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ABSTRACT
Late leaf spot (LLS), caused by Nothopassalora personata, is the most damaging foliar disease in peanut produc-

tion worldwide. Accurate disease severity assessment is crucial for evaluating and implementing effective ma-
nagement strategies. This study aimed to develop and validate an automated image analysis model, LLS-SevEst, 
for quantifying LLS severity in peanut leaves. A dataset of 190 scanned leaf images was analyzed using three ap-
proaches: a fixed threshold-based segmentation, morphological preprocessing and K-means clustering. Exploratory 
analyses revealed distinct brightness patterns between healthy and diseased tissues, guiding the development of 
classification functions. The threshold-based model yielded high false positive rates due to its inability to account 
for natural leaf variation, while the morphological preprocessing method improved segmentation marginally but still 
required manual adjustments. The K-means clustering approach provided relatively better segmentation performan-
ce under the specific conditions tested and showed high potential for automated and reproducible disease severity 
estimation. This work should be considered a proof-of-concept, and further research is required to develop a robust 
and generalizable tool for LLS severity estimation.
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RESUMEN
La viruela del maní, causada por Nothopassalora personata, es la enfermedad foliar más importante de este cultivo 

a nivel mundial. La evaluación precisa de la severidad de la enfermedad en la planta es fundamental para la implemen-
tación de estrategias de manejo efectivas. Por lo tanto, el objetivo de este estudio fue desarrollar y validar un modelo 
automatizado de análisis de imágenes, denominado LLS-SevEst, para cuantificar la severidad de la viruela el maní en 
hojas. Para esto se analizó un conjunto de 190 imágenes escaneadas de hojas de maní utilizando tres enfoques: seg-
mentación basada en umbrales fijos, preprocesamiento morfológico y agrupación de clústeres por K-means. Los aná-
lisis exploratorios revelaron patrones de brillo distintos entre los tejidos sanos y enfermos, lo que permitió orientar el 
desarrollo de funciones de clasificación. El modelo basado en umbrales presentó altas tasas de falsos positivos debi-
do a su incapacidad para considerar la variación natural en la tonalidad de las hojas, mientras que el preprocesamiento 
morfológico mejoró la segmentación, aunque evidenciando la necesidad de ajustes manuales. El enfoque basado en 
agrupamientos por K-means ofreció un mejor desempeño relativo para las condiciones evaluadas, mostrando un alto 
potencial para una estimación automatizada y reproducible de la severidad de la enfermedad. Debido a la naturaleza 
de nuestros resultados, este trabajo debe considerarse una prueba de concepto, que requiere investigaciones adicio-
nales para constituir una herramienta robusta para la estimación de la severidad de LLS.

Palabras clave: enfermedades del maní, viruela del maní, análisis de imágenes, aprendizaje automático, cuantifica-
ción de enfermedades.
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INTRODUCTION

Peanut is a key global crop. In Argentina, production is region-
ally important, with over 70% concentrated in Córdoba. During 
the 2023/24 season, 300.000 hectares were planted, generat-
ing over $1 billion in exports. However, peanut production faces 
significant phytosanitary challenges, with late leaf spot (LLS), 
caused by Nothopassalora personata (Berk. & M.A. Curtis), being 
the most damaging disease worldwide (Giordano et al., 2021). 
Under favorable conditions (95% relative humidity, ~18°C), and 
without effective field management, LLS can produce losses 
exceeding 50% (Shokes and Culbreath, 1997). The symptoms 
consist of dark leaf spots surrounded by yellow halos, which, in 
severe cases, coalesce and drastically reduce the photosynthet-
ic area (Marinelli and March 2005; Oddino et al., 2018).

Control relies primarily on fungicides (e.g., strobilurins, tri-
azoles, carboxamides, and chlorothalonil) (Giordano et al., 
2021; Monguillot et al., 2023). Evaluating the efficacy of these 
tools requires accurate disease severity assessment, which 
remains predominantly visual despite the availability of ad-
vanced techniques. While visual assessment is cost-effective, 
it is inherently subjective and influenced by the evaluator’s 
expertise and pathosystem characteristics (Bock et al., 2020; 
Del Ponte et al., 2021).

Various tools have been developed to improve visual assess-
ments, including online training systems and a standard area 
diagram (Cazón et al., 2025; Del Ponte, 2023). Smart agriculture 
technologies, particularly multispectral and hyperspectral imag-
ing, offer promising alternatives for disease severity quantification 
assessment (Chen et al., 2019; Omran, 2016). However, adoption 
remains limited due to operational complexity and costs. In con-
trast, RGB imaging with deep learning has shown high accuracy 
in peanut foliar disease detection, yet no validated tool currently 
exists for LLS severity quantification (Xu et al., 2023).

In this context, this study aimed to develop a proof-of-con-
cept model using Python software, based on image segmenta-
tion methods. With this, we seek to lay the groundwork for the 
future development of automated models for quantifying the 
severity of LLS. 

MATERIAL AND METHODS

-	Image acquisition. A total of 190 peanut leaves with vary-
ing disease severity were collected in April 2023 from plants 
grown under controlled conditions at IPAVE-CIAP, Córdoba 
(Latitude: −31.46895, Longitude: −64.14730). The abaxial 
leaf surface was scanned using a CanoScan LIDE 300 flatbed 
scanner at 300 dpi. A group of 50 representative images were 
selected for model development. Additionally, the Pliman 
package (Olivoto, 2022) in R (R Core Team, 2022) was used 
for comparison, applying segmentation techniques to distin-
guish healthy from diseased tissue.

-	Image processing. Image processing was conducted using Py-
thon 3.x (Python Software Foundation, 2023) in Jupyter Note-
books (Kluyver et al., 2016) on Google Colab. Exploratory analy-
ses identified pixel luminosity differences between healthy and 
diseased areas. To enhance contrast and visualize brightness 
distribution, various filters and histogram plots were applied us-
ing pandas (McKinney, 2023), NumPy (Numpy, 2023), OpenCV 
(Itseez, 2023), and Matplotlib (Hunter, 2023). Based on these 
patterns, three methods were used to estimate the percentage 
of leaf area affected by N. personata: 

1.	 Threshold-Based Model: Pixels with intensity <80 (from 
histogram analysis) were classified as lesions; others as 
healthy. Severity was calculated as the proportion of lesion 
pixels relative to the total leaf area.

2.	 Morphological Preprocessing Model: Erosion followed by 
dilation (3×3 elliptical element) improved segmentation, 
reducing misclassification. Users could manually adjust 
thresholds based on histograms for better accuracy.

3.	 K-Means Clustering Model: Using scikit-learn (Pedregosa 
et al., 2011), images were transformed into RGB matrices, 
smoothed and converted into datasets of pixel positions 
and color values. Color-difference features were added 
and normalized (StandardScaler). K-means clustering (3 
clusters, 10 iterations) classified pixels; severity was cal-
culated as lesion pixels over the total leaf area.

RESULTS AND DISCUSSION

Exploratory Analysis

The grayscale conversion effectively distinguished healthy and 
diseased areas based on pixel luminosity (fig. 1A). The histo-
gram analysis revealed a distinct intensity peak corresponding 
to the background (255 intensity units). In contrast, leaf areas 
(healthy + diseased) displayed a Gaussian distribution (fig. 1B). 

Further analysis showed different intensity patterns between 
healthy and diseased regions (fig. 2). Healthy tissue exhibited a 
Gaussian distribution (fig. 2B), while lesions displayed bimodal 
distributions due to overlapping brightness intensities at lesion 
margins (fig. 2A, C).

Model performance evaluation
For the Threshold-Based Model, a threshold of 80 grayscale 

intensity units (ranging from 0 for black to 255 for white) was 
set for the classification of different areas. Pixels below this 
threshold were classified as lesions, while those above were 
considered healthy leaf tissue. However, this approach failed to 
accurately differentiate between healthy and diseased areas, re-
sulting in a high rate of false positives. One example of this mis-
classification was the identification of shadows cast by the leaf’s 
midrib as diseased areas (fig. 3A). This limitation led to consider-
able variability when comparing the severities obtained with this 
model and those calculated using Pliman (fig. 3B). Although this 
approach is conceptually valid (Barbedo, 2016), the results sug-
gest that segmentation based on a fixed luminosity threshold is 
insufficient for accurately distinguishing between healthy and 
lesioned areas, particularly in leaves with natural variations in 
brightness and color in this pathosystem. The function was later 
modified to allow for manual threshold adjustment, enabling bet-
ter adaptation to the specific characteristics of each leaf image.

Regarding the Morphological Preprocessing Model, the dilation 
followed by erosion function helped to “smooth” the images, reduc-
ing some false positives (Gonzalez and Woods, 2018). However, 
darker-toned areas remained undistinguished (fig. 3C), still causing 
significant dispersion in the severity estimates when compared to 
Pliman (fig. 3D). These results suggest that a fixed threshold cannot 
be universally applied, and that manual adjustments are required for 
each specific case, which reduces the practicality and automation 
of the method. It is important to note that achieving accurate seg-
mentation remains a significant challenge in image-based automat-
ic plant disease identification (Barbedo, 2016).
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Figure 1. A. RGB image of a peanut leaflet affected by N. personata (left), and its grayscale conversion (right) using the color_rgb2gray 
from the OpenCV library (cv2). B. Pixel intensity histogram corresponding to the grayscale image in A. Peack near to 255 correspond to 
the background. Gaussian distribution between 60–150 correspond with healthy and diseased tissues.
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Figure 2. A: Cropped grayscale image of a lesion caused by N. personata and its pixel luminance histogram. B: Cropped grayscale image 
of a healthy leaf area and its pixel luminance histogram. C: Overlaid histograms showing lesion pixels in red and healthy pixels in green.
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Applying the K-means model enabled effective image seg-
mentation, accurately distinguishing healthy tissue, affected 
areas, and background regions. This approach was used by 
Phadikar et al. (2012) for rice disease classification. The clus-
ter visualization revealed a clear distinction between N. perso-
nata-affected areas and healthy tissues, allowing an objective 
assessment of disease severity (fig. 4A). The model was ap-
plied to all images in the dataset, enabling the calculation of the 
affected area percentage in each case. 

At first glance, a significant improvement is observed com-
pared to the results obtained with the initial functions. How-
ever, discrepancies remain between the previously calculated 
severity and the severity estimated using the developed model 
(fig. 4B). When images with considerable discrepancies be-
tween Pliman and the LLS-SevEst model were closely analyzed, 
it was observed that some photosynthetic regions were not 
classified as lesions by Pliman. Since many authors emphasize 
the high efficiency of Pliman in determining disease severity, 

any methodological error, likely introduced by the user during 
the creation of palettes in the initial image processing stages, 
can lead to overall classification errors (Del Ponte, 2023).

When images exhibiting this discrepancy were excluded, the 
model fit improved significantly, suggesting that K-means is an 
efficient tool for image segmentation in foliar disease quantifi-
cation, enabling automated evaluation of LLS severity (fig. 5).

Future research should focus on improving the model by inte-
grating deep learning techniques, such as convolutional neural 
networks, and expanding the dataset to include more diverse 
leaf images from different genotypes and environmental con-
ditions (Ferentinos, 2018; Mohanty et al., 2016). In addition, al-
lowing threshold flexibility and manual adjustment remains cru-
cial to ensure accuracy across a variety of scenarios. Although 
the primary objective of LLS-SevEst is to support research and 
development activities, particularly fungicide efficacy trials and 
resistance evaluations, it should be emphasized that this is a 
preliminary model. The absence of a large, diverse dataset and 
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Figure 3. Comparison between two versions of the model for estimating LLS severity. A. Lesion segmentation from the first model, based 
on pixel luminance thresholding. B. Relationship between severity (%) predicted by the first model and that calculated with Pliman; the 
green line represents Deming regression. C. Lesion segmentation using a modified model incorporating morphological operations (ero-
sion and dilation). D. Relationship between severity (%) predicted by the modified model and that calculated with Pliman; the green line 
shows the Deming regression.
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reliance on unsupervised methods limit its generalizability. Fur-
thermore, no formal statistical validation (e.g., accuracy, preci-
sion, recall) was conducted. Future versions must incorporate 
more advanced AI approaches, such as convolutional neural 

networks, along with rigorous validation metrics. Thus, the cur-
rent version of LLS-SevEst represents an early-stage tool with 
potential for development rather than a definitive or benchmark 
model for disease severity estimation.

Figure 4. Leaf lesion segmentation using the K-Means clustering algorithm. A. Original image (left) and segmentation by K-Means (right), 
where white corresponds to the “background” cluster, red to the “healthy” cluster, and orange to the “lesion” cluster. B. Comparative 
scatterplot between severity (%) estimated by the K-Means model and that calculated with Pliman. The green line represents the Deming 
regression.
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Figure 5. Comparative scatter plot between the severity percentage predicted by KMeans and the one previously calculated using Pliman. 
Only the images correctly segmented by Pliman were included in this analysis.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Re
al

 s
ev

er
ity

 (p
lim

an
)

Predicted severity with KMeans

Predicted severity with KMeans, using only images 
correctly segmented by Pliman 



123LLS-SevEst - Late leaf spot severity estimator. A machine learning approach to assessing Nothopassalora personata in peanut

ACKNOWLEDGEMENTS 

We want to thank INTA, Fundación Maní Argentino, and IUCBC.

DATA AVAILABILITY 

The datasets generated and/or analyzed during the current 
study are available from the corresponding author upon rea-
sonable request.

CONFLICTS OF INTEREST 

All authors declare that they have no conflicts of interest.

REFERENCES

BARBEDO, J.G.A. 2016. A review on the main challenges in 
automatic plant disease identification based on visible range 
images. Biosystems Engineering, 144, 52-60. https://doi.
org/10.1016/j.biosystemseng.2016.01.017xz

BOCK, C.H.; BARBEDO, J.G.A.; DEL PONTE, E.M.; BOHNEN-
KAMP, D.; MAHLEIN, A.-K. 2020. From visual estimates to fully 
automated sensor-based measurements of plant disease se-
verity: Status and challenges for improving accuracy. Phytopa-
thology Research, 2, 9.

CAZÓN, L.I.; PAREDES, J.A.; GONZÁLEZ, N.R.; CONFORTO, 
E.C.; SUAREZ, L.; DEL PONTE, E.M. 2025. Optimizing visual es-
timation of peanut late leaf spot severity with online training 
sessions and standard area diagrams. Eur J Plant Pathol Vol. 
172. 451-465 pp. https://doi.org/10.1007/s10658-025-03016-1 

CHEN, T.; ZHANG, J.; CHEN, Y.; WAN, S.; ZHANG, L. 2019. Detec-
tion of peanut leaf spots disease using canopy hyperspectral re-
flectance. Computers and Electronics in Agriculture, 156, 677-683.

DEL PONTE, E.M.; CAZÓN, L.I.; ALVES, K.; PETHYBRIDGE, S.; 
BOCK, C. 2021. How much do standard area diagrams improve 
accuracy of visual estimates of plant disease severity? A sys-
tematic review and meta-analysis. Tropical Plant Pathology. 
Avance online publication. https://doi.org/10.1007/s40858-
021-00479-5 

DEL PONTE, E.M. 2023. Training sessions. In R for plant dis-
ease epidemiology (R4PDE). (Available at: https://r4pde.net 
verified on March 26, 2025).

FERENTINOS, K.P. 2018. Deep learning models for plant dis-
ease detection and diagnosis. Computers and Electronics in 
Agriculture, 145, 311-318.

GIORDANO, D.F.; PASTOR, N.; PALACIOS, S.; ODDINO, C.M.; 
TORRES, A.M. 2021. Peanut leaf spot caused by Nothopassalo-
ra personata. Tropical Plant Pathology, 46, 139151.

GONZALEZ, R.C.; WOODS, R.E. 2018. Digital Image Process-
ing (4th ed.). Pearson.

HUNTER, J.D. 2023. Matplotlib [Software]. (Available at: 
https://matplotlib.org/ verified on March 26, 2025).  

ITSEEZ. 2023. OpenCV [Software]. (Available at: https://
opencv.org/ verified on March 26, 2025). 

KLUYVER, T.; RAGAN-KELLEY, B.; PÉREZ, F.; GRANGER, B. E.; 
BUSSONNIER, M.; FREDERIC, J.; WILLING, C. 2016. Jupyter Note-
books – a publishing format for reproducible computational work-
flows. In: Loizides, F.; Schmidt, B. (Eds.). Positioning and Power 
in Academic Publishing: Players, Agents and Agendas. IOS Press. 
87-90. https://doi.org/10.3233/978-1-61499-649-1-87 

MARINELLI, A.; MARCH, G.J. 2005. Viruela. In: Marinelli, A.; 
March, G.J. (Eds.). Enfermedades del maní en Argentina. Edi-
ciones Biglia. 13-39 pp.

MCKINNEY, W. 2023. Pandas [Software]. (Available at: https://
pandas.pydata.org/ verified on March 26, 2025). 

MOHANTY, S.P.; HUGHES, D.P.; SALATHÉ, M. 2016. Using 
deep learning for image-based plant disease detection. Front. 
Plant Sci. 7:1419. doi: 10.3389/fpls.2016.01419 

MONGUILLOT, J.H.; BERNARDI LIMA, N.; PAREDES, J.A.; GIOR-
DANO, D.F.; ODDINO, C.; RAGO, A.M.; CARMONA, M.; CONFOR-
TO, E.C. 2023. Caracterización de aislados de Nothopassalora 
personata agente causal de la viruela tardía del maní. 38º Jor-
nada Nacional de Maní. 

NUMPY DEVELOPMENT TEAM. 2023. NumPy [Computer 
software]. (Available at: https://numpy.org verified on March 
26, 2025).

ODDINO, C.; GIORDANO, F.; PAREDES, J.; CAZÓN, L.; GIUGGIA, 
J.; RAGO, A. 2018. Efecto de nuevos fungicidas en el control de 
viruela del maní y el rendimiento del cultivo. Ab Intus, 1, 9-17.

OLIVOTO, T. 2022. Lights, camera, Pliman! An R package for plant 
image analysis. Methods in Ecology and Evolution, 13(4), 789-798.

OMRA, E.S.E. 2016. Early sensing of peanut leaf spot using 
spectroscopy and thermal imaging. Archives of Agronomy and 
Soil Science, 63, 883-896.

PEDELINI, R. 2021. MANÍ: Guía práctica para su cultivo. FMA press.
PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, 

V.; THIRION, B.; GRISEL, O.; BLONDEL M.; PRETTENHOFER, 
P.; WEISS, R.; DUBOURG, V.; et al. 2011. Scikit-learn: Machine 
Learning in Python. Journal of Machine Learning Research, 12, 
2825-2830.

PHADIKAR, S.; SIL, J.; NAYAK, J. 2012. Rice diseases classifi-
cation using feature selection and rule generation techniques. 
Computers and Electronics in Agriculture, 90, 76-85.

PYTHON SOFTWARE FOUNDATION. 2023. Python Language 
Reference (Version 3.x). (Available at: https://www.python.org 
verified on March 26, 2025).

R CORE TEAM. 2022. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vi-
enna, Austria. (Available at: https://www.R-project.org/ verified 
on February 10, 2024).

SHOKES, F.M.; CULBREATH, A.K. 1997. Early and late leaf 
spots. In: KOKALIS-BURELLE N.; PORTER, D.M.; RODRÍ-
GUEZ-KÁBANA, R.; SMITH D.H.; SUBRAHMANYAM, P. (Eds.). 
Compendium of peanut diseases, 2nd ed. APS Press. 17-20 pp. 

XU, L.; CAO, B.; NING, S.; ZHANG, W.; ZHAO, F. 2023. Peanut 
leaf disease identification with deep learning algorithms. Mol 
Breeding 43, 25. https://doi.org/10.1007/s11032-023-01370-8




