overrepresentation analysis for these 
clusters revealed key cellular processes involved in immune response modulation, cell 
signaling, and mechanisms related to cancer development (Table S4). Interestingly, 
despite the lack of overlap among target genes of BTA-, BLV-, and BFV-derived miRNAs, 
their predicted functions converge on interconnected hubs, indicating potential 
interplay at the pathway level. The enrichment graph plot depicts the interconnections 
among the top 15 enriched BP GO terms per cluster, highlighting functional overlap 
through target genes (Fig. 4). For example, significantly overrepresented GO BP terms for 
C1 (q < 0.05) were mainly associated with immune regulation and cytokine signaling 
processes, including “Cytokine-mediated signaling pathway,” “Positive regulation of T cell 
activation,” “Regulation of leukocyte apoptotic process,” and “Regulation of interferon-
gamma production.” Enriched KEGG and Reactome pathways included “Viral protein 
interaction with cytokine and cytokine receptor” (bta04061, q-value = 1.02e−16), “Cyto­
kine Signaling in Immune system,” and “IL-6-type cytokine receptor ligand interactions” 
(BTA-6788467, q-value = 0.0105), among others. For cluster C2, the main overrepresented 
BP terms and metabolic pathways were related to cell growth and proliferation (e.g., 

TABLE 2 Viral derived-miRNAs expressiona

Condition BLV(+) BLV(−)

miRNA/ID IND_5671 IND_5841 IND_6021 IND_6097 avgexp (SD) IND_5830 IND_6493 IND_6962 avgexp (SD)

bfv-miR-BF1-5p 8,973.2 719.9 14,813.3 2,872.6 6,844.7 (6,359.3) 15.6 5.8 15.4 12.3 (5.6)
bfv-miR-BF1-3p 12,947.2 1,329.6 15,826.4 2,925.9 8,257.3 (7,204.2) 7.1 11.6 8.6 9.1 (2.3)
bfv-miR-BF2-5p 17,694.3 1,735.7 33,383.7 6,868.5 14,920.6 (13,991.2) 0.0 15.4 17.1 10.8 (9.4)
bfv-miR-BF2-3p 2.8 0.0 6.3 6.2 3.8 (3.0) 0.0 0.0 0.0 0.0 (0.0)
blv-miR-B1-5p 0.0 0.0 0.0 0.0 0 (0.0) 0.0 0.0 0.0 0.0 (0.0)
blv-miR-B1-3p 7,556.4 13,726.1 46,243.5 43,198.3 27,681.1 (19,875.4) 28.3 24.1 24.0 25.5 (2.5)
blv-miR-B2-5p 30,941.9 35,856.1 88,113.4 81,320.4 59,057.9 (29,825.4) 60.9 69.4 71.9 67.4 (5.7)
blv-miR-B2-3p 34.2 47.4 171.3 197.0 112.5 (83.6) 0.0 0.0 0.0 0.0 (0.0)
blv-miR-B3-5p 262.0 371.8 259.8 344.7 309.6 (57.3) 0.0 0.0 0.0 0.0 (0.0)
blv-miR-B3-3p 37,074.5 33,573.4 61,540.1 65,060.6 49,312.2 (16,278.9) 39.7 55.9 53.9 49.8 (8.8)
blv-miR-B4-5p 1.4 0.0 0.0 1.0 0.6 (0.7) 0.0 0.0 0.0 0.0 (0.0)
blv-miR-B4-3p 39.9 69.9 79.8 70.8 65.1 (17.4) 0.0 0.0 0.0 0.0 (0.0)
blv-miR-B5-5p 864.3 972.1 1,218.4 752.0 951.7 (199.2) 0.7 1.0 0.9 0.8 (0.1)
blv-miR-B5-3p 0.0 1.2 0.8 2.1 1.0 (0.9) 0.0 0.0 0.0 0.0 (0.0)
aID = sample ID; avgexp = normalized mean expression. 
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“Positive regulation of MAP kinase activity,” “Positive regulation of epithelial cell prolifera­
tion,” “Hemopoiesis,” and “PI3K Cascade” [BTA-109704, q-value = 0.0034]), as well as tissue 
development (e.g., “Anatomical structure morphogenesis,” “Vascular endothelial growth 
factor signaling pathway,” and “Signaling by Receptor Tyrosine Kinases” [BTA-9006934, q-
value = 3.13e−16]). In addition, C2 was enriched for processes linked to regulation of cell 
survival and apoptosis (“Negative regulation of apoptotic process” and “PI5P, PP2A, and 
IER3 Regulate PI3K/AKT Signaling” [BTA-6811558, q-value = 1.62e−09]). Finally, in cluster 
C3, the enriched functional terms were mostly associated with epigenetic control and 
transcriptional regulation through chromatin modification, including “Histone deacetyla­
tion” and “Chromatin remodeling,” with pathways like “Regulation of TP53 Activity 
through Acetylation” (BTA-6804758, q-value = 2.85e−08), “Gene expression (Transcription)” 
(BTA-74160, q-value = 3.05e−05), and “Chromatin modifying enzymes” (BTA-3247509, q-
value = 4.15e−05; Table S4).

FIG 2 Volcano plot summarizing the results of the differential expression analysis of bovine miRNAs 

between BLV(+) and BLV(−) groups. Each circle represents a bovine miRNA. Red circles indicate miRNAs 

with |FC| < 1.5 and non-significant, while blue circles represent miRNAs with |FC| > 1.5 and q < 0.05 

(−log[q-value] >1.3). Viral-derived miRNAs, primarily quantified in BLV(+) samples, were excluded from 

the plot. Vertical dashed lines represent a 1.5 |FC| in miRNA expression. A horizontal dashed line 

represents the significance cutoff q-value = 0.05.
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DISCUSSION

In this study, we performed a comprehensive characterization of circulating miRNAs in 
the peripheral blood of naturally BLV-infected and non-infected cattle. Notably, all BLV-
infected cows included in the analysis consistently exhibited HPVL levels across time 
points; a condition previously associated with BLV pathogenesis progression (79, 80) and 
increased risk of viral transmission within herds (81). Following the identification of BLV-
miRNAs in persistently infected cell lines (21), their expression was assessed using next-
generation sequencing for complete miRNA profiling and reverse transcription qPCR to 
test the expression of candidate miRNAs. BLV-miRNAs were identified in primary 
leukemic B-cells and B-cell lymphomas isolated from BLV-infected ovine/bovine tumors 
(44), experimentally infected cattle (82), and naturally BLV-infected cattle (45, 83, 84).

On the other hand, BFV-miRNAs have been identified in both persistently and recently 
infected Madin-Darby bovine kidney (MDBK) cells, as well as in BFV experimentally 
challenged cattle (23). However, to our knowledge, this is the first report of the 

FIG 3 PPI cluster analysis. Three clusters (>15 nodes) were identified (A) Cluster 1 (C1): N° nodes: 21, N° edges: 81, and avg. node degree: 7.7. (B) Cluster 2 

(C2): N° nodes: 20, N° edges: 64, and avg. node degree: 6.4. (C) Cluster 3 (C3): N° nodes: 16, N° edges: 34, and avg. node degree: 4.2. Green nodes: predicted 

BTA-miRNA-DE protein target; blue nodes: predicted BFV-miRNA protein target; red nodes: predicted BLV-miRNA protein target. Edges represent PPIs as 

determined by STRINGdb evidence, including known interactions (curated databases and/or experimentally validated), predicted interactions (gene fusions and 

gene co-occurrence), text mining, co-expression, and protein homology.
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co-expression of miRNAs derived from two distinct viruses (BLV and BFV) in naturally 
infected cattle. We identified and quantified seven BLV-derived and three BFV-derived 
miRNAs. No miRNAs from BoHV-1 and BoHV-5 were detected.

Co-infections of BLV and BFV are prevalent among cattle (53), akin to the occurrences 
in cats infected with feline foamy virus (FFV) and feline leukemia virus (FeLV) (85), as 
well as in baboons with SFV and simian T-cell leukemia virus (86). While BFV infections 
in cattle are generally regarded as mild and asymptomatic (23, 53), there is evidence 
to suggest that co-infections with BFV and BLV could amplify pathogenicity and impair 
the bovine immune system, thereby aiding in the transmission and spread of BFV (53, 
87–89). Infectious BFV has been extracted from raw milk, and considering that foamy 
viruses can cross species barriers, there is rising concern over the zoonotic potential 
of BFV in humans (90, 91). Moreover, increased pathogenic effects have been noted in 
mixed infections of macaques with SFV and simian immunodeficiency virus (92), as well 
as in cats coinfected with feline immunodeficiency virus and FFV or FeLV and FFV (85, 93).

The seven miRNAs derived from BLV comprised no more than 8% of the total 
miRNA sequencing reads in all analyzed samples (data not provided), consistent with 
the expression levels reported by Casas et al. (84) for natural BLV infections. In con­
trast, Rosewick et al. (44) found that all 10 mature BLV-derived miRNAs accounted for 
about 40% of total miRNAs present in B-cell lymphomas from sheep infected with 
BLV. Similarly, Ochiai et al. (94) noted that BLV-derived miRNAs made up 38% of total 

FIG 4 Enrichment graph plot of PPI clusters. Each graph shows the relationship between the 15 top enriched BP GO terms (light pink node) and their associated 

gene (light blue nodes). Node size reflects the number of genes associated with each GO term (count), and edges indicate gene-GO term associations. Genes in 

each graph include predicted gene targets of (A) BTA-miRNA-DE, (B) BLV-miRNA, and (C) BFV-miRNA, respectively.
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miRNAs in Japanese black cattle diagnosed with enzootic bovine leukosis (EBL; B-cell 
lymphoma). Additionally, Kincaid et al. (21) reported that BLV miRNAs were found in 
greater quantities than cellular miRNAs in the BL3.1 cell line persistently infected with 
BLV. Although the relative expression levels of individual BLV miRNAs differ across 
studies, blv-miR-B4-5p and blv-miR-B5-3p appear to be either weakly expressed or 
undetectable. The dominant BLV-miRNA may change depending on the disease stage 
or phase of infection analyzed. Overall, these findings suggest that BLV miRNAs are 
highly expressed in ex vivo cell cultures, persistently infected cell lines, primary B-cell 
tumors, and cattle affected by enzootic bovine leukosis. In cattle with subclinically BLV
infections, their expression levels might vary based on several factors, including the 
infection route (natural or experimental) and the animal’s age (whether calf or adult 
cow), among other factors (21, 44, 82–84, 94). Conversely, the other BLV transcripts show 
little to no expression in vivo, highlighting the essential function of BLV miRNAs in viral 
persistence (95, 96).

Likewise, three BFV-derived miRNAs (bfv-miR-BF1-5p, bfv-miR-BF1-3p, and bfv-miR-
BF2-5p) have been identified in MDBK cells that are persistently and recently infected 
with BFV, showing higher expression levels during persistent infections. Furthermore, 
two BFV-miRNAs were found in the peripheral blood leukocytes of cattle experimentally 
infected with BFV, utilizing a qPCR assay (23). This research is the first to document the 
expression of these three BFV-derived miRNAs in natural setting infections.

A previous study compared BLV seropositive and seronegative cattle but without 
testing for BLV genomic material (84). The detection of BLV-miRNAs in seronegative cows 
suggests a previous exposure to the virus, likely resulting in an inadequate immune 
response that did not generate a positive result in the anti-BLV ELISA test. However, 
a longitudinal analysis of seroconversion was not performed. This study found that all 
10 virus-derived miRNAs were consistently and highly expressed in the BLV(+) group, 
whereas only a few showed weak expression in the BLV(−) group. Although undetec­
ted infections cannot be entirely excluded, it is improbable that adult animals over 
2 years old, which tested negative via qPCR and ELISA at two intervals (3 months 
apart), were unrecognized cases. Virtually, all small RNA sequencing reads from BLV(−) 
samples aligned to the bovine genome, with only a minute fraction mapping to BLV- 
and BFV-derived miRNA loci and not to any other known miRNA in miRBase. Thus, 
although we would not completely exclude the possibility that these reads represent 
genuine viral-derived miRNAs, alternative biological and technical explanations are likely 
and must be considered, such as cross-mapping of short or error-containing reads, 
RNA modifications, or small transcripts from other microorganisms sharing conserved 
sequence motifs. Specifically, small RNAs are prone to misalignment, especially in the 
presence of sequencing errors, editing events (e.g., A-to-I editing), or modifications 
(97–100). Highly conserved motifs between viral and host miRNAs, particularly in seed 
regions, can also generate false-positive alignments (8, 10, 101). Moreover, sample 
mislabeling appears unlikely. If this had occurred, we would expect the expression 
profiles of viral miRNAs in BLV(−) samples to resemble those observed in BLV(+) samples. 
However, our data did not show such patterns. Instead, the miRNA expression pro­
files in BLV(−) samples were distinct from those in BLV(+) samples, further arguing 
against sample misidentification or cross-contamination. Finally, the possibility that BLV- 
or BFV-derived miRNAs could act as xeno-miRs and be transferred from infected to 
uninfected animals remains an open question for future research.

Notably, the expression profiles of BLV(+)/BFV-miRNAs(+) and BLV(−) samples 
distinctly differentiate the two groups of cows, as shown in the PCA plot. This indicates a 
shift in the host miRNA expression profile between them.

Among the significant differentially expressed bovine miRNAs, bta-miR-375 was 
identified, which has been previously reported to be associated with BLV infection in 
cattle (84, 94, 102), and suggested it as an early biomarker for diagnosing EBL. Moreover, 
its levels effectively distinguished EBL-affected cattle from asymptomatic cattle with high 
sensitivity and specificity (103).
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In a similar manner, bta-miR-133a was found to be differentially expressed in 
the serum of BLV-seropositive cows compared to seronegative cows (102). The other 
significantly differentially expressed miRNAs (bta-miR-677, bta-miR-95, bta-miR-9-5p, 
bta-miR-3613a, and bta-miR-1) have not been previously reported in relation to BLV 
and/or BFV infections.

To date, efforts to assign biological functions to BLV- and BFV-derived miRNAs have 
focused on predicting potential target genes for specific BLV and BFV miRNAs, in 
addition to selecting candidate target genes for functional assays (21, 41, 44, 45, 82–
84). In this study, we evaluated the functional interaction (protein-protein interaction 
network) of potential target genes of BLV miRNAs, while also considering target genes of 
BFV miRNAs and differentially expressed bovine miRNAs.

It has been demonstrated that BLV-miRNAs are crucial in promoting disease 
progression in cattle (82, 104). Additionally, BLV fails to induce leukemia/lymphoma in 
sheep (oncogenicity suppressed) challenged with an isogenic BLV provirus lacking the 
miRNA genomic region.

The functional annotation of the proteins within hub C1 revealed that immune 
system-related GO BP terms, such as “Cytokine-mediated signaling pathway,” “Positive 
regulation of leukocyte chemotaxis,” “Regulation of leukocyte proliferation,” “Positive 
regulation of T cell activation,” “Regulation of leukocyte apoptotic process,” and 
“Regulation of interferon-gamma production,” were significant overrepresented, along 
with the KEGG and Reactome terms: “Cytokine-cytokine receptor interaction,” “Viral 
protein interaction with cytokine and cytokine receptor,” and “Cytokine signaling in 
immune system.” The Fig. 4 shows the enrichment graph connecting gene targets to 
BP GO terms. It is widely accepted that BLV infection changes the cytokines expression 
patterns and alters how the immune system produces cytokines in response to BLV 
antigen stimulation (105, 106). Particularly, BLV disease progression would be related 
to the suppression of the cell-mediated immune response (107). For example, interleu­
kin-10, a suppressor and anti-inflammatory immune response cytokine, is overexpressed
in cows with persistent lymphocytosis (103), which can inhibit cytokine production by 
Th1 cells (for example, IL-2, IL-12, and gamma interferon) (108, 109), influencing the B-cell 
proliferation and differentiation (108, 110).

In turn, the analysis of overrepresented metabolic pathways for the complete 
potential target gene set identified “Pathway in cancer” as one of the significant KEGG 
pathways. This pathway involves a series of cellular signaling pathways that activate 
crucial hallmarks of tumorigenesis, including tissue invasion and metastasis, evading 
apoptosis, genomic instability, cell proliferation, genomic damage, and insensitivity to 
anti-growth signals (111). The overrepresented GO BP terms for the biological func­
tion hub C2 included terms associated with cellular processes that, when disrupted, 
could be linked to tumor development events. These terms included “Transmembrane 
receptor protein tyrosine kinase signaling pathway,” “Vascular endothelial growth factor 
signaling pathway,” “ERBB2-EGFR signaling pathway,” “Positive regulation of MAP kinase 
activity,” “Hemopoiesis,” and “Negative regulation of apoptotic process,” among others. 
Interestingly, other overrepresented KEGG terms in C2 included the “MAPK signaling 
pathway,” “JAK-STAT signaling pathway,” “HIF-1 signaling pathway,” and “Regulation of 
actin cytoskeleton,” while Reactome terms such as “PI3K/AKT Signaling” and “Signaling 
by Receptor Tyrosine Kinases.” This signaling pathway is amplified and propagated 
intracellularly by various kinases, ultimately affecting how transcription factors and 
histone-modifying complexes control downstream gene expression (112). In this context, 
a crucial signaling cascade most frequently altered in human cancers is the mitogen-
activated protein kinase (MAPK) pathway, which includes the RAS–RAF–MAPK kinase 
(MEK)–extracellular signal-regulated kinase pathway (113, 114). Using the ovine BLV 
pathogenesis model, sheep were experimentally challenged with an isogenic BLV-miRNA 
deletion mutant, and global transcriptome analysis revealed that BLV-miRNAs primarily 
promote the proliferation of BLV-infected B-cells by inhibiting immune response and 
cell signaling pathways (104). In turn, in a reporter assay, the FBJ murine osteosarcoma 
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viral oncogene homolog (FOS) was identified as a direct target of BLV-miRNAs. The FOS 
gene is a component of the activator protein-1 (AP-1) complex, which is involved in the 
primary response to B-cell receptor signaling and is frequently downregulated in many 
cancers, including breast carcinomas (82, 115).

Additionally, enriched GO BP terms across C3 included “Histone modification,” 
“Chromatin remodeling,” “Histone deacetylation,” “Negative regulation of transcription 
by RNA polymerase II,” and “Regulation of apoptotic signaling pathway,” among others, 
as well as the Reactome terms “Regulation of TP53 Activity through Acetylation” and 
“Chromatin modifying enzymes.” The transcription factor TP53, a tumor suppressor 
activated by DNA damage, plays a critical role in maintaining genomic integrity (116). 
The expression of two transcription factors, B-lymphocyte-induced maturation protein 
1 (BLIMP1) and B-cell lymphoma 6 (BCL6), is negatively correlated with BLV-miRNA 
expression in BLV(+) cows. These transcription factors play a pivotal role in regulating 
B-cell differentiation, antibody affinity, and T-cell immune function. Particularly, an 
important function of BCL6 is to enable GC B-cells to proliferate in response to T-cell 
antigens by specifically repressing gene expression related to DNA damage sensing. This 
repression allows for the tolerance of DNA breaks induced during immunoglobulin class 
rearrangement and somatic hypermutation (83, 117, 118).

The functional role of BFV-miRNAs remains poorly investigated. Predicted gene 
targets for bfv-miR-BF2-5p were ankyrin repeat domain-containing protein (ANKRD17) 
and Bax-interacting factor 1 (BIF1) (41). BIF1 plays a key role in activating the pro-
apoptotic Bax protein in the intrinsic apoptosis pathway as well as in autophagy and 
autophagosome formation, thus acting as a tumor suppressor (119, 120). ANKRD17, on 
the other hand, is involved in DNA replication and cell cycle progression. It also interacts 
with genes that are responsible for sensing viral RNAs and triggering immune responses 
(121, 122).

Notably, although the target genes of bovine, BLV, and BFV miRNAs do not over­
lap, functional analysis revealed convergence on similar cellular processes, implying 
coordinated regulatory interactions (Fig. 4).

Regarding the differentially expressed BTA-miRNAs, miR-1, miR-133a, and miR-375 are 
recognized as tumor suppressors and are downregulated in various types of cancer, 
exerting their effects through distinct mechanisms (123, 124). For instance, miR-1 
interacts with the proto-oncogene B-cell lymphoma 2 (BCL-2), an anti-apoptotic gene. 
The overexpression of miR-1 inhibits cell proliferation, migration, and invasion while 
promoting apoptosis in breast cancer (125). Similarly, miR-133a modulates biological 
processes such as proliferation, apoptosis, and autophagy (124). On the other hand, 
miR-375 is significantly downregulated in several cancers and considered a biomarker 
of poor prognosis (125–129), but it is overexpressed in breast cancer (130). Similarly, 
miR-95-3p and miR-9-3p act as prognostic markers, promoting the progression of 
cervical and breast cancers, respectively (131, 132).

Conversely, the differentially expressed bovine miRNA bta-miR-677 enhances the 
production of type I interferons and interferon-stimulated genes (133). Similarly, 
inhibiting miR-3613-3p decreases the expression of IFN-α and IFN-β, thereby affect-
ing the anti-hepatitis B activity of interferons (134). Moreover, miR-3613-3p has been 
recognized as a tumor suppressor, with its deletion associated with poor prognosis in 
estrogen receptor-positive breast cancer patients (135).

Conclusion

In this study, we report for the first time the co-expression of seven miRNAs derived 
from BLV and three from BFV in cattle naturally infected with BLV. Several bovine 
BTA-miRNAs were found to be DE between cows with BLV high PVL and non-infected 
cows. Among them, bta-miR-375 was previously identified as a potential early biomarker 
for the progression of enzootic bovine leukosis, and this study further emphasizes its 
potential utility in identifying high PVL cows alongside other candidate miRNAs.
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The functional analysis of protein-protein interaction networks involving BLV-, 
BFV-, and BTA-DE miRNAs-targeted genes identified key metabolic pathways that 
potentially underlie tumorigenesis and immune response modulation, including 
cellular signaling pathways, regulation of T cell  activation, apoptosis,  chromatin 
remodeling, and cytoskeleton regulation. Moreover, miRNA targets from both host 
and viral origins would act synergistically to influence cellular processes. The 
co-expression of miRNAs derived from BLV and BFV raises concerns about whether 
their interaction may exacerbate disease pathogenesis or facilitate the dissemination 
of BFV in light of the zoonotic potential that BFV presents. Ultimately, the identi­
fied miRNAs and associated metabolic pathways offer promising opportunities for 
developing diagnostic tools and therapeutic strategies aimed at controlling viral 
persistence and tumorigenesis in cattle.
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