Informe de resultados de ensayo comparativo de rendimiento de híbridos de girasol en la zona norte de Buenos Aires. Campaña 2023-24

Julio 2024

InformaciónTécnica INTA Pergamino ISSN 3008-7651

url: https://www.argentina.gob.ar/inta/centro-regional-buenos-aires-norte/informacion-tecnica-inta-pergamino

Responsable: Horacio Acciaresi

Editor: César Mariano Baldoni

Estación Experimental Agropecuaria Pergamino

Ruta 32 KM 4,5 (6700) Pergamino

Buenos Aires, Argentina

+54 02477 43-9076

Información Técnica INTA Pergamino

Estación Experimental Agropecuaria Pergamino Instituto Nacional de Tecnología Agropecuaria Argentina

Resultados de ensayo comparativo de rendimiento de híbridos de girasol en la zona norte de Buenos Aires Campañas 2023-2024

Autores: Matías DOMÍNGUEZ (INTA Pergamino) Javier LAVANDERA (INTA Pergamino)

Introducción

El cultivo de girasol en la región norte de la provincia de Buenos Aires está volviendo a integrarse dentro de las rotaciones. En las últimas campañas se viene notando un incremento de la superficie con el cultivo. Asimismo, los problemas causados por la sequía provocada por el fenómeno de "La Niña" en campañas anteriores y en la última campaña 2023/20424, y la aparición del achaparramiento del maíz producido por el Mollicute Spiroplasma kunkelii transmitido por la conocida "Chicharrita" *Dalbulus maidis*, generan inquietudes en los productores acerca de cómo poder diversificar los sistemas productivos.

En base a lo expuesto, el objetivo de trabajo fue realizar una evaluación de 41 híbridos comerciales de girasol ampliamente comercializados en la actualidad para caracteres de interés agronómico en la zona norte de Buenos Aires.

Materiales y métodos

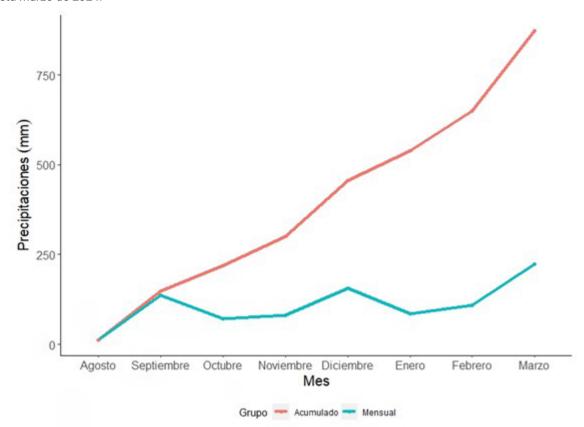
El experimento se realizó en la localidad de Arroyo Dulce (34° 08' 34.2" S 60° 23' 43.0" O), partido de Salto a 25 km de la Experimental del INTA Pergamino en un lote de un productor. El cultivo antecesor fue maíz. Se realizó un barbecho químico para control de malezas aplicando 2 l/ha de Glifosato (66,2 %), 0,8 l/ha de 2.4D (98 %). En presiembra se aplicó 2,5 l/ha de Paraquat, 0,4 l/ha de Sulfentrazone, 1 l/ha de S-Metolaclor y 0,25 l/ha de aceite como coadyuvante.

La fecha de siembra fue el 8 de noviembre de 2023, en siembra directa con una densidad de 45.000 plantas/ha y con una distancia entre surcos de 0,52 m. El diseño experimental fue de bloques incompletos con 3 repeticiones y el tamaño de las unidades experimentales fueron parcelas de 5 m de longitud por 4 surcos.

La cosecha se realizó manualmente el día 19 de marzo de 2023 recolectando los capítulos presentes en un área de 5,2 m² y posteriormente se trillaron con una trilladora estática.

Las variables evaluadas fueron los días a floración (R5.5) y a madurez fisiológica (R9) (Scheneiter. 1981), altura de la planta, posición de capítulo, rendimiento de granos ajustado a una humedad del 11%, contenido de aceite por RMN (Resonancia Magnética Nuclear) y rendimiento ajustado por aceite (RENSA).

Se realizó un análisis de comparación de medias para determinar si existieron diferencias significativas entre los híbridos evaluados (nivel de significancia α =0.05).



Resultados

Las condiciones climáticas de la campaña 2023/24 fueron levemente mejores con respecto a la campaña 22/23 que tuvo condiciones de sequía extrema debido al fenómeno "La Niña". En la Figura 1 puede verse las precipitaciones mensuales desde agosto de 2023 hasta marzo de 2024, mes donde se realizó la cosecha del experimento.

Asimismo, se presentan las precipitaciones acumuladas durante estos meses sumando un total de 873 mm, notándose un fuerte incremento de las precipitaciones en el mes de marzo de 2024 coincidente con el mes de cosecha.

Figura 1Precipitaciones mensuales y acumuladas en la localidad de Arroyo Dulce desde agosto de 2023 hasta marzo de 2024.

En la Figura 2 se muestran las temperaturas máximas, mínimas y medias para el período de agosto de 2023 a marzo de 2024. Se destaca de esta Figura la particularidad que el mes de febrero presentó una temperatura media más alta que el mes de enero.

Figura 2Temperaturas máximas, mínimas y medias desde agosto de 2023 hasta marzo de 2024.

En la Tabla 1 se presentan los resultados de los días a floración (DAF), altura de planta, rendimiento de granos ajustado a 11% de humedad, contenido porcentual de aceite determinado por RMN y rendimiento de granos ajustado por el contenido aceite (RENSA) de los híbridos evaluados.

Para los caracteres DAF, altura y aceite (%), los colores verdes indican valores iguales o superiores al valor medio del experimento y los colores rojos indican valores por debajo al valor medio del experimento. En el caso del rendimiento y el RENSA, los colores verdes indican al menos valores superiores al 5% del promedio del experimento, los colores amarillos indican

rendimientos de un 5% por encima o por debajo del valor medio del experimento y los colores rojos indican rendimientos de al menos 5% por debajo del valor medio del experimento.

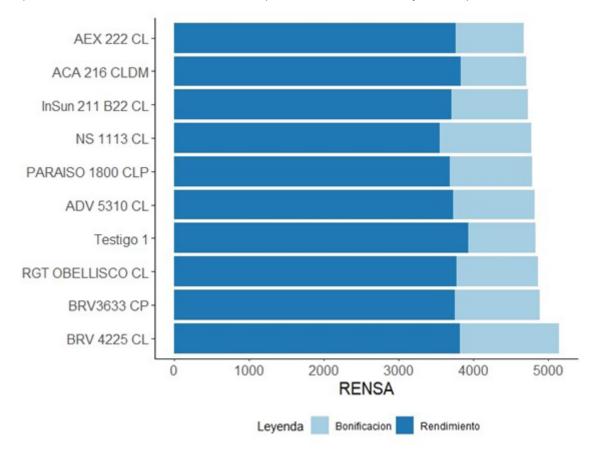
Para rendimiento de grano y para RENSA las diferencias mínimas significativas fueron de 574 y715 Kg/ha respectivamente.

Tabla 1Resultados de cada uno de los híbridos evaluados para días a floración (DAF), altura de planta (cm), Rendimiento de granos, contenido porcentual de aceite y RENSA.

Híbrido	Empresa	DAF	Altura (cm)	Rendimiento	Aceite (%)	RENSA
ACA 203 CLDM	ACA	72	206	3164	44,8	3353
ACA 216 CLDM	ACA	73	214	3834	52,8	4714
ACA 220 CLDM	ACA	72	182	3300	59,4	4418
ACA EXP NO214	ACA	73	164	2696	59,6	3681
ADV 5310 CL	ADVANTA	72	196	3737	56,7	4823
ADV 5407 CL	ADVANTA	73	198	3231	56,8	4241
AEX 222 CL	PIONEER	70	178	3771	54,3	4679
ALZ experimental CL	ALZ	71	198	3413	57,6	4481
Argensol 76 CL	ARGENETICS	70	186	2796	49,7	3176
Argensol 78 CL	ARGENETICS	70	191	2926	50,2	3381
BGH8243	BUCK	70	189	3216	51	3812
BRV 4225 CL	BREVANT	71	190	3820	59	5152
BRV3633 CP	BREVANT	69	196	3757	57,2	4894
BUCK 363CL	BUCK	71	181	3073	55,2	3870
BUCK355CL	BUCK	70	181	3094	52,9	3769
CACIQUE 223 CL Plus	EL CENCERRO	71	174	3216	52,9	3897
CACIQUE 322 CL	EL CENCERRO	71	180	3283	56,1	4233
Exp ORIGO 750	RURALCo	75	194	3105	52,5	3796
GROBOSOL 2318 CL	LOS GROBO	74	192	3586	53,5	4417
InSun 211 B22 CL	BASF	73	204	3715	55,8	4730
InSun 4B 2210 CL.	BASF	73	184	3708	51,2	4369
LG 5710	LIMAGRAIN	73	207	3056	45,7	3318
LG50760 CL	LIMAGRAIN	71	205	3399	53,9	4162
NK 3969 CL	NK Seeds	72	179	3489	58,8	4673
NK 3979 CLHO	NK Seeds	74	198	3357	51,6	3999
NS 1113 CL	NIDERA	72	176	3557	58,5	4782
NS 1115 CL	NIDERA	72	187	3460	52,5	4130
NS 1227 CLH0	NIDERA	73	187	3373	53,3	4106
NUSOL 4175 CL	NUSEED	73	182	3495	55,4	4443
NUSOL 4180 CL Plus	NUSEED	74	177	3478	55,9	4399
ORI 730 CL	RURALCo	72	223	3000	50,1	3492
ORISOL 740 CLDM	RURALCo	73	204	2888	45,5	3115
PARAISO 1500 CLP AO	NUSEED	71	200	3248	50,6	3783
PARAISO 1800 CLP	NUSEED	72	211	3690	55,6	4795
PLYUS 53 CL	GENEZE	72	210	3097	46,9	3353
PLYUS 59	GENEZE	72	203	3342	56,4	4315
RGT OBELLISCO CL	RAGT	70	194	3779	56,6	4870
SPS 3125 CL	SYNGENTA	76	195	3308	50,4	3855
SUNNO23 RI	AGS	72	214	3126	48,6	3569
TAU 1812	Alpha Semillas	75	194	3688	52,8	4523
Testigo 1	TESTIGO	73	208	3932	52,3	4834
Testigo 2	TESTIGO	73	182	3556	56,5	4595
Testigo 3	TESTIGO	72	204	3744	54	4619
Testigo 4	TESTIGO	72	207	2875	43,3	2951
Testigo 5	TESTIGO	68	170	2768	50,7	3204
ZT 74H78 CL	ZETA Semillas	70	196	3713	48,5	4230
	Promedio	72	193	3376	53,3	4157
	Máximo	76	223	3932	59,6	5152

La Figura 3 muestra gráficos de tipo araña para los diez híbridos con RENSA más alto ordenados de izquierda a derecha de mayor a menor. Estos gráficos permiten visualizar e integrar los valores que obtuvieron los diez mejores híbridos para las variables RENSA, rendimiento de grano, porcentaje de aceite, altura y días a floración.

Los valores obtenidos por cada uno de los híbridos se presentan con líneas y puntos rojos para cada variable. Asimismo, se presentan los valores promedio de todos los híbridos evaluados como un polígono gris en el centro de cada gráfico.


Figura 3Gráficos de tipo araña para los diez híbridos con mejor performance.

La Figura 3 permite resaltar la importancia que tiene el contenido de aceite y su impacto a través de la evaluación del RENSA sobre el resultado final que obtiene el productor al entregar el grano. Ya que por cada punto por encima del 42% de aceite el productor recibe una bonificación del 2%. En la misma línea, puede notarse que el híbrido ACA 216CLDM obtuvo uno de los rendimientos más altos, pero debido a que su contenido

de aceite fue del 52% (7 puntos por debajo del valor máximo obtenido) quedo relegado al noveno puesto al considerar el RENSA. Por su parte, el híbrido BRV 4225 CL obtuvo el RENSA más alto 5152 Kg/ha con un rendimiento de grano de 3820 Kg/ha y 59% de aceite. En la Figura 4 se muestra la composición del rendimiento bonificado RENSA para los diez híbridos con mejor desempeño.

Figura 4Composición del rendimiento bonificado "RENSA" para los 10 híbridos con mejor desempeño.

Respecto al perfil sanitario, si bien no se realizó un estudio exhaustivo en cuanto a la caracterización sanitaria de cada híbrido, pudo detectarse plantas enfermas con cancro del tallo y podredumbre seca del capítulo por *Phomopsis*, como así también plantas con podredumbre húmeda del capítulo. Si bien los valores de incidencia para cancro del tallo y podredumbre seca no fueron altos (menores al 10%), la detección de esta enfermedad en la zona norte de Buenos Aires es un llamado de atención de que la enfermedad puede darse principalmente si se presentan las condiciones predisponentes a pesar de que no sea una zona con un historial girasolero marcado como, por ejemplo, el sudeste bonaerense. Lo cual refuerza la necesidad de seleccionar un híbrido con buen comportamiento a

estas enfermedades más allá de que no sea la zona de más alto riesgo para *Phomopsis*. En lo que respecta a plagas, no hubo problemas en el experimento, sí resulta importante mencionar que en el resto del lote no se notaron daños por cotorras, aunque si hubo ataques de paloma a fin del ciclo cuando el cultivo estaba próximo a cosecharse. Este punto resulta importante también al momento de elegir el híbrido, siendo recomendable tener en cuenta la posición del capítulo para tratar de reducir este daño entre otras alternativas de manejo que se pueden implementar.

Consideraciones finales

La caracterización realizada sobre los más de cuarenta híbridos comerciales de girasol que representan la gran mayoría de los híbridos que se comercializan en el mercado argentino de semillas de girasol para la zona norte de la provincia de Buenos Aires resulta fundamental para la toma de decisiones por parte de asesores y productores a la hora de considerar al cultivo de girasol como una alternativa dentro de las rotaciones de la zona núcleo.

Los inconvenientes que se vienen presentando en las últimas campañas por el fenómeno de la niña y la aparición de nuevas plagas plantean la necesidad de diversificar los sistemas productivos con el objetivo de diversificar el riesgo.

El presente informe demuestra el potencial que tiene el cultivo de girasol para la zona núcleo y genera información actualizada de los híbridos disponibles actualmente en el mercado.

Agradecimientos

Agradecemos a Julián Digloria por su excelente predisposición a facilitarnos parte de su lote para poder hacer posible la realización de este experimento y a los integrantes del sector girasol Gabriel Colacilli, Carlos Baroni y Renzo Piazza por el gran trabajo realizado.

Bibliografía

Schneiter, A. and Miller, J.F. (1981) *Description of Sunflower Growth Stages*. Crop Science, 21, 901-903. https://doi.org/10.2135/cropsci1981.0011183X002100060024x

Estación Experimental Agropecuaria Pergamino Instituto Nacional de Tecnología Agropecuaria Av. Arturo Frondizi (Ruta 32) Km 4,5 (Pergamino) **Consultas:**

 $Mat\'ias\ Dom\'inguez\ |\ dominguez.matias@inta.gob.ar$

