

ALFALFA GRAZING SYSTEMS IN ARGENTINA

Daniel Basigalup – EEA INTA Manfredi

Why to graze?

Advantages (compared to confined systems)

- 1. Lower operational costs;
- 2. Better use of alfalfa quality;
- 3. Healthier animal products (cholesterol, fat, $\Omega 3/\Omega 6$)

Disadvantages

1. Risk of bloat;

2. Longer fattening period;

3. Lower milk production on individual cow basis.

High animal production
High alfalfa yield
High alfalfa persistence
Alfalfa growing pattern (stem lots)

Good management system

ROTATIONAL GRAZING

Rotational system must combine

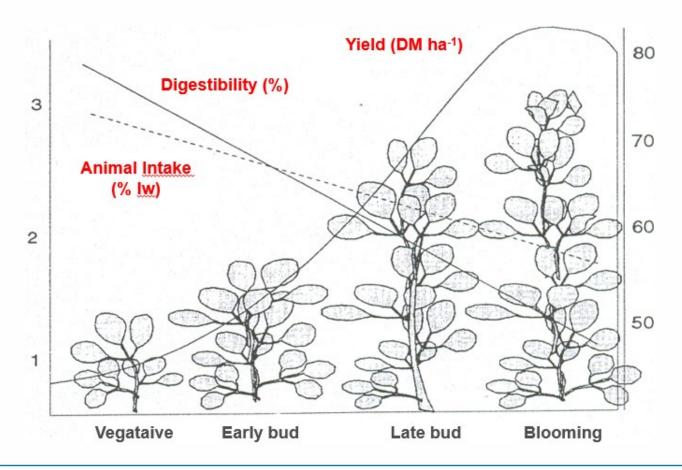
Alfalfa can tolerate intensive but not frequent use (respect dynamics of carbohydrates reserves)

Forage quality

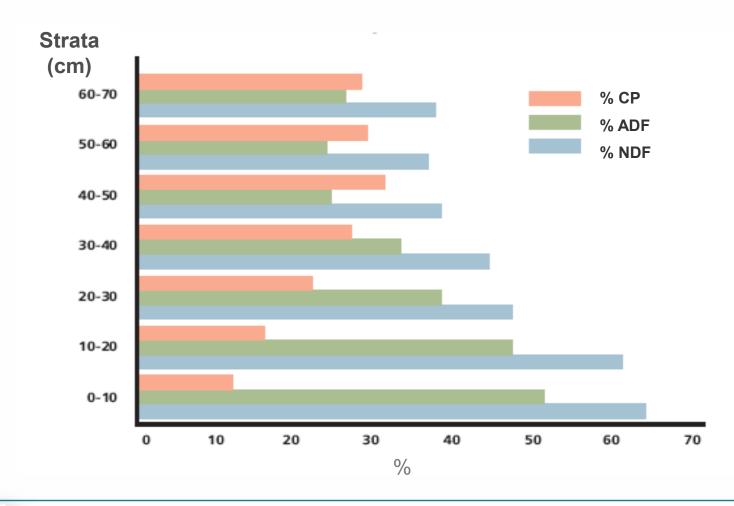
Impacts on animal performance

Stage of maturity

Strata in the canopy

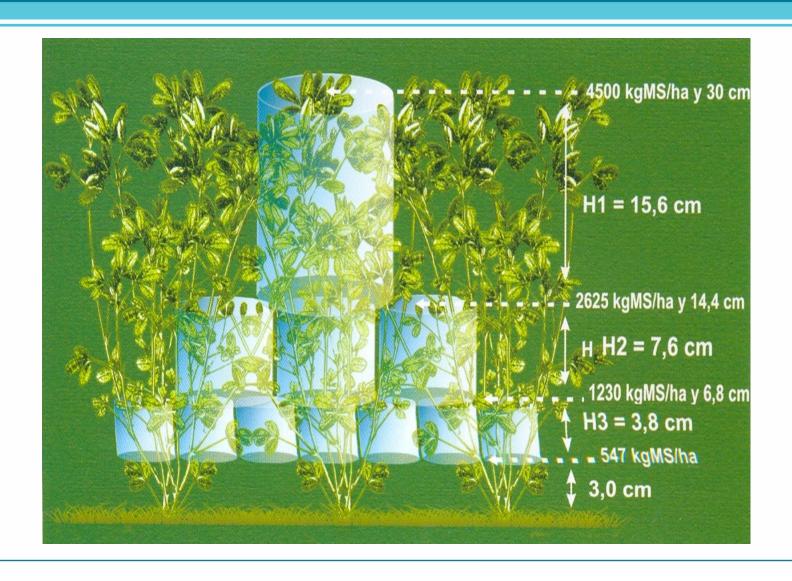

Day of grazing

Forage quality by maturity



Forage quality by strata

Variation of forage quality (whole plant) of a non-dormant alfalfa cultivar in day 1 and day 7 of the grazing period. Values are expressed as % on a DM basis.


Variable	Day 1	Day 7
In Vitro Digestibility	63.2	45.1
Crude Protein	19.7	11.7
Cell Wall	23.0	29.1

Variation of bite size as grazing is progressing

Rotational systems are based on 3 concepts:

GRAZING FREQUENCY (GF) (resting period)

Range: 23 (FD 7-10/spring-summer) to 42 d (FD 4-6/winter)

GRAZING PERIOD (GP) (number of grazing days)

Range: 1 (dairy/FD 7-10) to 7 d (beef/FD 4-6)

PASTURE UTILIZATION (PU) (grazing pressure)

PU = Animal Intake / Forage Allowance

When to start grazing?

Same criteria as cutting: first blooming (10%) or regrowth from the crown 5-cm tall.

Number of nodes in main stem (8)

°Cd (400-500 °Cd)

Compromise among yield, persistence, acceptable quality and good animal intake.

Grazing Systems

1. BEEF PRODUCTION

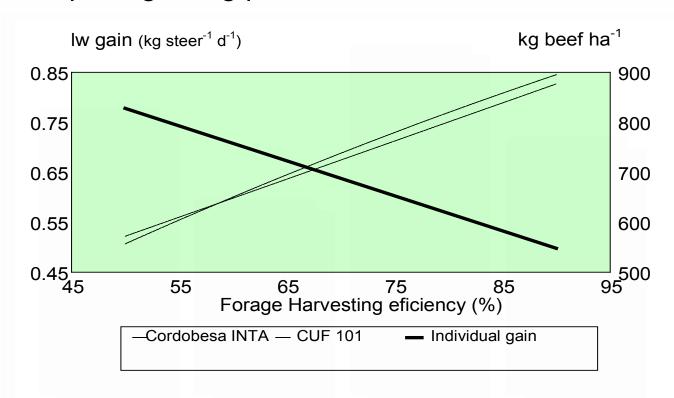
Most popular: 7 GD x 35 GF

Total grazing cycle = 42 d

Subdivide pasture into 6 paddocks

Calculate stocking rate as a function of forage availability

Define PU (harvesting efficiency, animal intake, etc.)



Impact on individual gain along the year

Whatever the GF and GP combination, the goal is to reach high PU through adequate grazing pressure

Grazing Systems

2- **DAIRY PRODUCTION**

FA has direct effect on milk production and on addition/substitution of supplement

Forage Allowance is related to Animal Intake:

FA = 1.75 x MEI (Maximum Expected Intake = kg DM cow⁻¹ d ⁻¹)

where: $MEI = (0.025 \times Iw) + (0.2 \times Im cow^{-1})$

Example: a cow of 550 kg and 28 l has a MEI = $19.35 \text{ kg DM d}^{-1}$ and a FA = $1.75 * 19.35 = 33.86 \text{ kg DM d}^{-1}$

If the goal is to maximize milk production per cow: options

- a) Under grazing alone: use high FA (low stocking rate), which implies low PUE and low milk ha-1
- b) Use high PU with supplements.

In the Pampas, combining individual and per unit area production:

FA: 20-22 kg DM cow⁻¹ d⁻¹ + PU: 70% + supplementation (corn silage, concentrates, etc).

Combining direct grazing (standing plants) and supplementation it is possible to obtain

> 10,000 liters of milk ha⁻¹ y⁻¹, with individual levels of 7,000-7,500 I cow⁻¹ lactation⁻¹ and stocking rates of

> 1.7 cows ha⁻¹

Comparison between grazing and confined systems

1. Management and environmental issues

	Grazing	Confined
Control on production variables	Fair	High
Milk production	Medium	High
Milk quality	High	Medium
Seasonal variation	Strong	Weak
Infraestructure requirements	Very low	High
Climate susceptibility	Very high	Low
Environmental pollution	Low	High
Sanitary risks	Heat-Cold	Infections-Flies
	Mastitis	Foot problems
		Mastitis

Comparison between grazing and confined systems

2. Feed characteristics

Quality

Diet selection by cows

Use of supplementation

Nutrient balance

Intake

Economic costs

Sanitary risks

Grazing

Variable

High

Strategic

Variable

Fair & variable

Medium/Low

Bloat-Mineral

Deficiencies

Confined

Stable

Low

Permanent

Controlled

High & stable

High/very high

Metabolic disorders

Mad cow disease

Thank you very much!!!

basigalup.daniel@inta.gob.ar

