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Abstract: Leaf senescence is a complex trait which becomes crucial for grain filling because pho-
toassimilates are translocated to the seeds. Therefore, a correct sync between leaf senescence and
phenological stages is necessary to obtain increasing yields. In this study, we evaluated the per-
formance of five deep machine-learning methods for the evaluation of the phenological stages of
sunflowers using images taken with cell phones in the field. From the analysis, we found that the
method based on the pre-trained network resnet50 outperformed the other methods, both in terms of
accuracy and velocity. Finally, the model generated, Sunpheno, was used to evaluate the phenological
stages of two contrasting lines, B481_6 and R453, during senescence. We observed clear differences in
phenological stages, confirming the results obtained in previous studies. A database with 5000 images
was generated and was classified by an expert. This is important to end the subjectivity involved
in decision making regarding the progression of this trait in the field and could be correlated with
performance and senescence parameters that are highly associated with yield increase.

Keywords: phenology; senescence; sunflower; deep machine learning

1. Introduction

Sunflower is a primary oil crop, contributing to 2% of the total harvest area worldwide
and with a global gross production value of 21.4 billion USD in 2020 [1]. Despite their
economic importance, sunflower breeding has shown a low increase in yield in comparison
with wheat, rice, soybean, and maize [1], with its trait of early leaf senescence being one of
the most relevant in terms of the gap between real and potential yields for this crop [2–4].

Leaf senescence is the last stage of leaf development and is characterized by an ac-
tive decline in the photosynthetic rate, rupture of chloroplasts, and cell death. In annual
plants, such as grain and oil crops, flowering induces senescence accompanied by nutrient
remobilization (mainly nitrogen) from leaves to developing seeds [5–7]. The remobilization
of nutrients must be coordinated with the developmental stages of the sunflower. If the
senescence is anticipated to occur at flowering time or if the rate of senescence increases dis-
proportionately during the development of the seeds, losses in yield are observed [2,4,8,9].
The plant’s ability to maintain an active photosynthetic area for longer periods might
improve the recycling process and, consequently, the grain content [9].

Crop phenological information is not only important in relation to senescence, but it
is also used in yield modeling and crop monitoring. The impact of climatic conditions on
final crop yield depends on the phenological stage [10–12]. In sunflower, a reduction in the
intercepted radiance by shading has a different impact on the grain number according to
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the developmental stage in which the shading was applied. Meanwhile, the grain set of
florets in the central position on the head radius is affected when shadowing takes place in
early or late post-anthesis periods, while the grain set of florets in the mid-section was only
affected by early anthesis shading. Thus, the post-anthesis period is critical for determining
grain number [13]. On the other hand, the reproductive period of pre-anthesis has an
impact on the determination of grain size, a parameter also correlated with the maximum
seed weight [14]. Finally, the early post-anthesis period is highly susceptible to intercepted
radiation, being decisive for the weight and oil content of the grains [15,16].

In sunflower, the phenological stages were described by Schneiter and J.F. Miller in
1981 [17]. According to this classification, the vegetative stages are named as ‘V’ following
the number of fully expanded leaves, and the reproductive stages are named from R1 (the
first appearance of the inflorescence) to R9 (physiological maturity). Furthermore, stage R5
can be divided into substages R5.1 to R5.9, which describe the percentage of anthesis in the
head area. The evaluation of crop phenology is conventionally identified by monitoring
activities in the field. These activities provide an accurate description of crop phenology, but
are also expensive and time consuming, and therefore rarely implemented on a large scale.

New technologies for describing morphophysiological parameters in sunflower fields
have been developed over the past decade [18–20]. The use of new types of sensors in the
field and their combination with mathematical models, such as deep machine learning
algorithms, accelerates the evaluation time, homologates the measurement between differ-
ent work groups, and improves the accuracy and resolution [21,22]. Automatic evaluation
allows farmers and experts to decrease the cost of analysis by orders of magnitude, making
it possible to obtain a denser temporal analysis of plant phenological stages in the field.

Neural networks (NNs) are mathematical models consisting of a series of layers
formed by neurons. Briefly, we can classify NNs in three different classes: fully connected
feedforward NNs (also called multi-layer perceptron (MLP)), convolutional NNs (CNNs)
and recurrent NNs (RNNs). Convolutional neural networks (CNNs) have shown remark-
able success in computer vision tasks such as image classification, object detection, and
segmentation. CNNs are inspired by the structure of the visual cortex in animals, which
is responsible for processing visual information. The key idea behind CNNs is to learn a
hierarchical representation of the input image by convolving filters over the image and
pooling the results to produce a feature map. This allows the network to capture local
patterns in the image, such as edges and textures, and gradually build up to more abstract
representations of objects and scenes. Researchers have discovered that, thanks to their
capability to build a gradual understanding of objects by stacking simpler representations,
convolutional neural networks are also very suitable for transfer learning. Transfer learning
enables practitioners to transfer the knowledge obtained on a dataset for a specific task, to
a new dataset with a possibly similar but not equivalent task.

In the context of image classification, several pretrained architectures have been
introduced, mainly trained on ImageNet [23] for image classification. We will experiment
with both non pretrained and pretrained architectures, including resnet18, resnet50, vgg16
and a pretrained vision transformer [24,25].Transformers are a different family of deep
learning algorithms, based entirely on the attention mechanism. They have been introduced
in text translation, and were shortly after adopted for other natural language processing
(NLP) tasks, such as sentiment classification, topic identification [26–29] and text generation.
Transformers have also been adapted in the computer vision field and applied for the first
time for image classification, showing promising results.

In this study, five deep machine-learning methods, including CNNs and transformers,
were evaluated for the automatic discrimination of sunflower developmental stages. The
best model was then used to evaluate the progression of phenological stages in lines R453
and B481_6 on images acquired with three smartphones. These two inbred lines belonging
to the INTA Sunflower Breeding Program and the INTA Manfredi Sunflower Germplasm
Collection, have been described previously by the group as contrasting senescence pheno-
types that also present a difference in yield.
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2. Results
2.1. Dataset

A total of 5000 images were taken manually with cell phones during the growing
season 2021/2022 at 14 sampling times from different angles and light conditions. The
experiment was carried out with two genotypes, B481_6 and R453, with visual differences
in their inflorescences. All the images were classified into five classes, as shown in Figure 1.
Each class contained images of a particular developmental stage. The S1 class included all
images of plants in the vegetative stages, regardless of the number of leaves. S2 included
all reproductive stages described by Schneiter and J. F. Miller before the anthesis, referred
to as the pre-anthesis period. S3 class is the anthesis stage and is characterized by the
maturity of the ray flower, visible floret disks, stigma exposure, and dehisced anther locules.
The S4 class included images belonging to the R6 reproductive stages referred to as the
post-anthesis period, and no pictures of the R7 and R8 stages were taken. S5 class included
images of plants at physiological maturity.
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Figure 1. Image dataset classified into five classes based on Schneiter and J. F. Miller phenological
stages description.

2.2. Methods and Models

Five different methods—CNN from scratch, VGG19, ResNet18, ResNet50, and
VITB16—were evaluated using a balanced dataset of 450 images per class. In addition, data
augmentation was implemented to augment the number of training samples artificially.
Except for the CNN from scratch, transfer learning was applied.

A total of 300 epochs were performed for each method. Loss and accuracy were
recorded in the validation and training sets for each epoch (Figure 2). During the training,
the best model for each method was saved.
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The first 100 epochs are shown.

The best model for the CNN from scratch method is described in Table 1. Even so,
VITB16 seems to have outperformed ResNet50 in the training set (Figure 2a,b), while, in the
validation set, there are no clear differences among the Resnet18, ResNet50, VITB16, and
VGG19 methods. The performance metrics of the testing set revealed notable differences
among the evaluated models. The best-performing model within the ResNet50 approach
exhibited remarkable accuracy (95.703%), coupled with a minimal error (0.043). Despite
the ResNet50 model’s higher parameter count compared with ResNet18, it maintained a
comparable prediction time, demonstrating its efficiency. VITB16 and ResNet18 models
showed similar accuracy and error rates, and the performance of VGG19 and the CNN from
scratch lagged, exhibiting the least favorable outcomes in terms of performance (Table 1).

When evaluating the accuracy for individual classes, the model’s notable weakness
lies in distinguishing between S3 and S4. This distinction is particularly evident in the CNN
from scratch and VGG19 models. Interestingly, both ResNet18 and VITB16 outperformed
ResNet50 in effectively distinguishing between these two stages (Figure 3).
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Table 1. Performance metrics.

CNN from Scratch VGG19 ResNet18 ResNet50 VITB16

Macro average precision 0.83 0.91 0.95 0.96 0.94
Macro average recall 0.84 0.91 0.95 0.96 0.94

Macro F1 score 0.84 0.91 0.95 0.96 0.94
Error 0.16 0.09 0.05 0.04 0.06

Confidence interval (95%, z = 1.96) 0.03 0.02 0.02 0.02 0.02
Accuracy 83.70 90.96 94.52 95.70 94.22

Accuracy +/− 2.79 2.16 1.72 1.53 1.76
Number of parameters 63,001 139,601,733 11,179,077 23,518,277 85,802,501

Time of test 675 images (s) 63,091 18,552 17,252 18,542 18,049
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Figure 3. Confusion matrices for the sunflower datasets obtained in the test set. (a) CNN from scratch,
(b) VGG19, (c) ResNet18, (d) ResNet50, and (e) VITB16. For each matrix, the rows show the true
development stage, whereas the columns show the predictions from the CNN architecture. The
accuracy of the prediction of each class is shown. Accuracy values from 0 to 1 are represented from
dark purple to light yellow.

2.3. Sunpheno

The best model generated using the ResNet50 method was named Sunpheno. Sun-
pheno inferences in the test set showed that some pictures were incorrectly classified with
high confidence (Supplementary Table S1). In this group of images, the largest portion
belonged to the images of stage S3.

It seems that the model has problems identifying the stages in pictures taken from the
top when the floret weight turns down the plant (Figure 4a), and classification of pictures
taken from the side (Figure 4b,c). Finally, one should consider that the prediction can be
affected when there is overlap between vegetative and reproductive organs (Figure 4d).
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Figure 4. Examples of images incorrectly classified by the best model, ResNet50, with high confidence
in the prediction. (a) Image of phenological stage S3, incorrectly classified as S4 with a confidence
of 0.74. (b) Image of phenological stage S4, incorrectly classified as S2 with a confidence of 0.77.
(c) Image of phenological stage S3, incorrectly classified as S4 with a confidence of 0.79. (d) Image of
phenological stage S2, incorrectly classified as S1, with a confidence of 0.65.

2.4. Case Study

To test the Supheno model, we used it to monitor the developmental stage of sunflow-
ers in two experiments carried out at INTA Castelar during the 2020/2021 and 2021/2022
growing seasons. The pictures were taken at 12 pm with variable weather conditions. The
objective of these experiments was to compare the progress of senescence of genotypes
B481_6 and R453 and its correlation with plant development. These genotypes have been
widely studied because of their contrasting senescence phenotypes.

In both growing seasons (Figure 5a,b), the R453 genotype exhibited an early senescence
phenotype in contrast with the B481-6 genotype. R453 showed half of the total amount of
leaves senescent after 1100 ◦Cd and a positive increase in the slope after 1300 ◦Cd, reducing
the plant lifespan. Meanwhile, genotype B481_6 showed half of the leaves senescent at
1600 ◦Cd with a diminished slope after 1300 ◦Cd. The obtained yield, measured as a weight
of 1000 g, was significantly slower in the genotype R453 in both growing seasons, as was
expected for this genotype (Figure 6a,b).
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Figure 5. Number of senescent leaves over time. (a) Growing Season 20/21, with the measurements
taken on five sampling dates. (b) Growing Season 21/22, with the measurements taken on fourteen
sampling dates. The time was recorded as the thermal time after emergence (◦Cd). The red and blue
lines represent the genotypes B481_6 and R453, respectively.

Sunpheno successfully described the progression of developmental stages in both the
growing seasons and genotypes. A total of 20 pictures for each sampling time and genotype
were predicted (Figure 7). As time progressed, the proportion of predicted images shifted
from S1 dominant at the beginning to S5 dominant at the later sampling date. No significant
differences were found between genotypes, as most of the plants reached anthesis (S3) at
approximately 850 ◦C and 950 ◦C. Before 168 ◦Cd in the growing season 21/22, Sunpheno
had difficulty in assigning the label S1 to the images. This could be the result of the small
size of the plants or the inference of mulch sheet.
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Figure 6. Box plot showing the weight in grams of 1000 seeds for R453 and B481_6 genotypes.
(a) Growing Season 20/21 (b) Growing Season 21/22. Outliers are shown as open circles outside
the boxes. The top and bottom of the box represent the first quartile (Q1) and third quartile (Q3),
respectively. This range is known as the interquartile range (IQR) and contains the middle 50% of the
data. A green line inside the box represents the median (Q2) of the data.
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Figure 7. Sunflower stages predicted with Sunpheno. (a) Genotype R453, growing season 20/21.
(b) Genotype R481-6, growing season 20/21. (c) Genotype R453, growing season 21/22. (d) Genotype
R481-6, growing season 21/22. The time was recorded as the thermal time after emergence (◦Cd). For
each time, 20 images were predicted. Yellow bars indicate stage S1, green S2, purple S3, red S4 and
blue S5.
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3. Discussion

The detection of developmental stages, particularly in biological and agronomical
contexts, often relies on analyzing various data points, such as images, genetic data,
physiological measurements, etc. Implementing an intelligent agent (IA) for this purpose
typically involves two key components, an expert eye on a field and a robust and well-
supported machine-learning model [30]. A classic example is field phenotyping, which
has unlocked new prospects for non-destructive field-based clean observation in plants
for a large number of traits, including physiological, biotic (includes living factors such as
fungi, bacteria, virus, insects, parasites, and weeds, etc.) and abiotic (includes non-living
factors such as drought, flood, nutrient deficiency, senescence and other environmental
factors) stress traits [31]. Determination of the phenological stages of plants is important
for the growth of healthy and productive plants. The knowledge of transition times of
phenological stages of a plant can provide valuable data for planning, organizing and
timely execution of agricultural activities [32].

Due to the widespread availability of mobile phones and applications, tasks such
as image classification can now be completed at the point of care. The deployment of
biological image classification models on mobile phones can lead to several technical issues.
For example, the model’s performance when trained or tested on a computer degrades
significantly when the same model is deployed on a mobile phone [33].

The present study aimed to develop a tool for the automatic discrimination of sun-
flower phenological stages. Different deep machine-learning methods were applied to
2250 images, revealing that the ResNet50 architecture was the most accurate algorithm
for this experiment, according to what happens in other systems, such as potato [34] and
seldom crop systems [35].

The model generated in this study, Sunpheno, was used to evaluate changes in the
developmental stages of the two genotypes with phenotypic differences in their inflores-
cences. These results are equivalent to those observed in previous studies [36]. R453 and
B481-6 genotypes have similar phenological progressions, reaching anthesis at a similar
time; however, senescence after anthesis in R453 was more pronounced than that in B481-6.
This early senescence phenotype affected the observed yield of genotype R453.

Sunpheno successfully evaluated the changes in the developmental stages of the two
genotypes, suggesting that it is robust enough to distinguish developmental stages, even if
there are phenotypic differences between genotypes. However, additional genotypes and
different growth treatments should be evaluated to confirm the application of this model.

The images in this work were taken with cell phones, which, unlike remote sensing
tools, are laborious and have high dimensions as long as the image resolution level of a
human is well trained for the physiological event addressed in the study, considering the
elimination of the background as a key process for complex field trials and with the presence
of the relevant biological information required to detect phenological stages [37,38]. How-
ever, evaluating developmental stages through a machine learning model homogenizes
the results of these changes and removes subjectivity from the analyst measurements. As
future work, hybrid techniques of machine vision and deep learning models can be applied
in further field experiments to develop automated systems for precision agriculture based
on cell phone images and a well-trained field observatory team. In addition, this model is
intended as the first step in the development of a fully automatic monitoring experimental
field, utilizing fixed cameras that can be installed on the ground or at the top of the antibird
cages or even utilizing image acquisition from drones, as a future development for smart
farming [39]. Additionally, CNN-based image analysis holds great promise for the accurate
and efficient recognition of phenological stages in crops [40].

Finally, this study generated a 5000-image database, subdivided into 5 phenological
stages that can be used in future computer vision studies. Hence, developing an IA
machine learning model for detecting developmental stages is a multidisciplinary effort
that combines data science and software engineering.
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Conclusions

In this study, a novel high-precision and high-efficiency method was proposed based
on the deep learning convolutional neural network (CNN) model for the automatic detec-
tion of phenological stages in sunflower. Sunpheno has been shown to be a high-throughput
and low-cost method, mainly developed and evaluated using images collected in a field,
and can help breeders and farmers in decision making with regard to the early leaf senes-
cence trait in cultivated sunflower.

4. Materials and Methods
4.1. Plant Material and Experimental Conditions

Two field experiments were conducted at the INTA Castelar Experimental Station
(34◦60′48′′ S, 58◦67′33′′ W) during the 2020/2021 and 2021/2022 growing seasons.

Two sunflower inbred genotypes, R453 and B481-6, from the Instituto Nacional de
Tecnología Agropecuaria (INTA) Sunflower Breeding Program, previously characterized as
contrasting genotypes, were sown and evaluated for the senescence phenotype [36,41]. The
plants were sown at 7.2 plants/m2 and cultivated under field conditions. The plants were
grown under non-limiting water conditions, and soil water was maintained by irrigation.
Diseases, weeds, insects, and birds were adequately controlled. Time was expressed on a
thermal time basis by daily integration of air temperature with a threshold temperature of
6 ◦C and with plant emergence as the thermal time origin [42].

4.2. Physiological Parameters

Three plants were tagged, and the number of senescent leaves was calculated for
each sample. After visual inspection, all leaves with more than 50% chlorotic tissue were
considered senescent.

The phenological stages of the plants were followed every two days (growing season
2021/2022) or four days (growing season 2020/2021) by visual inspection. A stage was
determined if more than 50% of the plants belonged to that stage.

When tagged plants reached physiological maturity, their heads were harvested. Seed
number and seed weight per capitulum were also measured. Yield per genotype was calcu-
lated as the weight of 1000 seeds as follows: yield (g) = (FW(g) number of seeds) × 1000 [27].

4.3. Dataset

For each plant (~200 per genotype), pictures were taken during the life cycle on
14 dates during the season 2021/2022. Pictures were taken from different angles, distances
and light conditions using three different smartphones. The resolution of the cameras was
14mpx and the image sizes varied between 4656 × 3492, 3016 × 4032, and 3024 × 4032. All
of the images were resized to 224 × 224.

Twenty images from each genotype and date were separated, and the experimental
set growing season was 21/22. The remaining pictures were classified into 5 different
development stages: S1, S2, S3, S4, and S5, containing 450 images each. This dataset was
random sized and split in three balanced sets: train, validation, and test in a relation 6.1.3.

During the season 2020/2022, 20 extra pictures were taken for each genotype on six
dates along the life cycle of the plants (experimental set growing season 20/21).

4.4. Methods

We tested several methods for sunflower phenological stage classification from images,
including convolutional neural networks and transformer vision, highlighting the memory
requirements and the processing times to better compare the networks in the context of
lightweight classification.

4.4.1. Baseline CNN

We designed a CNN from scratch to serve as the baseline. The network is composed
of two convolutional layers followed by a fully connected layer. The two convolutional
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layers apply a series of four filters each of size 3 × 3. Stride and padding are set to
1, to preserve the input width and height. Batch normalization is applied after each
convolutional layer, which normalizes the output of the convolutional layer to improve
the stability and speed of training. Max pooling with 2 × 2 kernel is also applied in each
layer, to help the network learn features that are more robust to input translations. A ReLU
activation function is then applied elementwise to the output of the normalization layer,
which introduces non-linearity and helps the network learn more complex representations.
After the convolutional layers, a fully connected layer is applied to project the features to
the final classification scores for the five classes (Supplementary Figure S1).

4.4.2. VGG19

We chose to experiment with VGG19, a 19-layer convolutional neural network that
belongs to the VGG family. This family of CNNs was introduced in [25] to perform
classification on the ImageNet dataset. The authors sought explicitly to test the effect of the
depth on the classification accuracy. The authors were also among the first to test very small
(3 × 3) convolutional kernels in every layer. Thanks to its depth and its design, the VGG
architecture achieved state of the art results in the ILSVRC-2014 competition. Specifically,
VGG19 is composed of 16 convolutional layers followed by three fully connected layers.
The concept is to reduce the spatial dimension of the feature maps, while increasing their
number [25]. The reduction in spatial dimension is achieved using max pooling layers,
while the increase in feature maps is achieved through the convolutional layers. The last
three are a cascade of fully connected layers that project the features to the final output
scores. Overall, VGG architectures have shown great accuracy using fewer parameters
compared with counterparts such as AlexNet [25] (Supplementary Figure S2).

4.4.3. ResNet Networks (18–50)

The family of ResNet architectures was introduced in [43]. At the time, researchers
noticed that very deep networks were difficult to train, and that the deeper the network,
the harder it was for it to converge. ResNet is the first work to introduce the concept of skip
connections. Skip connections enable the direct transfer of information from one layer to
another that is not adjacent in the network architecture. One of their main benefits is that
they help to mitigate the vanishing gradient problem, which is a common issue in deep
neural networks. The vanishing gradient problem occurs when the gradient of the loss
function becomes very small as it propagates through the network during backpropagation,
making it difficult to update the weights of the earlier layers. By using skip connections,
the information from the earlier layers can be directly passed to the later layers, which can
help to preserve the gradient and improve the flow of information through the network.
Skip connections also allow for the creation of deeper and more complex neural networks
without sacrificing performance. This is because the skip connections allow for the reuse
of features learned in earlier layers, which can help to improve the overall accuracy and
generalization of the network. Finally, skip connections can help to improve the speed of
convergence during training. By allowing the network to access information from earlier
layers, skip connections can help to speed up the learning process and reduce the number
of iterations required to reach convergence. We will experiment with two ResNet variants,
resnet18 and resnet50. The main difference between them is the depth of the network, one
is characterized by 18 layers, while the second by 50 layers. Additionally, resnet18 and
resnet50 employ two different building blocks. Resnet18, given the contained number of
layers, adopts a basic block formed by two 3 × 3 convolutions that reduces the spatial
dimension by increasing the number of feature maps. In contrast, resnet50 adopts a basic
block formed by three convolutions in series. The first exploits a 1 × 1 kernel to reduce the
number of feature maps to improve the efficiency of the 3 × 3 convolution that follows.
Finally, another 1 × 1 convolution brings the number of feature maps back to the initial
one. This process allows the network capacity to be maintained by using fewer parameters,
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especially in very deep networks. In fact, this approach is also used in other ResNet
variants, such as resnet-101 or resnet-152 (Supplementary Figure S3).

4.4.4. Transformer

The Transformer architecture [44], originally developed for natural language process-
ing (NLP) tasks, has recently gained attention in image processing as an alternative to
convolutional neural networks (CNNs). CNNs have been highly successful in image pro-
cessing tasks, but they struggle with capturing long-range dependencies due to the limited
receptive field of the convolutional kernel. The Transformer architecture, on the other hand,
relies solely on self-attention mechanisms and does not rely on sequential processing. This
allows it to capture dependencies between distant elements in the input sequence without
being limited by the receptive field of the convolutional kernel. Moreover, the self-attention
mechanism of the Transformer architecture enables it to attend to different parts of the
input image, making it well-suited for image processing tasks that require the capturing of
relationships between non-adjacent pixels. Recent studies have shown that the Transformer
architecture can achieve competitive results on several tasks, such as image classification,
object detection, and segmentation. Its efficient use of memory and its ability to handle
long-range dependencies make it a particularly appealing choice for these tasks, especially
in cases where the input image has complex and non-local dependencies. While CNNs
remain the dominant approach for image processing tasks, the Transformer architecture
presents a promising alternative, with its ability to capture non-local dependencies and
attend to different parts of the input image; as a result, we decided to include it in our
analysis (Supplementary Figure S4).

4.5. Transfer Learning

Transfer learning is a machine-learning technique in which a model trained on one
task is used as a starting point for a different but related task. The so-called “pre-trained”
model is then used to extract general features that can be used as input for a new model
trained on a specific task. In the computer vision community, models pre-trained on the
ImageNet [24] dataset have been a longstanding starting point for a series of downstream
tasks, including image classification.

One of the key benefits of transfer learning is that it can significantly reduce the
amount of data required to train a new model. By using a pre-trained model as a starting
point, the knowledge already captured in the pre-trained weights can be leveraged to
improve performance and achieve a faster convergence. Additionally, transfer learning
can help mitigate the problem of overfitting, as the pre-trained model has already learned
general features that can be used to regularize the new model. In the context of image
classification, transfer learning is usually achieved by removing the last classification head
and replacing it with a different head to accommodate for the number of output classes.
The network is then trained by freezing the parameters of all but the last classification
head. This prevents the pretrained weights from changing during training and allows the
classification head to adapt to the given task and the extracted features.

4.6. Data Augmentation

Data augmentation is a technique used to artificially increase the size of a dataset by
creating new, modified versions of existing data. With classification, several different trans-
formations can be applied to augment the dataset. In this work we applied transformation
to the input images to increase the dataset variability. Randomly, 20% of the input images
are rotated either in 90, 180, or 270 degrees; 20% are changed by increasing or decreasing
the brightness; and 20% are horizontally or vertically flipped.

4.7. Experimental Operation Environment

The proposed model was implemented in Python using the PyTorch library and
trained with an NVIDIA Quadro P2000 GPU (5 GB). The initial learning rate is 0.007, which



Plants 2024, 13, 1998 13 of 15

varies in a Poly manner. The maximum number of epochs used for training is 300, while
the batch size is 8. We used an Adam optimizer with a weight decay factor of 0.0001 on the
parameters to prevent overfitting.

4.8. Performance Evaluation

Precision, recall, and macro F1 score are important metrics used to evaluate the
performance of classification models. Precision (Pr) measures the proportion of correctly
predicted positive instances among all instances predicted as positive, highlighting the
model’s accuracy in identifying true positives (TP) while minimizing false positives (FP).
Recall (Rc), on the other hand, assesses the ratio of correctly predicted positive instances to
the total actual positive instances, focusing on the model’s ability to capture all positive
instances and reducing false negatives. Macro F1 score combines both precision and recall,
providing a balanced measure of a model’s effectiveness by considering their harmonic
mean. It is particularly useful when dealing with imbalanced classes, as it gives equal
weight to each class and offers a comprehensive assessment of a model’s performance across
all classes. The overall performance of each method was evaluated with the following
metrics, as follows:

Precision = Pri =
TPi

TPi + FPi

Recall = Rci =
TPi

TPi + FNi

Marco Average Precision = MPr =
∑
i

Pri

N

Marco Average Recall = MRc =
∑
i

Rci

N

Marco F1 score = 2 × MRc × MPr
MRc + MPr

Error = 1 − MRc

Con f idence interval = 1.96 × 2

√
MRc × Error

Ns
Accuracy = Marco Average Recall × 100

Accuracy± = Con f idence interval × 100

where i denotes the class (S1, S2, S3, S4, S5).

Supplementary Materials: The following supporting information can be downloaded at: https:
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ated (https://drive.google.com/drive/folders/1q39dsbNmvoh8t_jSCSsprHNWZw78yYYV?usp=
drive_link (accessed on 24 June 2024)). The subfolder Using_the_model contains Google collabs (or
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